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Structure of Binary Liquid Mixtures. II. Resistivity of AI1oys and
the Ion-Ion Interaction*
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(Received 1/ February 196"/)

We have applied the analytic partial structure factors 8;;(E) developed in an earlier work to a study of the
resistivity of binary alloys. We Qnd the substitutional model to hold reasonably well, provided that it is
modified to incorporate the volume dependence of the pseudopotentials. Deviation from this model can be
accounted for by changing the hard-sphere ratio u (used in obtaining S;;(E)g from unity. Such a deviation is
non-negligible in Na-K, for example, and is obtained by a calculation of the ion-ion interaction in the alloys.
This interaction has been calculated for a number of other alloys as well. Some discussion of the Hg amal-
gams is also given.

I. INTRODUCTION

ECENTLY Faber and Ziman' have pointed out
that whclcRs thc resistivity of solid binaI'y Rlloys

follow Nordheim's and Linde's rules fairly well, their
liquid countcl parts exhibit little regularity. This
anomalous bchRvioI' arises fl OIQ deviations fl om thc
simplest possible slbs6tgjiorsal mode/ in which the alloy
is assumed to (i) possess a single structure factor for
the ionic configurations (no distinction between

species) and (ii) show no variation in atomic volume as
the concentration is changed. We find here that most of
the concentration dependence of the resistivity arises
from a failure of assumption (ii) above, and is easily c;al-

culated using a rtsodi pied subsfifufiotsal mode/, with simple

model volume-depend, ent pseud, opotentials. Finally, in

cases where the resistivity is particularly sensitive to
the failure of assumption (i), as in alloys of monovalent

metals, the deviations (dilatation effects) are straight-

forwardly included in a more or less first-principles

calculation. In Sec. II we outline the modifications of
the simple formula for resistivity required by the use of

the partial structure factors' 5;;, and describe how the

5g are obtained. In Sec. III we calculate the interionic

potential for a number of metals in order to determine

the parameters which enter the equation for 5;;.
Finally, in Sec. IV we present the results of the resistiv-

ity calculations for various liquid, alloys including Hg
amalgams, and these results are discussed in Sec. V.

Q. FORMULATION OF THE RESXSTVGTY
FOR BINARY ALLOYS

For a pure liquid metal of valence Z the simple

result for the resistivity of a liquid as 6rst derived by
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Ziman' may be written

4x'8
y's(y) v'(y)&y,

e'kp p

where V(y) is the electron-ion pseud, opotential in units
of -3Ep and. y is the wave-number variable expressed in
units of 2k'. 5(y) is the structure factor for the liquid
metal. Although (1) is based on the Born approximation,
the results it yields are in remarkably good, over-all
agreeInent with experiment for a number of metals,
particularly when V(y) is known from independent
Ineans, as for example, when it is determined from
Fermi-surface data relating to the solid metals. In a
few cases (e.g., the alkali metals) a detailed test of (1) is
difBcult because of experimental difhculties involved
in an accurate determination of the structure factor.
This difficulty was partly overcome4 through the use of
a model structure factor which was found to give
equally good results in cases (e.g., the polyvalent
metals) where more detailed information on V(y) was
available. The model S(y) was taken from the hard-
sphere solution of the Pcrcus-Vevick equation for the
radial distribution function in a classical Quid. It was
found by Ashcroft and Lekner' (AL) that the S(y)
derived in this way gave very good, agreement with the
x-ray and neutron-scattering data around. the first
peak. This model structure factor is a function of a
single parameter, namely the elective hard. -sphere
diameter 0. for the ion-ion interaction in the liquid.
The appropriate 0-'s were determined by matching the
theoretical solutions to the principal di6raction peak
heights. The packing fractions g determined subse-
quently were found to be near 0.45 for most metals
immediately above their melting points. This is close to
the observed. hard, -sphere phase transition as found in
the molecular d,ynamics calculation of Wainwright and
Alder. 5 We also note that the relation q=constant at
the melting point is a statement of I.indeman's melting

3 J. M. Ziman, Phil. Mag. 6, 1013 (1961).' N. W. Ashcroft and J. Lekner, Phys. Rev. 145, 83 (1966),
hereafter referred to as AL.' T. Wainwright and B. Alder, Nuovo Cimento Suppl. 9, 116
(1958).
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law' viewed from the liquid side of the phase transition.
To see this we use the Ornstein-Zernike relation which
when combined with the above relation, states that

mk TX= constant

at the melting temperature. The compressibility X may
easily be eliminated in favor of the sound velocity and
hence the Debye temperature, so that Iindeman's
formula results. The above result is of course independ-
ent of the Percus-Vevick approximation.

