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Angular Distribution of Single-Quantum Annihilation Radiation*
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Angular distributions of radiation accompanying single-quantum annihilation of positrons by E-shell
electrons are calculated. These angular distributions dier from the corresponding Born-approximation
calculations, both in magnitude and in shape. For transversely polarized positrons the radiation exhibits an
azimuthal asymmetry. The asymmetry, togetherwith the spin-independent part of the differential cross sec-
tion, is presented for various elements ranging from Z =47 to Z =92. Because of the relatively large magnitude
of the asymmetry for high-S targets, it is suggested that detection of the radiation caused by positrons,
transversely polarized by an electrostatic analyzer, could provide an alternative means for measuring the
longitudinal polarization of positrons emitted in nuclear p-decay. Total cross sections obtained by numeri-
cally integrating the angular distributions agree precisely with a previous total-cross-secton calculation
and serve as a measure of the accuracy of the present results.

I. INTRODUCTION

F lHE possibility of single-quantum annihilation.. (S.Q.A.) of positrons with bound atomic electrons
has been known for many years. ' ' Only recently,
however, has experimental attention been drawn to
this process because of the technical difBculty of
separating single-quantum annihilation radiation from
the background radiation. In the past few years
several experimenters~' have been. able to detect
single-quantum annihilation radiation from positrons
annihilating in atomic E shells and to measure the Z
dependence of the total cross section. These measure-
ments are in agreement with previous calculations of
the total cross section made using relativistic Coulomb
wave functions for both the E-shell electron and the
incident positron. ' ~

The only existing theoretical angular distributions
are those obtained from the Born approximation. '
Since the total cross sections predicted by the Born
approximation are known to be in error by factors
greater than 2 for high-Z elements it is necessary to
re-evaluate the angular distributions using relativistic
Coulomb wave functions to obtain reliable theoretical
predictions.

The incident positrons are scattered by the nucleus
before annihilating with the E-shell electron. If these
positrons are transversely polarized the scattering will
exhibit a left-right asymmetry with respect to the
plane de6ned by the positron spin and momentum
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vectors. This left-right scattering asymmetry rejects
a corresponding asymmetry in the annihilation
radiation. Of course in a Born-approximation calcula-
tion where the incident positron is described by a
plane wave no asymmetry appears.

Measurement of the asymmetry, which is appreciable
for high-Z elements, should provide a useful tool for
detecting transverse polarization of positrons. These
measurements could also serve to detect longitudinal
polarization by passing positrons from a radioactive
source through a 90' electrostatic deflector before
allowing them to annihilate, as illustrated schematically
in I'ig. 1. In this way, the asymmetry measurement
could provide a useful alternative to Bhabha scattering
as a technique for positron polarization measurements.
Similar techniques have been applied successfully to
obtain electron polarization from Mott-scattering
asymmetry. ' '

The angular distribution peaks sharply in the forward
direction, for the elements and energies considered
here, and falls off rapidly at backward angles. This
behavior is in conQict with the Born approximation,
which predicts an angular distribution vanishing at
both forward and backward angles. The asymmetry
maximizes for positron kinetic energies in the 200—400
keV range and has the same sign as the corresponding
Coulomb scattering asymmetry. The spin-dependent
part of the cross section maximizes for angles in the
30'—60' range.

II. DIFFERENTIAL CROSS SECTION

The single-quantum annihilation diBerential cross
section is given by

d /dQ=(n/2~) (E /p) g ~

T ~s, (1)

8 Beta- and Gamma-Ray Spectroscopy, edited by K. Siegbahn
(North-Holland Publishing Company, Amsterdam, 1965), Vol.
II, Chaps. XXIII, XXIV.' J. S. Greenberg and D. M. Lazarus, in Proceedings of the
International Conference on Weak Interactions, 1965, Argonne
National Laboratory Report ANL-7130, p. 313, {unpublished).

' J. S. Greenberg, D. P. Malone, R. L. Gluckstern, and V. %.
Hughes, Phys. Rev. 120, 1393 (1960).
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where the T matrix element is

T= d'r[v, t(r) n stt„(r) j exp( ik —r).

Wc denote the energy-momentum vectors of the posi-
tron and photon by (p, iE) and (k, iso), and use e

for the photon-polarization vector. The Coulomb-6eld
Dirac wave functions v, (r) and tt„(r} describe a posi-
tron with spin s and a E-shell electron with magnetic
quantum number p. We sum over photon-polarization
states and magnetic quantum numbers in Eq. (1) but
leave the positron spin direction arbitrary.

