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A two-determinant spin-polarized function derivable from the spin conhgurations II;(np);Ii, n; and
II;(Po.);II;n, is presented and applied to the boron atom using modi6ed Slater orbitals which are solved
non-self-consistently. For purposes of comparison, single-determinant polarized and nonpolarized functions
with the same orbital base are also determined. For all three functions the hyper6ne constant is calculated,
and it is found that the constant o, Lequal to 0.11 atomic units (a.u. ) experimentallyg changes from —49.96
to —40.33 a.u. from the one- to the two-determinant spin-polarized functions with the corresponding
energy improvement from —24.503 to —24.527 a.u. (as compared to the experimental energy of —24.66
a.u. and the best spin-polarized Hartree-Fock value of —24.529 a.u.). In addition it is pointed out that
cancellation difBculties in determining charge density at the nucleus from ns pairs is greatly alleviated,
and that in order to use a proper eigenfunction of S' we are required to include many more determinants
than we are presently prepared to deal with.

INTRODUCTION

PIN angular momentum with its associated mag-
netic moment was first introduced by Pauli' to

account for hyperfine structure in atomic spectra. Using
the Dirac relativistic theory of the electron, Fermi
derived the interaction Hamiltonian between the mag-
netic moments (spin and orbital) of a single electron
and a nucleus. This Hamiltonian has been subsequently
derived by Aronowitt' using quantum field theory.
For many electrons one merely sums the interaction
Hamiltonian for a single electron over all the electrons.
This summation is most easily accomplished using the
methods of Racah, 4 as has been shown by Trees' for the
case of LS coupling which concerns us here. The results
are expressed in the notation introduced by Goudsmit. 6

Thus, the energy Wp of a particular hyperfine structure
level may be expressed in terms of the energy 8'J of the
corresponding 6ne-structure level by the relations

Wp =Wg+ ', agK+BK(K+-1), (1)
where

and

"
I
&(2P «) I' «

15I

a, = (16fz~lzn/9I) rr Q I p„,j.

(5)

(6)

In Eqs. (5) and (6) p~ and pn are the nuclear and
Bohr magnetons, respectively. In Eq. (5) I'(2P, r) is
the one-electron, Hartree-Fock 2p orbital, m where

pole interaction between the electrons and the nucleus,
while the term BE(E+1) is the electric quadrupole
interaction. %e are concerned here with the hyperfine
constant a~, which is independent of F.

For the particular case of boron in a (1s)'(2s)'2p
configuration, J= ~ or 2 and it may be showns that

ay]2 =5a„—a, )

and
as)s=ar+aa&

where'

E=F(F+1)—1.(1+1)—J(J+1). (2)

In Eq. (1) the term ', a~E arises from —the magnetic di- In Eq. j6

I
F(2p; r) Is dr.
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of +-', or ——,'. The summation in Eq. (6) is over all
pairs and also over all unpaired s electrons as indi-
cated by Eqs. (Sa) and (Sb), respectively. In Eqs. (S)
4'„, is the one-electron, Schrodinger es orbital.

For ions with no unpaired s electrons we see from
Eqs. (S) and (6) that there will be no contributions
to the hyper6ne constant from the s electrons unless we
employ "spin-polarized" functions where 0'„,t and 0'„,~

are spatially different. " In fact, in many instances one
can only obtain nonzero values of the hyper6ne 6elds
by employing spin-polarized functions. " The inad-
equacy of the nonpolarized, one-electron representation
was recognized some time ago. Fermi and Segre" at-
tempted to remedy this by using configuration inter-
action techniques to obtain contributions from the 6s
shell of Tl due to the presence of the 6p electron. It was
subsequently sho~n" that contributions from all core
s electrons shouM be considered. These results would
thus seem to lend validity to the concept discussed

by Slater, " of spin or exchange polarization of core
s orbitals by outer orbitals.

Many calculations' "'~23 have been done with spin-
polarized functions. All of these have used determi-
nantal wave functions based on a single spin con6gura-
tion. Hereafter this shall be referred to as the single-
determinant approximation. Several inadequacies of
the spin-polarized functions, and in particular their
use in determining the hyper6ne structure constant, led
Berggren and Wood" to seriously question the vahdity
of the core polarization concept. While it was subse-

quently showrP' that their analysis, involving the
lithium atom, was not sufhcient to invalidate the con-

cept, some de6ciencies remain. These de6ciencies are:

1. The total energy as calculated with a polarized
or nonpolarized function is hardly different. Since we
use this criterion of total energy as a test of the "good-
ness" of a function, then it would seem that we may
have merely restructured the wave function to suit a
particular calculation without improving the function
in general.
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2. The spin-polarized functions are no longer exact
eigenfunctions of 8'. There has been much discussion
as to whether this is signi6cant82~" in the determina-
tion of hyper6ne structure. At any rate, the departure
from exactness in some speci6c cases has been shown"
to be small.