It is natural to extend these simple ideas to a treat-
ment appropriate to a binary alloy. The modi6cations
are straightforward. The resistivity of a binary alloy
in the same approximation may be written as

4x'A
Z* dy ys(avs (y)sss(y)+2'(1 —z)]'I

emkp p

x v, (y) v, (y)s»(y)+(1 —*)v, (y)sit(y)). (2)

Here the V;(y) are the interactions of an electron with
ions of species i (s= 1, 2) immersed in the same screening
cloud of electrons. Z* is an effective valence determined
from the ratio of the electron density to the ion
density, and x is the concentration of species 2. For the
definition of Sg(y), the partial structure factors for the
system, we refer to Eq. (4) of I.

To treat a particular binary system over the full
range of the concentration parameter (0&x&1) requires
knowledge of the volume dependence of the electron-ion
interaction and correspondingly detailed information
concerning the behavior of the S,, (y). We discuss these
in turn.

A. Volume-Dependent Pseudopotentials

It has recently been proposed' that for discussion of
transport and equilibrium properties of metals [i.e.,
properties involving knowledge of V(y) for 0&y&2j,
the following form of potential is adequate, namely,

Vb) = —) ' cosa/Lys+) 'f(y)3, (3)

where s= 2kl R„... ) '= (~asks)-', and f(y) is the Lind-
hard screening function. The quantity E„„represents
an effective core radius outside of which the unscreened
electron-ion interaction is Coulomb-like, and inside of
which the potential appropriate to a pseudo-plane-wave
approximation is virtually zero. This potential accounts
for the cancellation in the core region inherent in the
case of pseudo plane waves for the electron wave
functions. The E„„,as determined from Fermi-surface
data, is found to agree well with the usual ionic radii.
This may be anticipated from the range of cancellation

See, for example, David Pines, Elementary Excitgtions in
Solids (W. A. Benjamin, Inc., New York, 1963},p. 37.' N. W. Ashcroft, Phys. Letters 23, 48 (1966); N. W. Ashcroft
(to be published). This model potential was used rather success-
fully by N. %. Ashcroft and D. C. Langreth, Phys. Rev. (to be
published) to calculate the binding energies and compressibilities
of simple metals.
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Fro. 1. The pseudopotential form factor V(y) of a Na ion in
(a) an electron density appropriate to pure Na and (b) an electron
density appropriate to pure K. The resistivity is most sensitive to
the value of V(y) in the region y 1.

expected. If we assume the cancellation to be an
inherent property of the ion core whose effectiveness is
governed by the extent and detailed nature of the core.
states, then, provided the cores are well removed in
energy from the band states, we expect E„„to be
only weakly dependent on electron density. The latter
has been roughly demonstrated in the extreme case
where the potential leading to (3) is treated as an iso-
lated atomic potential and used to bind the valence
electrons. The ionization energies de6ne an effective
core radius in good agreement with E„„appropriate to
the metallic state for most of the simple metals. The
agreement is less good for metals in which the core
states are poorly separated in energy from the band
states and this leads to our proviso above.

Thus, for alloys comprised of ions with tightly bound
cores we use

X' coss.y Z.
v'(y) =-

y'+~'f(y) Z*

with s;=2kgE„„'.The Fermi momentum k~ is common
to both potentials. As an example we show in Fig. 1 the
pseudopotential of a sodium ion in (a) an electron
density appropriate to pure sodium and (b) an electron
density appropriate to pure potassium (i.e., a single
sodium ion in a potassium host). When viewed in terms
of the integrals in both (1) and (5), it is apparent that
density changes in the potential can be quite important.
The simple form (4) cannot of course be correct for
alloys in which the electron concentration is depleted
by chemical bonding (as indicated by an exothermic
reaction). This automatically excludes from the present
consideration a large group of the mercury amalgams.