The E-shell wave function is given by

intcgrals given by

Jt''+(s) = [/(/+1) 3'"

&&[(l—1)"'8 t-t/s —(/+2) '"8,t+t/sgDe,

(s) = —[/"'8t t-t/s+ (/+1) '"8/ t+i/AS (6)

E,+(—',) = —sign(/c) R.+(-', ).
Here we have used

D.=(2l'+1) '(I., t i—I., tpt),

S.=J., t+(2/'+1) '(l'I. , t -i+(l'+1)I..i+i).
In Eqs. (6) and (7), / ls 'tile "oi'bital" angular momen-
tum of a positron partial @rave and 3' =2j—l. The radial
integrals I„i,and I„t, appearing in Eqs. (7) are given by

and thc posltlon wave function by

v, (r) =4s g P. (p, s) exp[ —i8„'—i(/ —1)tr/2j

( j'(~)~,() l
xl

E—ig (Pr) fb-(r) )
P-(p, s) = (—1)-'"(f/-t(p) x-.),

8.' =8.+(1+1)tr/2. (4)

WhCrC e~=eg+te„. ThC SPln funCtlOQS I„,tr arC glVCn

in Eq. (4), while E,+(tt) are finite sums of radial

Here /t=W(j+ts) for j=/+siand 8„ is the positron-
scattering phase shift.

The spin angular function Q„(r) and the radial
functions f, and g. for both the E-shell electron and
the positron are 1mown in analytic form for a Coulomb
field.""We normalize the positron wave function by
requiring that asymptotically it approach a plane wave
with a spherical Incoming wave. "

Ke choose the direction of the outgoing photon as
s axis and perform the angular integrals in Eq. (2).
Similar reductions are familiar from the theory of the
atomic photoeGect. ""The T matrix element is thereby
reduced to

T= —4tri+P, ,„+t*E.+(tt}e+~+P.,„ i*I/„(tt)e a, (5)-

I.t, ——i&t-"& exp(i8„') r'f, (pr)f t(Xr)j t, (/tr) dr,

J,t, i&' '——» exp(i8„') r'g„(Pr)g i(Xr)j(, (/tr)dr.

These radial integrals are the complex conjugates of i
times the corresponding integrals given in Ref. 2.

We introduce four production amplitudes defined by

G~= (4 ) '/'g C(l, -'„j;+1,-,')E„+(-',)Ft+'(8, @),

F = (4tr) '"Q C(l, —',,j;/a1, —',)E*(-,') Ft'+'(8, P).

The Clebsch —Gordan coeKcients in Eqs. (9) are
evaluated in terms of 3 and the spherical harmonics
reduced to derivatives of Legendre polynomials (we
choose p in the x—s plane). The amplitudes F~ and G+
become

G+=sin8+[(/+2)D t i+(l—1)Dt]Pt' (cos8),

F+=sins8+(Dt —D t t)PP (cos8),
I=2

G =sin8+(St —S t t)Pt' (cos8),
3=1

&—=—g[(/+1) S t t+/SQPt (cos8),

with S, and D, given in Eqs. (7).

"M. E. Rose, Relativistic Etectrott Theory (John Wiley ttt

Sons, Inc. , New York, 1961), Chap. V.
"M. K. Rose, Elementary Theory of Angular Momentum,

(John %'iley R Sons, 1nc., New York, 1957), Chap. IX.
"The wave function chosen here has the asymptotic form

exp' iy r iv l—n(pr y—r) )v.(y)—

transversely
pola rized
positron s

I-O

~ thin target of
high Z material

+F,(r) exp/ ipr+ir ln(2p—r) J/r,

where v, (y) is a positron hi-spinor. This is the wave function ap-
propriate to an "in" scattering state; it disagrees with the choice
made in Ref. 7. The alternative choice, appropriate to an "out"
scattering state, leaves the differential cross section unchanged,
but changes the sign of the asymmetry. Total cross sections, com-
puted with either choice, will obviously agree."R.H. Pratt, R. D. Levee, R. L. Pexton, and W. Aron, Phys.
Rev. 134, A89S (1964)."J.J. Matese and W. R. Johnson, Phys. Rev. 140, Ai (1965).