3. In calculations of the hyper6ne constant using the
single-determinant spin-polarized functions large nu-
merical cancellations occur in the determination both
of pns of Eq. (Sa) for an (ass) pairs and in the sum of
pns pairs" of Eq. (6) . We are thus required to carry a
large number of signi6cant digits in the evaluation of
the orbitals to compensate for these cancellations.

In this paper a two-determinant function based on
the spin configurations rrpnp ~ n and pnpn ~ a is pro-
posed. Results of the application using modified Slater
orbitals for boron are given. In conclusion, we see that
this approximation improves, signi6cantly, the total
energy and alleviates, considerably, the cancellation

difhculty for p„, pairs. In addition, the calculated value
of electron charge density at the nucleus, and hence
a„ is changed in the direction required. We can draw
no conclusion for changing the cancellation difhculties
for sums of p„, pairs as we have only two such pairs here
while cancellation difhculties only become signi6cant
when several such pairs are involved. While we do not
resolve the spin eigenvalue problem, it is pointed out
that such a resolution demands a great deal more com-

plexity than we are presently able to consider.

It has been suggested" that a significant improve-
ment over a single-determinant approximation could
be obtained by assuming a two-determinant function
derivable from the spin configurations npnp ~ n and
prrpa ~ n. The particular selection of these two de-
terminants was made in the light of conclusions arrived
at in the discussion of the core polarization effect in the
(1s, 1's) 2s configuration of the lithium atom. It was
shown that of the three spin functions npcr, prrn, and

anP, the last function's contribution both to total energy
and to hyperfine energy was negligibly small. Also,
since the total number of determinants one may employ
is very large" it becomes imperative, for practical
reasons, to delimit the total number of determinants one
uses. Thus we limited our choice to two spin functions
rrPnP ~ n and PnPn. ~ rr and chose these particular
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TWO-DETERMINANT SPIN-POLARIZED CALCULATION

two functions ln RQRlogy with thc lesults fol llthiuIQ.
More signi6cantly we observe that while the single
configuration nPnP ~ a introduces exchange correla-
tion between the valence orbital and core orbitals of
hke spm the addition of the configuration Pago. ~ n
adds the exchange interaction between the valence or-
bital and all the other core orbitals. These two deter-
minants represent the optimum (in terms of total
number of determinants) way of including exchange
polarization between the polarizing orbital and all the
polarized orbitals.

THE BORON ATOM
@3ye

E (a.u.)

TABLE H. Energy and hyper6ne constants.

T%"o
determinant Kxperl-

Polarlzed ment~

-0.856309

+0.001091/0
—40.3344

53.93

309.9/

13.60
—24. 5271

—0.11094

+0.0061.9
—49.96

53.23

316.10

3.265
—24.5028

0
0
0

53.86

269.30
53.86

—24.5023

0.11

73.24

366.09

/3. 35
—24.66

The boron atom in a (1s, 1's) (2s, 2's) 2p configuration
ls R good test, CRsc foI' thc two-dctcrITllnant approxima-
tion, since the valence electron cannot mask the core
contributions from the s electrons as is the case for
lithium. "At the same time, the boron atom is suK-
ciently small so that the calculations are not unduly
cumbersome. Thus our wave function is

C

=Neap{

Ui,n Ut,P Us,n Us.,PUs~n

+BUi.PUi.nUs, PUs, rrUs„nI, (9)

Ui, =Ni. exp( par),—

Ui, =Nt, exp( —pa'r),

Us, Ns, itr exp( —p——r) —d exp( —@br)], (12)

Us., N;,$r exp( pr) ———d' e—xp( —pb'r) j, (13)

where E is the normalization constant, A~ the anti-
syrnmetrizing operator, and 8 a structure parameter
to be determined variationally. The radial one-electron.
functions are those of Morse, Young, and Haurwitz32:

~ For hyperfine constants see Ref. 33 and for tota1 energy see Ref. 34.

The constants d and d' are used to orthogonalize the
Is—2$ RQd 1 s—2 s functlonsq rcspcctlvclyp whllc thc
scale factor is chosen so that the solution satisfies the
virial theorem. %hile we almost certainly would have
obtained closer agreemcnt with experiment had wc used
the expanded basis set of Bessis et al. ,

s we chose this
particular set of orbitals to obtain a relatively facile
colislstcnt stRndRI'd of comparison between thc onc-
Rnd two-determinant) QonpolRI'ized RQd polRI'ized func-
tions. As the discussion of the results indicates this
choice is amply justified.

RESULTS

The wave function parameters of Eqs. (9)-(14) are
given in Table I and the hyperfine constants and energy
are hsted ln Table II. The experUnental values of the
hyper6ne constants are from %essep' while the experi-
mental energy is taken from Scherr et al, 34 The physical
constants are from the compilation of Cohen et al.35 with
the exception of the nuclear magneton, p~ ——2.68858,
which is given by Ramsey. "

U» ——Ns@ exp( —per) .

TABLE I. Wave-function parameters.

