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trum in iron-doped SrTi03 in addition to the normal
cubic spectrum. This axial spectrum was attributed by
them to the presence of near-neighbor oxygen vacancies.

In addition to the quadrupole-split Fe'+ spectrum,
we observe the temperature-dependent quadrupole-split
Fe'+ spectrum in this highly reduced sample. This sug-
gests that the Mossbauer spectrum reveals the existence
of the Fe'+ state as well as the Fe'+ state. The previous
question of whether any of these states are nonequili-
brium ones arises. We have discussed this in our earlier
paper on BaTi03,'5 and following Craig's work, " we
conclude that both of these are equilibrium states in the
lattice, Fe'+ being stabilized because of large deviation

from stoichiometry. The variation of the quadrupole
splitting of the Fe'+ state with temperature is shown
ln Fig. 7.
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The influence of an applied magnetic Geld on semiconductor impurity states is calculated, including the
effects of screening of the impurity-ion potential by free carriers. When the screening is sufIiciently great
so that no bound states occur at zero Geld, they are introduced at some critical Geld. If the semiconductor
is extrinsic, then the appearance of bound states at the critical Geld results in a Mott transition as the Geld
is increased. Free carriers are entrapped at impurity sites and the electrical conductivity is markedly reduced
as the magnetic field is increased beyond the critical value.

INTRODUCTION

LECTRONIC energy levels in semiconductors as-
sociated with impurity ions can frequently be

dcsc11bcd by Rn elective-mass formRlisni in whichwRvc
functions and energy levels of the hydrogen. atom de-
scribe an electron of mass m~, the effective mass of the
electron in the crystal, and a nucleus with charge
Ze/E, the excess charge of the impurity ion decreased.

by the dielectric constant E of the medium.
Now consider this model in a magnetic 6eld. A con-

venient measure of the strength of the Geld is the dimen-
sionless parameter

y= i'rro, /(2 Ry*) .
cv, is the cyclotron frequency of a free electron with mass
m~, and 1 Ry~ is the Rydberg constant appropriate to
m* and E, which will be called the effective Rydberg. y
is the ratio of the lowest energy of a free electron in R

magnetic Geld to the lowest energy level of the hydrogen
atom in zero Geld.

When y« 1, the wave functions and energy levels can
be calculated accurately by considering the magnetic
Acid as a perturbation. For the hydrogen atom itself,

*This vrork was supported by the National Research Council
of Canada.
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y& j. for magnetic fields as great as 10' G, and magnetic
fields large enough so that y&&1 are not realizable experi-
mentally. However, the situation may be diGerent for
impurity levels in a semiconductor. If we consider for
example indium antimonide, where nz, ~ 0.05m, and
X~16, then y&&1 at 50 kG. Thus the CGect of even
moderate magnetic 6elds on impurity levels cannot be
considered as a perturbation.

Qualitatively, the effect of a magnetic Geld on an
electron. bound to an impurity ion can be understood as
follows. The application of a magnetic 6eld shifts the
atomic energy levels upward (atomic diamagnetism).
However, the unbound electronic states are also shifted
upward, and by a greater amount. Hence the net effect
of the magnetic field is to irscreuse the binding energy of
the impurity level. '

If the impurity levels are su%ciently shallow, there
maybe a large enough number of electrons in the conduc-
tion band so that screening of the impurity potential
shifts the levels. A similar atom model can be retained
if the impurity potential is described in some manner
which will take account of the electron screening. Bind-
ing energy decreases continuously as the concentration
of screening electrons is increased, and at some critical
concentration. , the lowest bound state will have zero

i V. Vafet, R. %. Keyes, and E. N. Adams, J. Phys. Chem.
Solids 1, ~37'
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binding energy. At greater concentrations, there will be
no bound states.

Thus a magnetic 6eld increases the binding energy
while screening by conduction-band electrons decreases
it. At any value of 'the field, we can expect that there is
a critical concentration of conduction-band electrons
such that there are no bound states. Clearly, this critical
concentration increases as the 6eld increases.