B. Structure Factors for Binary Alloys

As mentioned in the Introduction, we propose to
use for the S@(y) the hard-sphere momentum-space



502 N . 'tAr . A S H C R 0 F T A N D D . C . L A N G R E T H

solutions of the Percus-Yevick (PY) equation approp-
riate to binary mixtures. These are set out in detail in
I, and since the solutions are lengthy we do not repeat
them here but simply refer to the essential equations as
required. In terms of the Ornstein-Zernike correlation
functions C;, (y) we may write

S„(y)= L1—sC„(y)]/D (y),
Sss(y) = L1—&gCgr b)]/D(y),

where
S12(y) = (~i~2) Cl&(y)/D(y)

D(y) —[1 SJC$$(y)][1—~sC22(y)] +1'+2C12 (y)

where

s(y) = L1—«(y)] '

III. THE ION-ION - POTENTIAL:
THE VALUES OF q AND n

Here we calculate the actual Born-Oppenheimer
potential acting between two ions in the liquid. We do
this both as a justi6cation for the hard-sphere model of
a liquid metal, and as a method for determining the
parameters g and n.

Before proceeding, however, we mention that for pure
metals just above their melting points AI found that
q =0.45 almost universally. We similarly expect here
that physically interesting values of p will be close to
this. We also would intuitively expect the ratio of hard-

sphere diameters to be close to unity. Correspondingly,
in alloys of polyvalent metals where the resistivity is

s J. L. Lehowitz, Phys. Rev. 133, A893 lt9641.

and where the e; are number densities of the ith
component. For a mixture of hard spheres whose
diameters are in the ratio n (n& 1 by choice), and whose
concentration is governed by a parameter x for the
larger componen t, the PY approximation leads to
Eqs. (81) and (B2) of I for the C;,(y). One further
parameter, the total packing fraction g, completes the
description.

A discussion of the determination of g and n as
functions of concentration will be deferred until Sec.
III. The case n = 1 deserves special mention, however,
because it corresponds to the modified substitutional
model which takes full account of the change in meum

atomic volume. We fnd that for alloys of polyvalent
metals this atomic volume change is the only important
effect, and that even for monovalent alloys, it is the
dominant effect. From (2) and (S), in which the C,;(y)
are now all equal, we find, immediately that the resistiv-
ity is given by

4m'5
Z* dy y'(xVs'(y)S(y)+&(1 —&)t Vi(y) —Vs(y)]'

X $1—S(y)]+ (1—) V '(y)S(y) &, (6)

not extremely sensitive to the structure we set
=constant, n= 1 for a number of cases (as indicated in
the figures) for the whole range of concentrations.

For the alkalis, however, this approximation is
quantitatively inadequate. Hence, we set out to
calculate the ion-ion potential, from which p and n may
be determined directly. Within the pseudopotential
scheme, lowest-order perturbation theory has been at
least moderately successful in predicting correctly a
number of electronic properties of simple metals. It is
natural then to anticipate that it will predict reasonably
good, ion-ion potentials as well. In such an approxima-
tion, the ion-ion interaction is a central, two-body
potential given (in units of s the Fermi energy of the
alloy) by

&' (p)=L3(Z*)'/z. ] d'ye' 'V b) V (y)(y /V)

X Le '(y) —1]+6m.X'Z,Z, /p, (7)

where V, (y) is the bare (unscreened) pseudopotential
form factor of species i, e(y) is the dielectric function of
the ieterac/i' electron gas, and p is 2k~ times the
distance between ions. The last term in (7) is the bare
ion-ion interaction which is assumed Coulombic. The
validity of this latter approximation will be verified
later, when we find (as found empirically by AL) that
the potential (7) is sufficiently repulsive to prevent the
ionic cores from overlapping.