Jl

"~4 ll p
linearly polarized positrons

~Radioactive
Soorce

FIG. 1.Schematic arrangement for detecting longitudinal polari-
zation of positrons using thin-target S.Q.A. Iand D are the angular
distribution and asymmetry functions of Eq. (11).



The T matrix element in Eq. (5) can be expressed
in terms of the production amplitudes and the sum
over photon polarizations and electron magnetic quan-
tum numbers can be carried. out. The differential cross
section reduces to

d0/dQ I(8)+n sD(8), (11)

where n=kxp/I exp
I

is the unit normal to the
production plane, and 8 is the positron spin direction
(referred to the positron rest frame). The functions
I(8) and D(8) are determined from the amplitudes
Ii+ and G~ by the relations

I(8) =4 {E /P) (I G+ I'+I ~+ I'+I G- I'+I ~- I'), (12)

D(8) =8n(Z~/P) Im(P, *G,+Z *G ).
HL RAMAL INTEGRALS

The integrals I„~, and J„~, are simply related to the
corresponding integrals of Ref. 7. However, because
of certain difhculties which arise when the technique
of Ref. 7 is used for large values of

I
~

I
and ll, it was

decided to use an alternative method to evaluate the
integrals, whereby the accuracy could be carefully
controlled. "

IQtegMtion TechnigUG

The integrals were evaluated using. an 11th-order
closed. -type Newton-Cotes formula:

$8 4h

I4115f(x)dh= (989fo+5888fl—928fg+10496fs

4540f4+1—0496ft; 928f6+58—88f7+989fa)
—(2368/467775) fo0&'(f) h". (13)

Step sizes h were chosen as ~/12k, Ir/24k, and s/48k,
where k=~ is the photon wave number. The choice
of a fraction of Ir/k was dictated by the asymptotic
behavior of the most rapidly varying factor in Kqs.
(8), jl(kr) . As a guide to the accuracy to be expected.
using this method choose h =sr/24k and apply Eq. (13)
to the integral

An upper bound on the error term in Eq. {13) is
3&& (2368/467775) (hk) "/k. Setting h =s/24k, we find
a bound on the relative error M/I&1. 5X10 ". If
wc llsc step size 'I!'/12k tile C1101 will be lllclcascd by
a factor of approximately 2", giving a relative error
of less than 3.0&j.0 9. Both of these values are less
than the 7.4&10 ' truncation error of Qoating-point
numbers in a 36-bit digital computer.

The integrals evaluated in this computation have
an in6nite upper limit. A practical upper limit was
taken to be E =20/mnZ so that the bound. -state
factor exp( —mnZr) is reduced by a factor e 2O

"These difhculties vmre pointed out to the author by Dr. L. C.
Maximon.

2.0&10 ' from its maximum value. There is of course
a problem involved here since the continuum wave
function will be increasing at 8, unless E. ,„&
(1+21)/p. We place an upper limit on the number of
angular momentum states l,„&20, and consider
energies E&1.25m (p&0.75m): then even for the
heaviest element considered (Z=92), (f +2)/P; (

. The endpoint E is therefore in the oscillating
region of both the continuum wave function and the
spherical Bessel function.

As a realistic test of the above considerations. we
used the integration procedure to evaluate numerically:

The continuum wave functions f„(pr) and g„(pr) were
generated by solving the radial Dirac equations

df. (1—«) / nZ&—+ f.—I
E—m ——

I g~=0,
dr r- ( r j

(16)dg. (1+.) ( nz&—+ g+ I
E+m —

I f.=o—
dr r & rj

We use a, ninth-order predict-correct system based
on an open-type Newton —Cotes predictor:

ys ~yo+ {8h/945) (460yl' —954y6'+2196'' —2459y4'

+2196y3' —954y2'+460yl') + (3956/14175) y&91 ($)h',

(17)

where y represents either f„or g.. As is well known, this
type of 6nite-difference technique has inherent in-
stabilities due to the occurrence of extraneous roots
in the "indicial" equation. These instabilities are re-
solved by using the predicted value of y8 to evaluate ys',
and. by substituting this value into a stable "Adam' s"-
type corrector of ninth order:

y8= yI+ (h/120960) (36799ys'+139849yl' —121797y6'

+123133yg' —88547y4'+41499'' —11351y2'+1375yl')

—(33953/3628800) y&" ($)h'. (18)