Now consider a degenerately doped semiconductor at
0 K. In this case, as in a metal, screening of impurity-ion
potentials by quasi-free electrons is sufficient to prevent
binding of conduction-band electrons to impurity ions.
If a magnetic 6eld is applied and continuously increased.
from zero, a point is reached at which the concentration
of conduction-band electrons is the critical concentra-
tion required to prevent binding of electrons to impurity
ions. An infinitesimal increase of the 6eld beyond this
point introduces a bound state. Electrons which become
bound to impurity ions reduce the number of electrons
in the conduction band, which in turn increases the
binding energy due to decreased screening. The process
is regenerative and at O'K, the number of electrons in
the conduction band as a function of magnetic 6eld
changes discontinuously. This then is a Mott transition'
introduced by increasing the magnetic 6eld. If the tem-
perature is not O'K, a discontinuity in the number of
conduction-band electrons does not occur, because
thermal excitation maintains some electrons in the con-
duction band at 6elds where the binding energy is small.
Nevertheless, a very rapid change of carrier density with
magnetic 6eld may be expected. even at 6nite tempera-
tures under suitable conditions.

In the following sections the energy of the lowest im-

purity level is calculated as a function both of magnetic
6eld strength and the number of electrons in the conduc-
tion band. Dependence of the number of electrons in the
conduction band on the magnetic field is discussed.

I. ENERGY LEVELS

A Coulomb potential screened by free electrons is

approximately described by'

V(R) = —(Ze'/ER) exp( —R/A. ), (1)

where E is the dielectric constant discussed previously
and A is the screening length.

Ill thc tl ansvcrsc gauge thc HRnilltonlan fol Ml

electron in the screened Coulomb potential of an irn-

pullty ion Rnd ln R magnetic 6cld IJ ls

Z8 E.
cxp ——. 2

~ J. M. Ziman, Theory of Solids (Cambridge University Press,
Cambridge, England, 1964).

3 J. M. Ziman, Electrons and Phonons (Clarendon Press, Ox-
ford, England, 1960).

Since we are interested in calculating the energy levels
relative to the bottom of the conduction band, the Zee-
man spin-splitting term does not enter. The magnetic
field is along the Z axis, and I., is a dimensionless oper-
ator for the Z component of orbital angular momentum.
For the ground state the eigenvalue of I., is zero. If we
use the effective Rydberg BI*Z 8 /2E k as a unit of
energy, and the effective Bohr radius EA'/m*e' as a
unit of length, the Hamiltonian may be expressed as

&=—&'+VI-.+jy'(~'+y') —(2/r) exp( —«/l ) (3)

where

g=X/gp*, y= F'/up*, «=R/ap*, and X=A/up~.

In a weak magnetic field y«1 the magnetic terms can
bc treated as a perturbation. The ground-state eigen-
function when y=o and X= ~ is

ep(z= ~) =Ae—", (4)

4 Yu. N. Demkov and G. F. Drukarev, Zh. Eksperim. i Yeor
Fix. 49, 257 (1965) I English transl. : Soviet Phys. —JETP 22
182 i1965)g.' 1.. I. Schi8, Quuntlm 3IIechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1949).

where A is a constant. No exact analytic form can be
obtained when A./ ~, that is when the CBects of screen-
ing are considered. To second order in y, the perturba-
tion result for the ground-state energy is

~=~(~)=~p(~)+pe'(r'(v=0)), (5)

where Ap ls thc cnclgy of thc lowest bound stRtc when
y=0. The second. term of Eq. (5) is the usual diamag-
netic energy shift (although in this case it is a function
of the screening length) and arises entirely from the y'
term in the Hamiltonian. When X= ~, Ep ———1 and.
(r')=6. When Xg ~, solutions can only be obtained
by numerical methods. (For a 8-function potential,
(r') = 1 with Ep —1.')——

When y«1 the binding energy increases when a
magnetic field is applied. If y is in6nitcsimal, the binding
energy must always increase for any binding energy
such that (r') is 6nite, or for Ep(0. When Ep&~0 no
simple perturbation result can be obtained. However, by
a continuity argument we can see that when no bound
state occurs at zero field, bound states will not be intro-
duced until the magnetic field has exceeded some critical
value.

