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We have applied the analytic partial structure factors S;; (K) developed in an earlier work to a study of the
resistivity of binary alloys. We find the substitutional model to hold reasonably well, provided that it is
modified to incorporate the volume dependence of the pseudopotentials. Deviation from this model can be
accounted for by changing the hard-sphere ratio « [used in obtaining S;; (K)] from unity. Such a deviation is
non-negligible in Na-K, for example, and is obtained by a calculation of the ion-ion interaction in the alloys.
This interaction has been calculated for a number of other alloys as well. Some discussion of the Hg amal-

gams is also given.

I. INTRODUCTION

ECENTLY Faber and Ziman' have pointed out
that whereas the resistivity of solid binary alloys
follow Nordheim’s and Linde’s rules fairly well, their
liquid counterparts exhibit little regularity. This
anomalous behavior arises from deviations from the
simplest possible substitutional model in which the alloy
is assumed to (i) possess a single structure factor for
the ionic configurations (no distinction between
species) and (ii) show no variation in atomic volume as
the concentration is changed. We find here that most of
the concentration dependence of the resistivity arises
from a failure of assumption (ii) above, and is easily cal-
culated using a modified substitutional model, with simple
model volume-dependent pseudopotentials. Finally, in
cases where the resistivity is particularly sensitive to
the failure of assumption (i), as in alloys of monovalent
metals, the deviations (dilatation effects) are straight-
forwardly included in a more or less first-principles
calculation. In Sec. IT we outline the modifications of
the simple formula for resistivity required by the use of
the partial structure factors? Sy, and describe how the
S; are obtained. In Sec. III we calculate the interionic
potential for a number of metals in order to determine
the parameters which enter the equation for S
Finally, in Sec. IV we present the results of the resistiv-
ity calculations for various liquid alloys including Hg
amalgams, and these results are discussed in Sec. V.

II. FORMULATION OF THE RESISTIVITY
FOR BINARY ALLOYS

For a pure liquid metal of valence Z the simple
result for the resistivity of a liquid as first derived by
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Ziman® may be written

3 1

. Z [) ¥S () V2 (y)dy, 1)

E°Ryp

where V (y) is the electron-ion pseudopotential in units
of 3Er and y is the wave-number variable expressed in
units of 2kp. S(y) is the structure factor for the liquid
metal. Although (1) is based on the Born approximation,
the results it yields are in remarkably good over-all
agreement with experiment for a number of metals,
particularly when V(y) is known from independent
means, as for example, when it is determined from
Fermi-surface data relating to the solid metals. In a
few cases (e.g., the alkali metals) a detailed test of (1) is
difficult because of experimental difficulties involved
in an accurate determination of the structure factor.
This difficulty was partly overcome* through the use of
a model structure factor which was found to give
equally good results in cases (e.g., the polyvalent
metals) where more detailed information on ¥ (y) was
available. The model S(y) was taken from the hard-
sphere solution of the Percus-Yevick equation for the
radial distribution function in a classical fluid. It was
found by Ashcroft and Lekner* (AL) that the S(y)
derived in this way gave very good agreement with the
x-ray and neutron-scattering data around the first
peak. This model structure factor is a function of a
single parameter, namely the effective hard-sphere
diameter o for the ion-ion interaction in the liquid.
The appropriate o’s were determined by matching the
theoretical solutions to the principal diffraction peak
heights. The packing fractions 5 determined subse-
quently were found to be near 0.45 for most metals
immediately above their melting points. This is close to
the observed hard-sphere phase transition as found in
the molecular dynamics calculation of Wainwright and
Alder.? We also note that the relation n= constant at
the melting point is a statement of Lindeman’s melting

3 J. M. Ziman, Phil. Mag. 6, 1013 (1961).

4 N. W. Ashcroft and J. Lekner, Phys. Rev. 145, 83 (1966),
hereafter referred to as AL.
u ;s’lé) Wainwright and B. Alder, Nuovo Cimento Suppl. 9, 116
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law® viewed from the liquid side of the phase transition.
To see this we use the Ornstein-Zernike relation which
when combined with the above relation, states that

nkTX=constant

at the melting temperature. The compressibility X may
easily be eliminated in favor of the sound velocity and
hence the Debye temperature, so that Lindeman’s
formula results. The above result is-of course independ-
ent of the Percus-Yevick approximation.