Equation (18) is iterated until the predicted and cor-
rected values of ys agree to 1 part in 10~. This iteration
is only rarely necessary because the predicted. value
from Eq. (17) is usually within 10 I of the corrected
value. %hen this convergence criterion is satisfied the

QO 1ÃtXZ
«'jl(kr) jl(Pr) exp( mnZr)—dr = —QI'

pRk2 p:

(15)

where QI'(x) is the first derivative of a Legendre
function of the second kind. For a range of energies
1.25m to 2.00m and for values of nZ from 0.2 to 0.8,
numerical evaluation gave values of these test inte-
grals of relative accuracy better than i part in 10'
for 0&i&20. The limitation on accuracy is the error
due to partial cancellation of the cyclic terms in the
lnte grand.
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500-

400-

500-

E
200-

IOO-

E ~ l.50m
I = 92
a ~ I.2IO Berne

FIG. 2. Compari-
son of the Born-ap-
proximation angular
distribution (nor-
ma)ized to give the
correct total cross
section) with the
exact angular distri-
bution for Uranium
Z =92 at incident
positron energy B=
1.515.

The initial values of a„and b„are chosen according to

E m—"',
~

I'(y —iv)
~

expL s(vtr)]
~(2 ~1)

X(2P)~'2(y sing —v cosI)),

ao =[~/(v+~) ]bo,

ri = s tan '[(sv+yv') /(y» vv'—)] ', Ir—, —fors)0;
(21)

0
I.O 0.5 0.0

Cos(8)
-0.5 -l.O

predictor is used to obtain an estimate of y at the next
point and the cycle is repeated.

To get some idea of the error for each application
of Eqs. (17) and (18) consider y(x) =sinpx. For the
predictor formula we find.

Error -', (ph) ' 2 X10 " for h =Ir/24k,

~1X 10 ' for h =Ir/12k,

while for the corrector formula we have

Error~„p p (Ph) P~6X10 " for h =Ir/24k,

3X10 ' for h=Ir/12k.

We have used the„ fact above that p/k&1/V2 for
E&2.0m. The theoretical error limitations will not be
obtained of course since the corrector cycle will be
discontinued when the predicted and corrected values
at a given point agree to within 1 part in 10'. A more
realistic error limitation is thus simply 1X10 '.

Mention must be made of how the first few values
of y are generated to start the predict-correct cycle.
It is easily seen that errors in the initial values of y
propagate roughly as (1+(~ II

~
+1)h/r), where r is

some mean initial radius. To reduce the (~ Ir
~
+1)h/r

term compared with 1 we choose the initial value of
r to be 5(~ Ir

~
+1)h; the error propagation factor is

then 1.2, and initial errors will be only moderately
amplified.

The values of f.(pr) and g. (pr) at the points 0&
r&5(~ Ir

~
+1)h are computed using the power series

representation of the Dirac functions:

X (2P) ~I2 (y COSIi+ v SinIi),

bp PaZ——/(7 s) ]a—p,

I)=s tan I[(sv+yv')/(ys —vv')], for s&0. (22)

In Eqs. (21) and (22) v=nZE/p and v'=crZm/p. The
values for ao and bo are chosen so that asymptotically

g, (pr)~[(E+m)/2E]rls [cos(pr+B.)/pr],
(23)

f„(pr)~[(E m) /2E]'—I' [sin(pr+b„) /pr],

where the positron-scattering phase shift

b„=r)——',Iry —argI'(y —iv) . (24)
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E = I.SOO8
Z =79
o = 0.595 Barns

.500-

400-

E = I,500 IT1

As a practical test of the accuracy of the predict-
correct routines we chose nZ =0 and generated spherica, l

Bessel functions. These Bessel functions were accurate
to better than 1 part in 10' for E between 1.25m and

f(pr) =Lb-»"", (»)g (pr) =Z a-r""

where 7=[II'—(crZ)s]Ils s,nd where a„and b are
determined by the recurrence relations

(E—m) rrZa„—(E+m) (rs+1+y II)b„—
(Is+1) (rs+1+2y)

~
e I80-

Ol

Cl

120-

'300-
N

200-

60- 100-

0 0I I I I

I 0 05 00 -0 5 -I 0 10
cos (8)

I I I0.5 0.0 -0.5 -1.0
cos(8)

(E—m) (rs+1+y+s) a„+(E+m) uZb

(Is+1) (I+1+2y)