Next consider a strong magnetic 6eld, y&&1. When the
screened Coulomb term is neglected, the eigenfunctions
are

+vol =~'Nm(pp, y)e' *

E is the principal quantum number, 3f is the eigenvalue
of I, Rnd thc 4'~p are the harmonic oscillator functions. '

4~p II~(aP) e "I'". —— —

Here p= (x'+y')'IP and a is a parameter which d.epends
on 7.
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Kith the screened Coulomb term introduced. as a
perturbation, the eigenfunctions near the limit y—+~
have the form

+//mt =@'///3/(2p, y}~//2r2 (s) ~

where Z/38rt(s) satisfies the equation

d2
—d2:/fy +x/2/2(&)

ds r

= &2/2r +2/pr 2(&) ~ (9)

Equation (9) can only be solved by numerical methods.
The energy eigenvalues, neglecting terms of order 1/y
and higher, are

(10)

For the states with X=0, the first term is equal to the
lowest energy of the conduction band. The ground state
is given by X=3f= /=0. Since pppp40 for all values of X,
a bound state occurs for any screening length in the
limit y —&~.

@= Ln'/2u, /3„'/2$ —' exp—
-g2+ y2 s2 —1/2

gg gf1

a& and u» are variational parameters. When y=o, this
expression reduces to the exact wave function for X=
given by Eq. (4).

An expression for the trial value of the energy as a
function of the screening length is obtained:

To summarize, the low- and high-fieM limits show
that when X is su6ciently small so that there are no
bound states with y=0, at least one bound state is
introduced at some noninfinitesimal magnetic Geld
(Ep&0 and noninfinitesimal). This supports the remarks
in the Introduction.

Both high- and low-field approximations can only be
obtained by numerical method, s. For this reason and.
particularly because we are interested. in the intermedi-
ate fields where we expect bound states to be intro-
duced, the ground. state energy will be determined by a
variational calculation. A normalized trial function of
the correct symmetry, which is mathematically tract-
able, is given by

1 8 y2/2, 2 (1—8)'"
Z(X,~)=—1—y

Cg 3 2 CI

-ni/2+ pi/2-

ln
1/2~3/2 O/1/'2 6i /2

1 -n l + pi/ L(1—n)/(] —p)]1/2 2(1-n)1/2
L(1- )'"-(1—)'/2j1 . (»)ni/2 —8'/2$(1 —n)/(1 8) ji/2 n(n &)

In this expression 8=1—/8, /a~~ is the eccentricity of the wave function and n=1 o,2/y2;s a d,mensiogess
parameter. It is noteworthy that the energy depend~ on screening length entirely through the rat;o a,/y

An expressio~ has been obtained for the trial value of the energy by Yafet, Keyes, and Adams, ~ neg]ecting screen
ing, with the trial function

2+&2
exp —

/
+

5 4a12 4a„2)
With X= ~, their energy is given by

& v"' (1-)'" q'" -1+""-
,I1

—- I+
4/312 ( 3) 2 /i, p, '/2 2)

If we 1« li= ~ in Eq (12) an exp«ssion identic» in form with Eq. (13) is obtained, although numerical coef-
6cients of the first and third terms are slightly diferent.

~hen Eq. (12) is minimized with respect to 8 and a„ two equations are obtained:

I -ni/2+ pl/2- 1 -nl/2y pl/21 (1 n)/(1 p)]1/2-—ln — —— ln
3/3 2 2(1 p)1/2/2 83/2np/2 nl/2 pl/2 88/pn3/2 nl/2 pl/2L(] n)/(] )jl/2

2 (1 n)1/2 2(1—n)
I (1 n)+. (1 8)jL(1 n)in (1 p)i/2j L1 (1 n)i/2(1 p)in)1, 0

n(n p)2— tQ Q

1 ( 8) (1—e)'/2—
]

1——t+2v' ——
a,2& 3)

(3—4n) n'"+ 8'" (3 4n) n—'"+8'/2L(1 —-n)/(1 —8)]'/2 (1 n)—
ln

2 pi/2np/2 ni/2 pi/2 2 81/2nP/2 ni/2 pi/2L(1 n)/(1 2) ji/2 n(n p}

(1 n)1/2

+ L(3-4-)(-- }+2-(1- )jL(1--)"-(1- ) "S =o (»)
0! A



value for the binding energy is

(16)
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Fxo. i. Field dependence of the binding energy withscreening
length as a parameter. The X~=),' curve bounds the region above
in which real solutions of Eqs. (14) and t,'1S) exist for both oy
and all.