In evaluating (7), it is extremely important that
accurate values of e (y) be used. The random-phase
approximation (RPA), although sufficiently accurate
to describe the screening of the potentials' in (1), (2),
and (6), is inadequate here because the combination

is particularly sensitive to errors in the polariz-
ability. Now Hubbard'" has shown that a number of
important terms in the perturbation theory for the
polarization part may be summed approximately by
writing

f (y)
s(y) = 1+—

y' 1—~'f b')/(2y'+g)

where g is a function of density alone. Several different
forms of g have been proposed in the literature. '0

However, for the values of ionic separation of interest
(near the "hard-sphere diameter"), the integral (7) is
dominated by fairly small Y, so it is compelling to choose

9 In addition to corrections to Lindhard screening, the potentials
in (1), (2), and (6) should contain a vertex correction, which
accounts for exchange scattering with electrons in the screening
cloud. Both corrections are relatively unimportant because the
integrands are weighted at fairly large momentum transfers,
where Coulomb eGects are small. The remnant errors are ad-
equately absorbed into our parametrization scheme.

J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1957)."L. M. Falicov and V. Heine, Advan. Phys. 10, 57 (1961)."D. J. W, Geldart and S. H. Vosko, Can. J. Phys. 44, 2137
(1966)'.
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' J. F. Freedman and W. D

. „.G. Lee, Proc. Roy. Soc. (London) A295 440 (1966)
. Robe tson, J. Chem. Phy . 34,
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Co p atio ith th Ato

' Ee tomic Energy Commission, %'ashington,



STRUCTURE OF BINARY LIQUID MIXTURES. II

In Fig. 14 we show the results of our calculations on
the K-Rb system. The data are taken from Kurnakow
and Nikitinsky. " The theoretical curves shown corre-
spond to 8„,.= 1.44 A (dashed) and 8„„=1.12 A (full
curves). The latter with o.=0.85 is seen to be in reason-
able agreement with the alloy data, and in particular
with the resistivity for pure Rb at 75'C. tA'e comment
on this in the next section.

In Fig. 15 we show the results for the Pb-Sn system
at 500'C. This temperature is reasonably near to the
melting points of both metals; and in accordance with
the results of Ashcroft and Lekner, we expect a packing
fraction of close to 0.45 to be valid throughout the
concentration range. The results for the modified
substitutional model given in Fig. 15 are in good
agreement with the data of Adams and Leach."Table I
sumlnarizes the E„„data used here. No account has
been taken here of the contribution to the scattering
from spin-orbit terms in the potential. "The E„„for
lead is somewhat different from the value which is in
accord with the Fermi-surface data for the crystalline
solid. This (central) potential leads to poor agreement
with the data (cf. also the Hg-Pb system as discussed
more fully below).

Mercury Amalgams

The mercury amalgams are interesting in that apart
from Na, K, Rb, and Cs (which show some evidence of
chemical bonding) all other metals produce a sharp
decrease in resistivity when alloyed in Hg. It is appeal-
ing to attempt to explain these results in terms of the
model proposed here. There is at the outset a difficulty
in that it is by no means apparent that simple free-
electron theory is appropriate to Hg. This follows from
the experimental observation of the presence of d-state
electrons which have also been predicted in the calcula-

l40-

Hg-Zn; 250 C

!00

60

20-
t

4 ~ ~a+

.2 ,4

tions of Keeton and Loucks. 22 The d states are evidently
located near the bottom of the s-electron conducI;ion
band. It follows thRt oui crlterlon fol tl1e RppllcRblllty
of Eq. (4) for the electron-ion interaction is not exactly

90 20 C
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Fro. 16. Calculated resistivity for the Hg-Zn system at 250'C
vnth += 1. The dashed experimental curve is taken from Adams
and Leach (private communication). The dotted portion of the
theoretical curve indicates a solid alloy. The q value for Hg is
0.183 and for Zn is 0.456.
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F&o. 15. Calculated resistivity of the Pb-Sn system at 500'C.
The experimental curve (dashed} summarizes the data of Ref. 20.
The g values used here are g =0,410 for Sn and g =0.415 for Pb."¹S. Kurnakom and A. J. Nikitinsky, Z. Anorg. Allgem.
Chem. 88, 151 (1914}."P.D. Adams and J. Leach, Phys. Rev. 156, 178 (1967)."A. O. E. Animalu, Phil. Mag. 13, 53 (1966).
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FxG. 17. Calculated resistivity for the Hg-In system at 20'C
for several 0. values. The dashed curve summarizes the experi-
mental points of Ref. 25. The g values used are 0.346 for Hg and
0.456 for In. The dotted portions of the curves indicate regions of
solid alloy.