(20)
FIG. 3. Angular distribution functions I(9) and asymmetry

functions D(0) for E=-1.5m and Z=47, 73, 79, 92. The solid
curves represent I(S) and the dashed curves represent D(S).
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200-'

I60-

E = l.250m
Z -"79
0 = 0.428 Barns

QQQ„

320-

E = l.750m
2=79
0 = 0.558 Barns

Pro. 4. Angular distribution func-
tions I(8) and asymmetry functions
D(8) for gold Z= 79, at incident
positron energies Z= 1.25m and
1.75m. The solid curves represent
I(8) and the dashed curves repre-
sent D(8).
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E
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-I 0
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cos(8)

2.00m and for values of a=~i, &10, &20. Ke con-
clude that 1 part in 10' should be a reliable measure
of the error of the continuum Coulomb wave functions.

TABLE I. Comparison of the angular distribution function I(8)
at various angles for Z=47 and Z=92. The columns labeled
h=x/24k and h=x/48k were computed using the method of
Sec. III with the indicated step sizes. The columns labeled (a)
were evaluated using the radial integrals from Ref. 7.

cos0

1.0
0.5
0

—05
—1.0

Z=47
h =gr/24k (a)
20.4823 20.4827
5.30892 5.30892
2.38959 2.38958
1.09834 1.09832
0.473948 0.473920

Z=92
h =m/48k (a)
496.404 496.401
122.874 122.874
64.2778 64.2775
36 ' 8700 36.8696
21.9782 21.9779

'7 Handbook of Mathematical Functions, edited by M. Abramo-
witz and I.A. Stegun (U. S. Department of Commerce, National
Bureau of Standards Washington, D. C., 1964), Appl. Math
Series 55, Chap. X.

Bound-State Wave Functions and Spherical
Bessel Functions

The bound-state wave functions

g r(Xr) =1VL-', (1+yt)]'f'r&' 'e "" (25)

j- () r) =&Ll (1—v)]'""'-"-"'
with E=t (2X)'»+'/1'(2yt+1) )'~', yr ——$1—(rrZ)']"',
and ) =mnZ, are generated directly using Eqs. (25).
The spherical Bessel functions j&(kr) occurring in Eqs.
(8) are generated using recurrence relations. In the
oscillating region. x)l+-„j~(x) is generated using
upward recurrence relations, while in the monotone
region x&l+s, jt(x) is determined from arbitrarily
assigned initial va1ues using downward recurrence rela-
tions as suggested by Miller. '~

The numerical values generated in this way agreed
with tabulated values to j. part in 10~ for the range of
parameters relevant to this problem.

Considering the accuracy of the various parts of
the calculation described above it is believed that the

final numerical values for the integrals I„~ and J„~
are of relative accuracy better than 1 part in 10'.

In Table I selected values of the di8erential cross
section I(8) generated using the numerical procedure
described above are compared with the values ob-
tained using the technique of Ref. 2. These values ap-
pear to be consistent to the accuracy quoted above.
The difficulties with the techniques of Ref. 7 mentioned
at the beginning of this section are seen to be unim-
portant for the energies considered here. It is clear
that the numerical methods above can be applied with
some modification to the calculation of the (small)
effects of atomic screening by using a suitable screened
potential rather than V(r) =uZ/r.

IV. RESULTS AND CONCLUSIONS

The radial integrals I,~ and J,~ were combined to
form the parameters D„and S„of Eqs. P). These
parameters were then used together with the ap-
propriate Legendre functions to evaluate the amplitude
P+ and G+ in Eqs. (10). The partial-wave sums were
evaluated using both 10 and 20 terms (~ ~

~
&10,

~
a

~
&20). The additional 10 partial waves changed

the amplitudes and the total cross section by less
than 0.1%. The angular distribution I(8) and asym-
metry function D(8) were determined by combining
the amplitudes according to Eqs. (12) .

As a further check on the accuracy of the calcula-
tions, the function I(8) was integrated numerically
and the total cross section compared with the results
of the direct calculations of Ref. 7. The two calcula-
tions agreed precisely to the three signi6cant figures
quoted in Table I of that reference.

The Born-approximation' angular distribution

do m4p sin'8—=0.4Z'rp'
dQ E'k' (1—P cos8)'

fg 2m2
X i

—+2—,(26)
l,m Ek(1—P cos8)

where re ——electron radius, and p=p/8, is compared
with the exact angular distribution in Fig. 2. The
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TAnLz II. Values of the functions I (e) and D(8) for 8=4/ and various positron energies. Cross sections are in mb/sr.

