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The conventional Geld approach, used to describe the dynamic equilibrium of gases and solid-state masers,
is applied to photoconducting solids. The dynamics of such systems can be treated with none of the inherent
limitations of the traditional phenomenological approach. The significance of capture cross sections and
attempt-to-escape frequencies can be appreciated, stimulated recombination evaluated, and phenomeno-
logical quantities can be given physical signi6cance. A correlation between optical cross sections and capture
coefficients is simply derived, which is absent in earlier models.

INTRODUCTION

~ 'HE dynamic behavior of charge carriers in
photoconductors is generally discussed in terms

of the phenomenological theory principally developed
by Rose and Bube. ' ' This formalism, which is carried
over to some degree to describe semiconductors,
involves concepts such as the "attempt-to-escape"
frequency, Boltzmann factors, and capture cross
sections. Though this approach has been highly de-
veloped, there are several difficulties which a systematic
analysis can clarify. As a convenient example, the
equilibrium between a density E& of imperfections and
the conduction band level N, will be considered. The
traditional rate equation is

n, v~e e'"r=e2(Er er)Se, —

where e~ and m~ are the electron densities in the ap-
propriate levels, as illustrated by Fig. 1(a).

The quantity on the left of Eq. (1) is the rate of
thermal excitation from the imperfections to the
conduction band. It is invariably taken to be exci-
tation by lattice vibrations. The quantity v~ is the
"attempt-to-escape" frequency, dehned as the product
of the maximum lattice frequency and a factor, equal
to or less than 1, describing the probability of the
electron entering the conduction band after receiving
sufficient energy. The Boltzmann factor represents the
thermal activation energy for the transition. This
expression was derived by Williams and Eyring on
thermodynamic grounds. '

The terms on. the right of Eq. (1) describe the rate of
recombination between free electrons e~ and empty
imperfections (Er—nr). The capture probability for a
free electron is expressed as the product of a capture
cross section 5 and the average thermal velocity of an
electron v. The model is that of a free electron, moving
with velocity v, intersecting an area 5 associated with
each imperfection.
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Equilibrium considerations consistent with Eq. (1)
show that

v~=Ã, S~, (2)

where X, is the eGective density of states in the conduc-
tion band.

It is the purpose of this discussion to consider in more
detail the basic system. This produces a fundamental
formulation with physical significance attached to the
above-described parameters. The basic theoretical
framework is then available to accurately describe the
rate processes in photoconductors. In some respects the
phenomenological approach gives equivalent results.

Specific criticism can be leveled against the tradi-
tional model in the following areas:

j.. The "attempt-to-escape" frequency remains a
catch-all phenomenological quantity without physical
significance.

2. The role of radiative and nonradiative transitions
is not clear.

3. The description of recombination in terms of a
capture cross section and a thermal velocity is devoid
of any rate-limiting process describing the equilibrium
steady state.

Some clarification of the last point is worthwhile.
Consider a crystal isolated in an evacuated cavity. The
steady state, and hence the temperature of the crystal
and that appropriate to the electron distribution, is
governed by radiative transfer with the walls of the
cavity, i.e., they will both be in equilibrium with the
blackbody energy density within the cavity. This
steady state is not expressed in the phenomenological
theory; the equations only describe a closed system.

To these specific criticisms, one could add the general
criticisms that the range of applicability is not clear,
and that stimulated recombination is neglected.

The basic argument of the current formulation is
that in a system at constant temperature the net
balance of rates can be described solely in terms of
radiative processes. In the case of the cavity discussed
above, this is the only way a steady state may be
reached and maintained. With additional photo-
excitation on the crystal there will typically be net
luminescence from electron transitions to the walls of
the cavity and additional emission from the lattice as
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its temperature reaches a steady state above the
temperature of the walls. The net exchange of energy
from the electrons to the lattice and from the lattice
to the walls can be described in terms analogous to
those about to be formulated. This point is referred
to later when the basic outline has been described. For
convenience, the electrons will be considered isolated
from the lattice.

The approach is that conventionally used to describe
rate processes in gases, plasmas, and in the microwave
and laser branches of solid-state physics. ' ' Apart from
considerations of noise, 7 it does not appear to have been
extended in any general sense to photoconductors.

E1—n1 E,—n2
(o)sp+o) 21)222 o) 12221

E1 E,
(3)

where the co's are the spontaneous and induced total
transition probabilities per unit time between one
initial state and all the final states. They may be
written as

o) =const x
I
+» I, (4)

where X12 is the appropriate matrix element for the
transition summed, over the final density of states. This
approach is adopted in the absence of specific in-
formation concerning the initial- and final-state wave
functions. The remaining terms in Eq. (3) are the
density of initially occupied states, and the proba-
bility the final state is empty, to give the required
total rate per unit time per unit volume. The signifi-
cance of the probability term on the right of Eq. (3)
is discussed below.