These equations can be solved. numerically for ~ and
a, in terms of y and X, and an upper bound established.
for the energy using Eq. (12).With y= 0 and X= co, the
exact value 1 effective Rydberg is obtained for the bind-
ing energy, and a~=all= 1, the eRective Bohr radius.
Kith p=o, Yafet et a1. obtained a trial value of 0.85 Ry
for the binding energy (the trial value of the energy is
approximately 15% higher than the exact value) using
Eq. (13). The trial wave function used by Yafet et cl.
(which is not mathematically tractable when XW ~) is
more appropriate at high fields, and in fact describes
exactly the ground-state wave function in the plane
perpendicular to II when y= ~. Thus the binding
energies obtained by Yafet et al. (with X= ~ ) are much
more accurate than 15% at high fields.

When y& 2, the energies obtained from Eq. (12) with
X= ~ are lower than those from Eq. (13), and when

y&2, they are higher. When y~~, the trial value

obtained from Eq. (12) is approximately 15% higher

than the value obtained from Eq. (13), which in this

regime is very accurate. At lower fields the values ob-

tained from Eq. (12) are more accurate than 15%
since the trial wave function used to obtain Eq. (12)
is exact when y=0 and, X= ~.

The best estimate of the energy for a finite screening

length at Q.elds higher than y 2 can be obtained

by calculating the upper bound for the difference

E(m )—E(X) using Eq. (12), and subtracting this value

from the upper bound Exx~(~) obtained from Eq.
(13). Although this procedure does not yield an upper
bound for the energy, the departure of E~~~ and of

E(~)—E(X) from the corresponding true values are

opposed and will at least partially cancel.
The binding energy is the difference between the

energy of the lowest bound. state and. the energy of the

lowest conduction-band state, 8=7. Then the trial

II. SCREENING LENGTH WHEN THE BINDING
EÃERGjL' BECOMES ZERO

If X is decreased from infinity with y constant, the
energy of the impurity level increases and the bind, ing
energy decreases. At some critical screening length, the
binding energy vanishes. A rough estimate of this critical
length as a function of y can be obtained from the
screening lengths which yield. zero for the trial value of
the binding energy. This estimate is denoted by P,. in
Fig. 2. A second estimate of the critical screening length
which is an upper bound may be obtained from the
variational calculation. This estimate is the value of X,
which will be denoted by X„at which real solutions for
both e and u, can no longer be obtained from Eqs. (14)

0
CQ

P

C3

1

1.0 +
t

IO 0
l l

X(w;}
FIG. 2. Field dependence of the critical screening length below

which there are no bound impurity states. X, is obtained from the
screening length below which there are no real solutions of Kqs.
(14) and (15) for both a, and all and g,' from the projected inter-
sections of the curves of Fig. 1. a, is the cyclotron radius.

' G. F. Chew, Phys. Rev. 74, 809 |,'&948).

As we have discussed above, E(~) is within 15% of the
true value. Since at high fields calculation of E(X) for
soille value of r ls sllllllal 'to a calclllatloil of ail E(~ )
which applies to some higher value of 7, the difference
E(~)—E(X) is accurate to 15% when y) 2. At low
fields, E(~ ) is nearly exact, and judging from numerical
results for the Vukawa potential in the literature, '
E(X) is accurate to 5%. Thus an error of 15% or less
occurs in E(~)—E(X) at any field, which is in the
opposite sense to an error of less than 15% in
y —Ev~(~). When Es is close to zero, a great deal of
the error in the calculation is self-cancelHng and the
total error is much less than 15% of y Evx~(~)—or
E(~ )—E(X).

Figure i shows a graph of binding energy as a func-
tion of y for several values of P.
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and (15).In this case, for X(X„a,is real but a» is not.
The trial wave function no longer describes a bound
state. This situation is similar to the example of a square
well potential, a case where an exact solution can be ob-
tained. A trial wave function similar in form to the one
given by Kq. (11)yields real solutions of the variational
parameter only when the well depth is greater than a
critical value, which is greater than the exact value
where the binding energy vanishes. The trial value for
the energy vanishes for a well depth greater than either
of these values.