s' S. C. Keeton and T. L. Loucks, Phys. Rev. 152, 548 (1967).
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FIG. 18. Calculated resistivity of the Hg-Pb system at 350'C.
The solid curves correspond to E,.„,=0.78 A. and o, =1.0 and 0.9.
The dotted curve corresponds to n=1, but A„„=0.59'. The
dashed experimental curve summarizes the data of Adams and
Leach I P. D. Adams (private communication)]. The e value for
Pb is 0.456, and for Hg is 0.146.

met. As a consequence, we cannot expect the form of
the potential to be invariant with changes in electron
density. On the other hand. , if the d states are not too
close to the Fermi surface (which from Fermi-surface
studies appears s-likess), then the changes in this
potential may not be too important as regards transport
properties, although the energy derivatives of the
potential may have a marked effect on, say, the thermo-
power. It follows that we may use, with some caution,
the simple potential and evaluate the parameter E„„
from the resistivity data for the pure metal. At 20'C
R.„.=0.484 A, which compares reasonably well with
the radius of the isolated potential required to yield the
ionization energyr (E,=0.52 tii). An alternative value
R„„=0.856 A also gives the correct pure-liquid
resistivity but is in poor agreement with the tempera-
ture dependence and also with the alloying data which
we now present. Finally, as shown in Fig. 10, the latter
value gives an ion-ion potential which corresponds to
the value of rt =0.74 (i.e., near random close packing).

Figure 16 shows the data for the Hg-Zn system at
250 C. E„„for Zn and Hg are shown in Table I. Note
that at 250'C the alloy does not exist as a liquid for
x&0.6. The theoretical curve is computed on the
assumption of a liquid throughout the concentration
range with g=0.456 at the Zn-rich end. Values of g are
linearly interpolated between p=0.456 and p=0.183.'4

"G. B. Brandt and J. A. Rayne, Phys. Rev. 148, 644 (1966}.
24 250'C is over twice the melting temperature (in 'K} of Hg.

The change in packing fraction quoted indicates a decrease in the
hard-sphere diameter by about 25%. This reduction indicates an
increase in penetration due to the high thermal energy of the
Hg atoms. The curve of Fig. 10 is not suKciently accurate to
predict the numerical value of this decrease. In Sn, between its
melting point and 1200'C, the shift in g required to match the
resistivity requires a reduction in the hard-sphere diameter by
15%,indicating a comparably soft ion-ion interaction there as welL
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FIG. 19. Calculated resistivity of the Hg-Bi system at 270'C
for two values of n. The dashed experimental curve is taken from
the data of Adams and Leach (private communication}. The q
value for Bi is 0.456, and for Hg is 0.175.

"N. E. Cusack, P. Kendall, and M. Fielder, Phil. Mag. 10,
g71 (1964).

2' N. W. Ashcroft and W. E. Lawrence (to be published). The
value R„„=0.59 A also gives fair agreement with Fermi-surface
data. The resistivity results are, however, somewhat poorer than
those for E„„=0.700 A..

The latter gives, with E„„(Hg)=0.484 A, the correct
resistivity of Hg at 250 C. The over-all agreement with
experiment is quite reasonable: The rapid decrease in
resistivity at the Hg-rich end which appears on addition
of a few percent of Zn is not well reproduced. This
feature is common to a number of Hg amalgams and
seems inexplicable in terms of the present model.
There seems little doubt that the effect is connected
with changes in properties of Hg on alloying, and
probably (as we have suggested) with its potential.
Note that there is a 25% change in Fermi energy in
going from pure Hg to pure Zn.

A similar sharp drop in resistivity is observed in the
Hg-In system. The results for this alloy are shown in
Fig. 17:The experimental data are taken from Cusack
et a/ "Ag.ain we have chosen R„„(Hg)=0.484 tlr, and
for In we have taken E„„=0.700 A. This value fits
the resistivity of the liquid just above the melting point,
and the band gaps resulting from this choice give good
agreement with the available low-temperature galvano-
magnetic data."It is interesting to observe that quite a
large change in o, produces relatively little change in
the initial slope of the resistivity as a function of x at
the Hg-rich end.