Delning transition probabilities per pair of states
as W12, W21, 8"„,where

A FIELD FORMULATION

Consider the interaction between a radiation field,
composed of the blackbody energy density of tempera-
ture T, and the two levels already discussed. The
equilibrium situation is illustrated by Fig. 1(b). The
thermal-equilibrium rate equation is

np, Nc n&, NC

at ta

nt, Nt

(0) (b)

n„Nt

Fzo. 1. (a) Phenomenological equilibrium. (b) Equilibrium
in the Geld formulation.

radiation fields. Equation (6) can now be written as

since

W,p+W niN, (1 N2/N.—)—eE/kT

W 222N1(1 —221/Nr)
(7)

c(ET E)/kT+1— czp( kT+ 1

c2t:3 eE/kT

at an equilibrium temperature T.
The signilcance of the probability term on the right

of Eq. (3) can now be discussed conveniently. The
picture so far presented is one of a discrete conduction
band in which the occupation 222/N, can be described
in terms of a Fermi-Dirac function. In any practical
solid, this is invalid, and E, would not have its con-
ventional significance. However, attention can be re-
stricted to nondegenerate photoconductors where
222/N, =c ~'"T and the 222 term can be dropped from
right-hand side of Eqs. (3) and (6). Under these
circumstances the identity expressed by Eq. (7) is
rigorous, the 222/N. being omitted. This presentation
emphasizes the physical origin of the rate equation. For
the remainder of this paper it is assumed n2«X, .

Inspection of Eq. (7) shows that W„ is identical to
the Einstein A coefficient whereas 8"=pB, with 8 the
induced transition coefficient and p the blackbody
energy density appropriate to the energy E. The
energy density p is given by

&12 +c~12p &21 +1~ 21' CO,p
=E1H/;~,

Eq. (3) becomes

(W +W21)222(N1 221) —W12221(No 22 ) .

(5)

(6)

The transition probabilities are now characteristic
of the transition and 8'12—=8'21, since both these
transitions are induced by the same back.ground

4 A. Einstein, Physik Z. 18, 121 (1917).
5 M. Garbuny, Optical Physics (Academic Press Inc. , New York,

1965).
'A. E. Siegman, Microwave SoLid State Masers (McGraw-Hill

Book Company, Inc. , New York, 1964).' K. M. van Vliet, Proc. IRK 1004 (1958l.

per unit frequency interval, where c* is the velocity of
light in the crystal and the dispersion is assumed small.
This should be integrated over the absorption band,
or approximated by assuming that the change in p is
small between E and Z+dE at the energy under
consideration. In any case, p may be expressed as

and is the product of the energy density of states, and
the probability of having a quantum in a given state
of the radiation Geld.

R. C. Tolrnan, PrisscsP/es of St(stsstjcol fVecharsjcs (Oxford
University Press, London, 1938).
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Substitution of (9) into (7), with W= pB gives
the conventional relationship between the Einstein
coeKcients

W,v
=A = (8 ihrv/sc* 2)B. (10)

ni(N. )e E" =n2(Ni ni)— (12)

The two equations are found to be identical for the
general nondegenerate situation where e~((E,. The
appearance of the exponential term in Eq. (12) is
interpreted as the ratio of the stimulated transition
probability to the total (spontaneous plus stimulated)
relaxation probability [Eq. (7)].

Physical significance can be attributed to v* by
identifying the capture probability P=Sv with W„,
the transition probability per pair of states for spon-
taneous recombination. Then from Eqs. (2) and (7)
we have

v"=N.P=N. W(eE'2T 1)=~12(—e '"T 1). (13)—
Thus the "attempt-to-escape" frequency is identi6ed

as the total transition probability per unit time divided
by the probability of having a photon of the required
energy in a state of the radiation field. From Eq. (11),
v* is a rapidly varying function of the energy of the
transition for a constant total transition probability.
Traditionally, it is assumed constant. This variation
does not contradict general consideration of detailed
balance, "but is a consequence of it. Since p=Sv, this
parameter also reflects the interaction with the back-
ground photons.

The electron-lattice interaction, giving rise to
radiationless transitions, can be described in similar
terms. ' An "attempt-to-escape" frequency can be
defined which will be identical to Eq. (13), with an
appropriate total transition probability. An energy-
density of phonon states will replace p(q) in Eq. (9),
which will be characteristic of the lattice under
consideration.