Figure 2 shows a graph of X„X,' and the cyclotron
radius a,=y '" as a function of magnetic-Geld strength.

III. DENSITY OF CONDUCTION-
BAND ELECTRONS

iO4

Io
kT =0,5Ry"

g

l,or

io'-

I I I I

0 20 40

)'(~)
60

In this section, discussion will be conhned to an ideal-
ized semiconductor which is dominated by uncompen-
sated monovalent donor impurities. Only the ground. -
state impurity levels will be considered and it will be
assumed that valence and conduction bands are well
separated.

For a degenerate semiconductor, the relationship
between density of quasi-free electrons in the conduction
band and the screening length of Kq. (11)is given by the
Thomas-Fermi expression'

l 2 r (&/3)1/3+ —1/3

1 /'kT/(1 Ry*))

g I,
(19)

Now consider the density of states of a nondegenerate
semiconductor in the conduction band and at the im-
purity level (ignoring spin degeneracy). When y=0,
the effective density of free-electron states in the conduc-
tion band is

1 kT )'/2
Np(0) =

4~'/' 1 Ry*)
(20)

(number of states in a volume ao*'). At high fields the
density of states thermally accessible with A T& 1 Ry* is

This expression neglects all Landau levels above the
hrst and is accurate when p) 1. In the range 0&y(1 in
which higher Landau levels must be considered, Ep
is described by a more complicated expression.

In order to calculate the inhuence of magnetic fields
on the free-carrier concentration, one must solve for the

X is in units of the effective Bohr radius, ao, and e is the
number of free electrons in a volume uo*'. For a nonde-
generate semiconductor in which I o. exp( —Ez//kT),
the screening length is given by the Debye-Huckel
expression

FIG. 3. Field dependence of the number of electrons in the
conduction band with Ez)e, (0)kT=O.S Ry*. The impurity
concentration is equal to the number of free electrons at zero Geld.

free-carrier density e and for the binding energy E&
self-consistently. Two limiting regimes may be identified
for a nondegenerate semiconductor. ~ Denoting the
density of impurity levels by Nz (per volume /z&*') we
have the following:

1. NzNz ' exp(E, /kT)((1. In this case, the free-
carrier density e is essentially equal to Sz and is
therefore independent of E~.

NzNz ' exp(En/kT)))1. In this limit, the free-
carrier density is approximately given by

rz (NzN p)'/' exp( —E&/2k T) . (22)

For intermediate regimes, the relationship be-
tween free-carrier density and binding energy is more
complicated.

As can be seen from Fig. 2, at zero Geld the critical
screening length for the existence of bound states is
X.(0)=[0.957'". This corresponds to a critical free-
electron density e, (0) = (m-/3) L0.25/0. 957'. The in-
Quence of magnetic held on the number of conduction-
band electrons has been calculated approximately for
k T=0.5 Ry* and k T=0.2 Ry* as shown in Figs. 3 and 4.
For intermediate values of NzNz ' e px( Ez//k) Tthe
dashed curves of Figs. 3 and 4 are schematic. The re-
generative or feedback effects of screening cause rapid
changes in the carrier density when AT=0.2 Ry* and
somewhat slower changes when kT= 0.5 Ry*. The range
of impurity concentrations extends from N, (0) to
10'z/, (0) in Fig. 3. For concentrations greater than
5&(10'm, (0), no freeze out of carriers occurs throughout
the range of fields shown.

The results shown in Figs. 3 and 4 can be related to
actual semiconductors at the same temperatures if
departure from the idealized model is small and if the

~ J. S. Blakemore, Semiconductor Statistics {Pergamon Press,
Inc. , New Vork, 1962).
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FIG. 4. Field dependence of the number of electrons in the
conduction band with El=a, (0) and kT=0.2 Ry*.

effective Rydberg, Bohr radius, and magnetic field at
which y=1 are known. Table I lists these values for
four semiconductors on which meaningful experiments
are feasible. '

fABLE I. Characteristics of four semiconductors with low
effective mass and high dielectric constant.