Z=47
cosy

E=1.25m
I(8) D(g)

8=1.50m
I(e) D(e)

1.0000
0.9375
0.8750
0.8125
0.7500
0.68/5
0.6250
0.5625
0.5000
0.4375
0.3750
0.3125
0.2500
0.1875
0.1250
0.0625
0.0000—0.0625—0.1250—0.1875-0.2500—0.3125-0.3750—0.4375—0.5000—0.5625—0.6250—0.6875—0.7500—0.8125—0.8750—0.93/5—1.0000

11.562
9.514
8.260
7.407
6.767
6.245
5.795
5.393
5.024
4.684
4.366
4.070
3.792
3.532
3.289
3.061
2.848
2.649
2.462
2.287
2. 124
1.971
1.828
1.694
1.568
1.451
1.340
1.237
1.140
1.049
0.963
0.883
0.807

0.000
1.836
2.411
2.692
2.807
2.817
2.762
2.667
2.548
2.414
2.275
2.134
1.994
1.858
1.726
1.600
1.480
1.366
1.257
1.155
1.057
0.965
0.877
0.794
0.714
0.637
0.563
0.491
0.420
0.347
0.271
0.183
0.000

20.483
13.070
10.329
8.933
7.975
/. 190
6.498
5.874
5.309
4.798
4.336
3.921
3 ' 547
3.211
2.908
2.635
2.390
2.168
1.967
1.786
1.621
1.471
1.335
1.211
1.098
0.995
0.900
0.814
0.734
0.661
0.593
0.531
0.474

0.000
1.216
1.840
2.082
2.109
2.026
1,893
1.739
1.583
1.431
1.290
1.159
1.040
0.932
0.835
0.747
0.668
0.596
0.532
0.474
0.421
0.373
0.330
0.290
0.254
0.221
0.190
0.161
0.134
0.108
0.082
0.054
0.000

27.003
13.718
10.800
9.387
8.254
7.243
6.341
5.547
4.856
4.259
3.743
3.297
2.911
2.5/6
2.284
2.029
1.805
1.608
1.434
1.280
1.144
1.022
0.913
0.816
0.728
0.650
0.578
0.514
0.456
0.403
0.355
0.311
0.271

0.000
0.051
0.805
1.069
1.095
1.023
0.919
0.808
0. /02
0.607
0.522
0.449
0.385
0.330
0.282
0.241
0.205
0.174
0.148
0.124
0.104
0.087
0.072
0.059
0.048
0.038
0.030
0.023
0.016
0.012
0.007
0.004
0.000

TABLE III. Values of the functions I(8) and D(8) for Z=73 and various positron energies. Cross sections are in mb/sr.

Z= 73
cose

E=i.75ns
&(e) D(e)

1.0000
0.93/5
0.8750
0.8125
0.7500
0.6875
0.6250
0.5625
0.5000
0.4375
0.3750
0.3125
0.2500
0.1875
0.1250
0.0625
0.0000—0.0625—0.1250—0.1875-0.2500—0.3125—0.3750—0 ' 4375—0.5000—0.5625—0.6250—0 ' 6875—0.7500—0.8125—0.8750—0.9375—1.0000

76.842
64.567
56.457
50.640
46. 155
42.490
39.363
36.612
34. 141
31.890
29.822
27.909
26. 133
24.479
22.937
21.496
20. 148
18.887
17.705
16.597
15.557
14.581
13.664
12.801
11.990
11.227
10.508
9.831
9.192
8.590
8.021
7.484
6.976

0.000
1'/. 176
22. 141
24.508
25.464
25.566
25. 131
24 ' 360
23.382
22. 284
21.123
19.938
18.756
17.592
16.460
15.364
14.309
13.296
12.326
11.398
10.509
9.657
8.839
8.052
7.292
6.554
5.832
5.119
4.404
3.670
2.884
1.964
0.000

189.05
121.40
91.41
75.10
64.58
56.88
50.77
45.68
41.33
37.54
34.19
31.23
28.58
26.21
24.08
22. 16
20.42
18.84
17.41
16.10
14.91
13.82
12.82
11.90
11.05
10.27
9.55
8.89
8.27
7.70
/. 17
6.67
6.21