For the Pb-Hg system, the agreement with the
available potentials is not very encouraging. If we
choose R„„(Pb)=0.57 A, then V(y) fits the potential
of Heine and Abarenkov with some accuracy. The
values at the reciprocal lattice points on the latter are
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in good, agreement with the empirical values of Anderson
and. Gold~ which are d,educed, from Fermi-surface
studies. As was pointed, out in AL, this potential gives a
resistivity of 69.8 pQ cm (compared with an experi-
mental value of 95 pQ cm). We have computed the
resistivity of the Pb-Hg amalgam and found, the
discrepancy to persist throughout most of the concentra-
tion range. Ke have also computed the resistivity with
E„„=0.78 A. The results of both calculations are given
in Fig. 18.The slight maximum observed in the experi-
mental curve is given by the choice E„„=0.78 A but
not by E.„.=0.57 A. We comment on the E„„val ue s
in Sec. V.

The maximum in the resistivity-versus-concentration
curve at the Pb-rich end, of the Hg-Pb system is also a
feature of the Hg-Bi system. The results for this alloy
are obtained with the choice E„„=0.79 A (similar to
the Pb value as expected), and are given in Fig. 19.

Our remaining results concern alloys of the noble
metals. Some comment is required about the potential
for these metals. It is well known that the d states in
Cu, Ag, and, Au are of critical importance in d.etermining
their optical, cohesive, and band-structure properties
for the solid, phases. The anisotropy of the d band, s gives
rise to considerable distortions of their Fermi surfaces.
Much of the anisotropy of the d states is of course
linked with the structure of the unit cell, in this case
the fcc system. For example, the d bands come quite
close to the Fermi energy at the point I, and are
partially responsible for the contact of the Fermi surface
with the (111) planes. Otherwise, the Fermi surfaces
in Cu, Ag, and Au are principally spherical (i.e.,
"s-like"). We now suggest that if the symmetry is
removed, (as on melting), the Fermi surfaces become
essentially completely s-like. The anisotropy of the d
states is smeared out by the disorder of the liquid: Their
average width is of course unaftected, but the important

laa- Cu-Sn; l200 C
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Fxo. 21. Calculated resistivity of the Cu-Sn system at I200'C
for a number of e values. The dashed experimental curve rep-
resents the data of K. Sornemann and G. %agenmann, Ferrum
11, 276 (1913) and is cited in Ref. 1. The s value taken for pure
Cu is 0.456 and for Sn is 0.266.

departures from the average, present in the solid, , are
eliminated. .Thus, as regards transport, the states at the
Fermi level are almost entirely s-like, the only differ-
ences from pure plane-wave behavior arising from s-d
overlap (which is now, however, isotropic). The latter
should be small on the average, if the d system is
substantially below the Fermi surface (as appears to
be the case). We now find that the moltee noble metals
can behave as simple s-like metals and the results
calculated below have been arrived at upon this
assumption.

Figure 20 shows the computed resistivity for the
Ag-Au system at j.200 C. The values of E„„used are
given in Table I and are chosen to ht the resistivities of
the pure molten metals. Again the choice is not unique
but the value chosen is in agreement with the ion-ion
interaction and the hard-sphere diameters estimated, on
the basis of a packing fraction of q=0.456 at melting,
while the other choice is not.

Finally, we have computed the resistivity of the
Cu-Sn system, and the results are shown in Fig. 21.
The R„„used for Cu is the same as the value which
reproduces the ion-ion interaction shown in Fig. 9. We
find reasonable agreement with data by taking so„/os„

0.7. For this particular system in which there is a
considerable difference in valence, we anticipate that
the actual hard. -core ratio will be depend, ent on the
concentration parameter.
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Fn. 20. Calculated resistivity of the Au-Ag system at j.200'C
for several values of o.. The dashed experimental curve is taken
from F. Gaibullaev and A. R. Regal, Zh. Teckhn. Fiz. 27, 2240
(1957) t English transl. : Soviet Phys. —Tech. Phys. 2 2082
(1957)j.The s value was taken to be 0.45 for all s.

'r J.R. Anderson and A. V. Gold, Phys. Rev. 139,A1459 (1965).