IV. COMPARISON WITH EXPERIMENT

The reduction of binding energy in a magnetic field

due to screening of the impurity potential can be meas-
ured by either optical or electrical methods. In either
case the temperature must be in the range kT(Ry*
and the concentration of impurities near Nr st, (0)
Since the binding energy becomes small when the effects
of screening increase, measurements of optical absorp-
tion. for this purpose become more dificult in the regimes
of greatest interest. Measurements of the Hall constant
are possibly more sa,tisfactory for comparison with the

theory.
Although there are published measurements of the

Hall constants of many semiconductors in a large range

of fields, the temperature and impurity concentration
are seldom in the regime of interest here (for semicon-

ductors which have low effective mass and high dielec-

tric constant). Frederikse and Hosier' have measured the

Hall constant of InSb at 4.2'K which is slightly higher

than 0.5 Rya (see Table I), with a concentration of

20tt, (0) monovalent donor impurities (10" cm ').
The Hall constant increases rapidly beyond 11 ko
(& 9), indicating carrier freeze-out. (Unfortunately
the measurements extend only to 22 kG). The zero-Geld
screening length at this impurity concentration is
A(0) 0.25ao* corresponding to a critical field y, 5
for appearance of the impurity level. The field at which
the transition commences must be such that the binding
energy has become comparable to kT, and from Figs.
1 and 2, y 10 when the binding energy 0.5kT. Small
errors in the true binding energy may introduce large
errors in this value, and the agreement here is fortuitious.

Keyes and Sladek" measured the Hall constant of
TnSb at 4.2'K ( 0.58 Ry*) with concentrations of
4&(10" cm ' and 2)&10" cm ' monovalent donor im-
purities. These concentrations correspond to Stt, (0)
and 400n, (0). The number of conduction-band elec-
trons in the former case decreases with magnetic held
in a manner similar to the decrease shown in Pig. 3.
arith &r 400n, (0), the number of conduction-band
electrons remains constant to the maximum field, y 60.
From the results of our calculations, a transition from
degenerate to nondegenerate regimes would be expected
to commence with y 25. A concentration of approxi-
mately 5.5)&10 n, (0) is required if the semiconductor is
to remain degenerate beyond p= 60.

Sladek" has conducted a detailed study of the Hall
coeKcient of InSb as a function of magnetic held and
temperature in the liquid-helium range. Free-carrier
concentrations at zero field are comparable to or only
slightly greater than st, (0). Data are all at magnetic
fields where the Mott transition has already com-
menced. Although the data are difticult to interpret due
to the fact that electrons at the impurity level have
appreciable mobility, increases of the Hall coefficient
at low fields seem to be more rapid than would be ex-
pected for unscreened impurity potentials. This is in
agreement with the rapid decrease of free-carrier con-
centrations (due to regenerative or feedback effects)
which are indicated in Pigs. 3 and 4. Binding energies
are appreciably smaller than the results of Yafet,
Keyes, and Adams, ' in agreement with the decrea, se due
to screening by free carriers shown in Fig. 1. (The
number of free carriers as a function of magnetic held at
constant temperature is not shown in Ref. 11,and quan-
titative comparison is dificult. )

Semi-
conductor

InSb
InAs
GaSb
QaAs

0.013
0.019
0.047
0.072

16.8
11.5
15.2
13.5

K
(dielectric

nt, */nt, constant)
IZ~ 1 1 Ry"
(kG) {'K)

1.20 7.27
5.46 22.7

19.1 32.1
56.8 o2.3

n, (0)
(cm ')

5,7 X10'3
5.5 X1014
3.6 X1015
1.87X 1016

V. DISCUSSION

Aside from the obvious limitations of a variational
calculation of the energy when small errors can be im-
portant, the validity of the effective mass approximation
for impurity ions must be considered. It is well known
that the approximation is most representative when the
dimensions of the wave function of the electron are

e Anterican Institute of Physics Handbook (McGraw-Hill Book
Company, Inc. , New York, 1963), 2nd ed.