0.00
26.45
32.63
33.98
33.13
31.29
29.06
26. /4
24.47
22.32
20.33
18.50
16.83
15.31
13.92
12.66
11.50
10.45
9.48
8.60
7.78
7.03
6.33
5.68
5.07
4.50
3.95
3.42
2.91
2.40
1.87
1.26
0.00

279.16
134.52
91.69
72.55
60.90
52.44
45.75
40.25
35.62
31.68
28.29
25.37
22.83
20.61
18.66
M. 94
15.42
14.07
12.86
11.78
10.81
9.93
9.14
8.43
7.78
7.18
6.64
6.15
5.70
5.28
4.90
4 54
4.22

0.00
23.83
28.77
28.36
26. 10
23.38
20. 72
18.28
16.11
14.22
12.57
11.13
9.88
8.78
7.81
6.97
6.22
5.56
4.96
4.43
3.95
3.52
3.13
2.78
2.45
2.15
1.87
1.60
1.35
1.10
0.85
0.57
0.00
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TAnLz IV. Values of the functions I(8) and D(e) for Z= j9 and various positron energies. Cross sections are in mb/sr.

2= 79
cos8

1.0000
0.9375
0.8750
0.8125
0.7500
0.6875
0.6250
0.5625
0.5000
0.4375
0.3750
0.3125
0.2500
0.1875
0.1250
0.0625
0.0000—0.0625—0.1250—0.1875—0.2500—0.3125—0.3750—0.4375—0.5000—0.5625—0.6250—0.6875—0.7500—0.8125—0.8750—0.9375—1.0000

100.76
85.54
75.34
67.95
62. 18
57.43
53.34
49.73
46.46
43.48
40. 73
38.18
35.80
33.59
31.52
29.58
27.76
26.05
24. 45
22.95
21.54
20.21
18.96
17.78
16.67
15.63
14.64
13.71
12.83
12.00
11.22
10.48
9.77

0.00
23.63
30.52
33.87
35.28
35.51
34.99
34.00
32.71
31.24
29.67
28.06
26.45
24.85
23.29
21.78
20.32
18.91
17.55
16.25
15.00
13.81
12.65
11.54
10.46
9.41
8.39
/. 37
6.34
5.29
4.16
2.84
0.00

E=1.25m
I(e) D(e)

E
I(e) D(8)

0.00
41.13
50.42
52.44
51.18
48.44
45.10
41.61
38.19
34.95
31.93
29.14
26.58
24. 25
22. 11
20. 16
18.37
16.73
15.22
13.84
12.55
11.37
10.26
9.23
8.26
7.34
6.46
5.62
4.79
3.96
3.08
2.08
0.00

268.30
175.02
132.53
109.04
93.77
82.60
73.77
66.45
60.20
54. 77
49.99
45, 76
41.98
38.59
35.54
32.78
30.28
28.02
25.96
24.07
22.35
20. 77
19.32
17.98
16.75
15.61
14.56
13.58
12.68
11.84
11.06
10.33
9.65

=1.50m

407.26
199.78
135.63
106.56
89.05
76.55
66.81
58.86
52.21
46.57
41.73
37.55.
33.92
30.73
27.93
25.46
23.26
21.31
19.56
17.98
16.57
15.29
14.14
13.09
12.13
11.25
10.45
9.72
9.05
8.43
7.85
7.32
6.83

0.00
40.41
47.54
46.52
42. 78
38.39
34.12
30.22
26. 74
23.69
21.03
18.71
16.68
14.89
13.31
11.92
10.69
9.59
8.60
7.71
6.91
6 ' 19
5.53
4.92
4.36
3.84
3.35
2.89
2.44
2.00
1.55
1.04
0.00

E=1.75mI (8) D(8)

TAsLz V. Values of the functions I(8) and D(g) for Z=92 and various positron energies. Cross sections are in mb/sr.