From the agreement with experiment that we have
found, we conclude that it is possible, within the simple
Ziman theory, to expalin quantitatively the observed
resistivities of the simple binary alloys. Our calculations
have required knowledge of the structure of the alloys
and of the electron-ion interactions. The predominant
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effect appears to be the volume dependence of the
pseudopotentials rather than deviations from the
modified substitutional model. Actual calculations of
the ion-ion potential have enabled us to check the
validity of the hard-sphere approach and, furthermore,
indicate when deviations from this substitutional model
are to be expected.

As regards the pseudopotentials (4) our agreement is
particularly good when E„„is consistent with both
Fermi- surface data and the resistivity of the pure liquid,
and it is further known that the d states (if any) do
not play an important role. In several cases there
were ambiguities, which we now discuss. First, in
rubidium we 6nd the value R„„=1.12 A to fit both the
pure-liquid resistivity and the alloy data (Fig. 10) and,
moreover, give good agreement with the ion-ion interac-
tion (Fig. 7). The value R„„=1.44 A also 6ts the
resistivity of the pure liquid and, is in fair agreement
with the measured distortions on the Fermi surface. '8

These distortions amount to about 1%, whereas the
value R.„.= 1.13 A predicts less distortion, as evaluated
by a simple s-electron mod. el."However, it is known"
in Rb that the core states are not well separated in
energy from the conduction band. It is quite possible,
therefore, that a substantial part of the 1%%uz distortion
may be due to the anisotropy of the core states, and this
effect cannot be absorbed into the simple plane-wave
interpretation. The evidence on balance seems to indi-
cate that R.„.= 1.12 A is the preferred value.

For lead, R„„=0.78 A is in agreement with the pure-
liquid resistivity, alloying data (Figs. 15 and 18), and
the ion-ion interaction (Fig. 12). Hand gaps taken from

(4) with this value of R„„also predict the same basic
topology for the Fermi surface as observed. " The
alternative value, R„,.=0.59 A, which matches the
band. gaps suggested by Anderson and, Gold gives little
agreement for all but the Fermi surface. At this point,
we cannot of course discount the possibility that the
spin-orbit coupling in the solid produces considerable

anisotropy of the bands sufFicient to alter the values of
the band gaps predicted by a simple central potential of

"N. W. Ashcroft, Phys. Rev. 140, A935 (1965).
"For the free atom, the core states are only about 20 eV below

the s states. In lead the value is 27 eV, in Hg it is 15 eV, and in
Cu itis 13 eV.

se W. E.Lawrence and N. W. Ashcroft (private communication).

the type (4). The latter is assumed to incorporate both
central and noncentral terms and shouM be applicable
to the liquid state where the disorder averages over any
anisotropy present. We should also note that the d
states in Pb are not far removed from the s band" and
may also cause some slight additional distortion to the
Fermi surface, not accounted for by the simple plane-
wave-like expansion of the wave function.

In Cu, Ag, and Au, the d states in the free atom are
fairly close in energy to the s states. Further, the usual
ionic radii of singly ionized Cu, Ag, and Au are on the
order of 1.0—1.3 A; yet for the transport potential we
find values of R„„close to 0.5 A for the three noble
metals. These low values of E„„suggest strongly that
the repulsive terms in the pseud, opotential arise
principally from the tightly bound inner core states.
The repulsive part of the potential, arising from
orthogonalization to d states, is relatively unimpor-
tant. "These same d states seem to be unimportant in
determining the structure factor of the liquid metal,
since our calculated, hard-sphere rad, ius comes well
outside of the radius of the d shell. This is indicated in
Fig. 9.

In summary, we find the Ziman formula for the
resistivity to be quite adequate for simple binary alloys.
A binary alloy is a more stringent test of the Ziman
approach than a pure metal (where accidental agree-
ment is more probable), so we regard our results as
additional verification of Eq. (6) for a pure metal as
well. Furthermore, by direct calculation of the interionic
potential, we have confirmed the validity of the hard-
sphere approach to the structure of liquid. metals (at
least in the region of momentum transfers important to
electronic transport properties).
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er This follows because at the Fermi surface the overlap of a plane
wave with a d state is about the same as the overlap with an inner
core state, but the inner core states are much lower in energy
than the d states. The small values of R„„arealso consistent with
the ionization energies of the model potential for the free atom.