9 H. P. R. Frederikse and W. R. Hosier, Phys. Rev. 108, 1136
(1957'.

~ R. W. Keyes and R. J. Sladek, J. Phys. Chem. Solids 1, 143
(1956)."R.J. Sladek, J. Phys. Chem. Solids 5, 157 (1958).
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much larger than the unit cell of the crystal. " '4 At
large magnetic fields the dimensions of the wave func-
tion perpendicular to the field are reduced, but remain
greater than 0.1ao* when y(100. Thus for semicon-
ductors with low effective mass (nt* 0.01nt), the ap-
proximation can be regarded as representative when the
held is less than y 100.

Demkov and Drukarev' have considered particles in
a 6-function potential and magnetic field. They conclude
that for an arbitrarily weak potential which yields no
bound state and is characterized by a negative scattering
length, an arbitrarily weak magnetic field is sufhcient to
introduce a bound state. This of course is directly con-
tradictory to our results. Demkov and Drukarev use a
procedure in which the r —+ 0 limit of the wave function
in the presence of the magnetic field is equated with the
zero field form, a procedure which we have not been able
to justify. Indeed, if the scattering method of Demkov
and Drukarev is applied to a problem which is solvable
by other methods (i.e., square-well potential, no mag-

"J.M. Luttinger, Phys. Rev. 98, 915 (1955)."R.J. Elliott and R. Loudon, J. Phys. Chem. Solids 15, 196
(1960).

'4 H. Hasegawa and R. E. Howard, J. Phys. Chem. Solids 21,
179 (1960).

netic field), it does not yield a criterion for the existence
of a bound state. This method merely expresses con-
sistency of the sign of the scattering length with the
sign of the energy.

The experimental results of Frederikse and Hosier
and of Keyes and Sladek are in good agreement with the
results of our calculations when Xr 10rt, (0), but not

400rt, (0). As well as inaccuracy in our calculations
(or limitations of the screening length theory), a possible
explanation would be that the electric field in this case
was sufficiently high to increase the number of free
carriers by impact ionization. Experimentally, the ap-
plied electric field must be increased at high concentra-
tions of free carriers to maintain Hall voltages compar-
able to when the concentration is much less.

Although our calculation shows the essential features
of the model, clearly an accurate numerical solution of
the Schrodinger equation Eq. (2) would be a consider-
able improvement on the variational calculation. In
addition, a more satisfactory comparison of theory with
experiment could be made if measurements of the Hall
constant were conducted at a temperature of 1'K, at
fields up to 100 kG or higher, and with a number of im-

purity concentrations in the range rt, (0)(Sr(104tt, (0).
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The lattice dynamics of diamond has been investigated on the basis of the Cochran version of the dipole-
approximation model. Results have been presented for the dispersion curves, and eGective calorimetric and
x-ray Debye temperatures of diamond, The effective calorimetric and x-ray Debye temperatures of ger-
manium have also been obtained.

INTRODUCTION
' EXPERIMENTAL studies of the inelastic scatter-

~ ing of slow neutrons by crystals have recently
made it possible to determine directly the relation
between frequency and wave number of the normal
modes of a crystal. Germanium was one of the first
substances to be investigated by this technique by
Brockhouse and Iyengar' and by Ghose et al.'

A detailed analysis of these results by Herman' and
by Pope' showed that to fit all the data concerned it

'B. N. Brockhouse and P. K. Iyengar, Phys. Rev. 111, 747
(1958).

'A. Ghose, H. Palevsky, D. J. Hughes, I. Pelah, and C. M.
Eisenhauer, Phys. Rev. 113, 49 (1959).

~ F. Herman, J. Phys. Chem. Solids 8, 405 (1959).
4 N. K. Pope, in Proceedings of the International Conference on

was necessary to include interactions out to fifth
neighbors in the general force model. The theory then
involves numerous parameters which have no clear
physical signficance. Cole and Kineke' calculated the
vibrational spectrum of Ge using the force constants
of Herman. '

I.ax' proposed to fit the data to a force model in-
volving one parameter to represent electrostatic inter-
action between quadrupoles generated by the lattice
vibrations, and as many near-neighbor parameters as
proves necessary.

Lattice Dynamics, Copenhagen (Pergamon Press, Inc. , New York,
1964), p. 147.' H. Cole and E. Kineke, Phys. Rev. Letters 1, 360 (1958).' M. Lax, Phys. Rev. Letters 1, 133 (1958).