Z=92
cos8

E=1.25m
I(e) D(e)

E=1.50m
I(e) D(e}

E=1.75m

1.0000
0.9375
0.8750
0.8125
0.7500
0.6875
0.6250
0.5625
0.5000
0.4375
0.3750
0.3125
0.2500
0.1875
0.1250
0.0625
0.0000—0.0625—0.1250—0.1875—0.2500—0.3125—0.3750—0.4375—0.5000—0.5625—0.6250—0.6875—0.7500—0.8125—0.8750—0.9375—1.0000

156.74
136.37
122.39
111.96
103.61
96.56
90.36
84. 78
79.66
74.92
70.50
66.35
62.46
58.80
55.36
52. ii
49.04
46. 15
43.43
40.85
38.42
36.12
33.95
31.90
29.96
28. 12
26.38
24. 74
23. 18
21.70
20.30
18.97
17.71

0.00
39.84
51.94
58.13
61.04
61.90
61.42
60.06
58.12
55.83
53.31
50.66
47.97
45.27
42. 61
39.99
37.44
34.96
32.57
30.25
28.01
25.84
23. /5
21. /1
19.73
17.80
15.89
13.99
12.07
10.09
7.95
5.43
0.00

496.40
337.31
260.91
217.00
187.82
166.27
149.18
134.99
122.87
112.32
103.03
94.76
87.36
80.71
74.69
69.24
64.28
59.75
55.61
51.81
48.32
45. 11
42. 15
39.41
36.87
34.52
32.33
30.29
28 ' 40
26.63
24.97
23.43
21.98

0.00
88.28

108.27
113.25
111.36
106.26
99.76
92.78
85.82
79.12
72.80
66 ' 91
61.44
56, 40
51.74
47.44
43.48
39.81
36.42
33.27
30.34
27.60
25.03
22. 61
20.32
18.14
16.04
13 ' 99
11.98
9.93
7.77
5.27
0.00

800.98
414.50
284. 42
223.08
186.10
160.10
140.16
124.07
110.70
99.37
89.66
81.26
73.92
67.47
61.77
56, 71
52.20
48. 15
44. 52
41.23
38.26
35.56
33.10
30.85
28.80
26.91
25. 17
23.57
22.09
20. /2
19.46
18.28
17.18

0.00
100.14
115.55
113.09
104.69
94.79
85.06
76.08
68.00
60.85
54.53
48.96
44.03
39.65
35.76
32.30
29.19
26.39
23.86
21.56
19.46
17.55
15.78
14.14
12.62
11.19
9.83
8.53
7.26
5.99
4.66
3.15
0.00
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FIG. 5. Angular-distribution func-
tions I(e) and asymmetry functions
D(8) for uranium Z=92, at incident
positron energies E=1.25m and
1.75m. The solid curves represent
I(e) and the dashed curves repre-
sent D(e)

0
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integrated Born cross section. for Z=92 and E=1.5m
is 4.191 b while the corresponding exact cross section
is 1.210 b. We normalize the Born-approximation dif-
ferential cross section to give the correct total cross
section and find that the shapes of the normalized Born
angular distribution and exact angular distribution are
completely di6erent.

For low values of Z, the numerical program gives
angular distributions which agree in shape with the
Born approximation. A representation of the differential
cross section, accurate for low Z((13), is obtained by
multiplying Eq. (26) by the positron Coulomb nor-
malization factor tie &/sinhri, with ri =a aZ/P.

Figure 3 gives angular distributions I(8) and asym-
rnetry functions D(8) for positron energy E=1.5m
and four elements: uranium, Z =92; goM, Z =79;
tantalum, Z=73; and silver, Z=47. One sees that at
this fixed energy the relative magnitude of the asym-
metry grows with Z in a roughly linear way. Figures 4
and 5 present the same two functions plotted at energies
1.25m and 1.75m, for gold and uranium, respectively.
In Fig. 4 one notices a decrease in D(8) at both 1.25m
and 1.75nz, compared with the value at 1.5m given in

Fig. 3. This decrease is associated with the fact that
the corresponding positron-scattering asymmetry is
reduced at these energies.

Numerical values of I(8) and D(8) are given in
Tables II—V, for the four elements mentioned above

at energies 8=1.25m, 8=1.5m, and 8=1.75m, and
at intervals of costII=0.0625. Using standard inter-
polation techniques these tables will provide values
of the differential cross section and asymmetry func-
tion for any target material in the range 47&Z&92,
and for any positron energy in the range 1.25m&
8& 1.75m, to better than 5 jo accuracy.

The largest corrections to the Coulomb cross sections
presented in Tables II—V arise from atomic-screening
eGects. For the E-shell photoe8ect, " screening de-

creases total cross sections by several percent, but
leaves angular distributions essentially unchanged. Be-
cause of the relation of the photoeffect and single-
quantum annihilation, we expect screening to irscrease
the total cross sections by several percent, and to
modify the angular distributions only slightly. The
large number of significant figures in Tables II—V are
included mainly to facilitate interpolation.
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