PHOTOEXCITATIO5 EFFECTS

The effects of additional photoexcitation will now
be considered in terms of the background excitation p~

and an additional excitation p2. The steady-state rate

COMPARISON OF THE FORMULATIONS

The two equilibrium equations (1) and (6) can now
be compared to attribute physical significance to
phenomenological quantities. Equation (1) may be
written as

niN, e— t" =n2(N1 —ni),

and Eq. (6) may be written as

where S„t,is the optical cross section for absorption of a
photon to make the transition from the imperfection
level to the conduction band, and f is the excitation
intensity per unit area per unit time. To compare the
two formulations, Eq. (14) is rewritten as

(pi+p2)Bn2 (Ni 'ni )+W n2 (N1 ni )
= Wni*(N, )+p2Bni*(N, ) . (16)

The first term on the left of Eq. (16) represents
stimulated emission resulting in recombination of an
electron in the conduction band at the imperfection
level; this has no counterpart in the phenomenological
approach.

The second term on the left of Eq. (16) represents
spontaneous recombination. This term is the same in
both formulations, since P—=W,v on the left of Eq. (15).

The first term on the right of Eq. (16) is approxi-
mately equal to the first term on the right of Eq. (15),
since

W —P(eEtsT 1)
—1 Pe ElkT—(17)

for E))kT. This represents the background excitation
to the conduction band.

The second term on the right of both Eq. (15) and
Eq. (16) is due to the additional photoexcitation. From
these two equations we have

fSop2 p2BN. . ——

Thus, if f/dv =psc per unit frequency range, we obtain

c*Sopgdv =BEc (19)

From Eq. (10),P=—W„=p (It)B, and we finally have

c*S,p~dv E,
p p(q)

(20)

This gives the relationship between the optical cross
section for excitation out of a center and the capture
probability for capture by the center. Furthermore,
since PN, = v* and v*=p(tt) times the transition proba-
bility per quantum per unit time, c S,p~ reduces to this
transition probability in accordance with the picture
of a photon of velocity c* intercepting an area of

S,pg cm'. That is,

equation is

[(p,+p,)B+W,v]ns*(1V1 n—i*)
= (p,+p,)Bn,*[N,], (14)

where

n2* n——2+Qns, ni*=nt+Dni, W=piB, and ns*«N

The traditional way of writing this steady state is

n,*(N, n,—*)p= ni*N, pe Et»+S„tnt*f, (15)

' D. Curie, Luminescencein Crystals (John Wiley & Sons, Inc. ,
New York, 1.963).

1o N. F. Mott and R. W. Gurney, Electronic Processes in Ionic
Crystals (Oxford University Press, London, 1948).

8'~2= p~c*S.p&d v,

from Eqs. (13) and (20).

(21)
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It is useful to put typical values in Eq. (20) to
clarify the dimensions. The significance of these values
will not be discussed here but they are typical of models
generally used in photoconductivity in the visible
region. ' They are c*=10'0 cm sec ', p(q) =—„'0 eV cm '
sec, anddv=10" sec ' S, ~=10 "cm'and%. =10"cm ',
to give a capture coefficient P of 10 "eV cm' sec '.

SATURATION

Equation (14) can be written as

(Wg2jW,p) n2*(1Vg—ng*) = Wggng*($. )+F, (23)

where P is the net rate of generation of electrons
given by

STIMULATED RECOMBINATION'

The condition for stimulated recombination to be
significant, in the simple two-level system, can be
expressed as

(pi+p2)~= W" (22)

from in.spection of the left-hand side of Eq. (14). For
p&«p~, using Eq. (10), we have

(g&~»~ 1)
—'= 1—

where T~ is the effective temperature of the lamp giving
rise to p2. Thus for a tungsten lamp at 3000'K, stimu-
lated recombination can be significant for energy sepa-
rations of the order of 0.2 eV, though the problem of
the geometry of any given situation is dominant.
Similarly, stimulated phonon recombination becomes
significant for K=0.02 eV, when Tj is the lattice
temperature of 300'K. This condition expresses the
relative probability of having a zero-point quantum and
a quantum of the radiation field. Though these are not
typical conditions encountered in, say, the II—VI
compounds, they are significant with regard to photo-
conductivity in silicon and germanium. This will be
discussed elsewhere.

on comparison of Eq. (14) and Eq. (23). This can be
written in terms of the excess densities as

F=p28[($.+ng*)ng* —Egng*f. (24)

For the general case E,))~2*, the photoconductor will
be saturated when the densities in the two levels are in
the ratio of the density states, and F will go to zero.

CO5'CLUSIO5 S

It is possible to write down a consistent formulation
for the dynamics of charge carriers in photoconductors
with none of the deficiencies inherent in the conven-
tional approach. The significance of capture cross
sections can be clarified, stimulated recombination to
shallow states can be described, and the typical models
postulated in the field of photoconductivity can be
critically analyzed. This will be done elsewhere.
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