One determinant 8=0
Parameter Nonpolarized Polarized

T%'o determinant
8=0.99525861

Polarized

3.61538

3.61538

3.30769

3.30769

0.930769

1.30000

3.55100

3.55500

3.19500

3.19300

0.91300
1.32013

2.90163

4.13280

2.66689

3.49169

0.90960

1.33085
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A glance at Table II shows that we have accom-
plished our purpose of improving the total energy with
the two-determinant representation. In fact, despite
the crudity of our orbitals the energy value divers only
slightly from the Hartree —Pock value' of —24.529.

It will be observed from Table II that the value of
a, is written to six signihcant digits for the two-deter-
minant Rppl oxilTlatlon whllc only fouI' slgnl6CRnt
d1glts rcmMQ ln thc oH.c-cl.ctcr1TllQRnt splQ-polarized
function. In both instances eight digits were main-
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tained in the energy calculation, enabling us to de-
termine the exponential coefficients a, a', b, b', and c to
six signi6cant digits. The loss of significant digits in
the one-determinant function and the retention of six
signi6cant digits in the two-determinant function can
most easily be seen by a consideration of the determina-
tion of pt, . For either function pi, ~ (1—Bs) (as —rs").
The source of digital loss in the one-determinant func-
tion is apparent from Table I. It is also obvious from
Table I that this source of digital loss is not effective
in the determination of p&, by the two-determinant ap-
proximation. In the determination of (1—8') in the
two-determinant function we lose two significant digits,
but since we are able to determine 8 to eight significant
digits, we are able to calculate p~, in this case to six
signi6cant digits. In the calculations we did not de-
termine 8 directly but rather a quantity 8 such that
8= (1—8)/(1+8). We found that 8 could be written
as a power series in the difference of the energy as de-
termined by each of the two determinants. This energy
difference is merely the difference in the exchange inter-
actions of the primed and unprimed core orbitals with
the valence orbital. If the difference was 0, then 5 would
be 0 and 8 would be 1 so that p~, would be 0. Thus the
nonzero value of p&, is directly attributable to the differ-
ence of the exchange interaction of the core orbitals
with the valence orbital, thereby reinforcing the con-
cept of the core polarization effect" in hyperfine
structure.

By reference to Table II, we also note that a, is
changed in the right direction. Neither value is very
close to the experimental value, but simple one- or two-
exponent orbitals are known to be very poor in the
vicinity of the nucleus and all we are really concerned
with here is whether or not, for a given set of one-
electron orbitals, we can improve our ability to deter-
mine a, . As the results show, we have attained that
improvement. The value of a„hardly changes. This
merely says, essentially, that we have done nothing
to improve our representation of the 2p orbital, and
hence of u„, but we did not intend here to correct any
defects in the determination of a„. The quantity c&~2

(which is more dependent on a~ than a,) is hardly
changed (although slightly worse) in the two-deter-
minant case, while ass (which is more dependent on

r4) is closer to the experimental value in the two-
determinant representation.

In comparing our spin-polarized results to our non-
polarized results, it would seem from Table II that all
we have accomplished is to improve our determination
of a~~2 at the expense of a3~2. It must be remembered,
however, that we must use polarized functions in order
to obtain a nonzero value of u. as deduced from the ex-
perimental values of a~~2 and a3~~. Also, all we have set
out to show is that for a given basis set we can more
easily determine a, while at the same time improve the

total energy with the additional determinant in a spin-
polarized representation. Furthermore, it has already
been shown' that improved values of the hyperfine
constants are obtainable using improved basis sets and
as the preceding discussion indicates we should not
expect to improve signi6cantly these calculated values
of the hyperfine constants in a two-determinant repre-
sentation, but rather we should expect to be able to de-
termine the constants more easily. Further improve-
ments would require, for example, the introduction of
basic sets, including interelectronic separation terms.

%e can thus conclude that a two-determinant repre-
sentation can be expected to improve the total energy
and alleviate the cancellation difhculties in the de-
termination of individual p„, pairs. In addition, we can
conclude that we are able to determine c, more easily
in a two-determinant representation. We still have the
problem that neither the one- nor two-determinant
representation are eigenfunctions of 8'. A calculation
based upon a four-determinant function constructed
from the spin configuration npnpn npp—an+pnpna
panpn has been performed. This is an eigenfunction
of 8'. The calculated value of a, was identically zero.
It would thus seem that we would have to use a spin
configuration involving terms like nnaPP, nPnnP, etc.
It can be shown" that one can always set up a proper
eigenfunction configuration involving all possible anti-
parallel spin pairs and another proper spin eigenfunction
con6guration involving a sum of one set of parallel
spins for every pair in addition to terms involving all
antiparallel spin pairs. The number of determinants
thereby generated is very large and since the two-
determinant approximation does very well there hardly
seems any need at present to get more involved.

It remains to be seen whether we can correct for
the cancellation in summation over p„, pairs and the
affect of the approximation using an improved orbital
representation. These determinations are presently
underway.
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