It is natural to extend these simple ideas to a treat-
ment appropriate to a binary alloy. The modifications
are straightforward. The resistivity of a binary alloy
in the same approximation may be written as

473h 1
7+ / 0y YV 2(5) S () + 21— ) ]2

XVoVi)Su@)+1—=x)VE@)Su@®)}. (2)

Here the V;(y) are the interactions of an electron with
ions of species ¢ (¢=1, 2) immersed in the same screening
cloud of electrons. Z* is an effective valence determined
from the ratio of the electron density to the ion
density, and x is the concentration of species 2. For the
definition of Sy;(y), the partial structure factors for the
system, we refer to Eq. (4) of I.

To treat a particular binary system over the full
range of the concentration parameter (0<x<1) requires
knowledge of the volume dependence of the electron-ion
interaction and correspondingly detailed information
concerning the behavior of the S;;(y). We discuss these
in turn.

€2F

A. Volume-Dependent Pseudopotentials

It has recently been proposed” that for discussion of
transport and equilibrium properties of metals [i.e.,
properties involving knowledge of V(y) for 0<y< 2],
the following form of potential is adequate, namely,

V (y)=—N cossy/[y*+Nf(3)], ®3)

where s=2kp Reore, 2= (maokr)~, and f(y) is the Lind-
hard screening function. The quantity Re.. represents
an effective core radius outside of which the unscreened
electron-ion interaction is Coulomb-like, and inside of
which the potential appropriate to a pseudo—-plane-wave
approximation is virtually zero. This potential accounts
for the cancellation in the core region inherent in the
case of pseudo plane waves for the electron wave
functions. The Rgore, as determined from Fermi-surface
data, is found to agree well with the usual ionic radii.
This may be anticipated from the range of cancellation

6 See, for example, David Pines, Elemenlary Excitations in
Solids (W. A. Benjamin, Inc., New York, 1963), p. 37.

7 N. W. Ashcroft, Phys. Letters 23, 48 (1966) ; N. W. Ashcroft
(to be published). This model potential was used rather success-
fully by N. W. Ashcroft and D. C. Langreth, Phys. Rev. (to be
published) to calculate the binding energies and compressibilities
of simple metals.
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F16. 1. The pseudopotential form factor V(y) of a Na ion in
(a) an electron density appropriate to pure Na and (b) an electron
density appropriate to pure K. The resistivity is most sensitive to
the value of V (y) in the region y~1.

expected. If we assume the cancellation to be an
inherent property of the ion core whose effectiveness is
governed by the extent and detailed nature of the core
states, then, provided the cores are well removed in
energy from the band states, we expect Reor. to be
only weakly dependent on electron density. The latter
has been roughly demonstrated in the extreme case
where the potential leading to (3) is treated as an iso-
lated atomic potential and used to bind the valence
electrons. The ionization energies define an effective
core radius in good agreement with R, appropriate to
the metallic state for most of the simple metals. The
agreement is less good for metals in which the core
states are poorly separated in energy from the band
states and this leads to our proviso above.

Thus, for alloys comprised of ions with tightly bound
cores we use

N cossyy Z;

YN f () 7+’

with s;=2kpReore’. The Fermi momentum %y is common
to both potentials. As an example we show in Fig. 1 the
pseudopotential of a sodium ion in (a) an electron
density appropriate to pure sodium and (b) an electron
density appropriate to pure potassium (i.e., a single
sodium ion in a potassium host). When viewed in terms
of the integrals in both (1) and (5), it is apparent that
density changes in the potential can be quite important.
The simple form (4) cannot of course be correct for
alloys in which the electron concentration is depleted
by chemical bonding (as indicated by an exothermic
reaction). This automatically excludes from the present
consideration a large group of the mercury amalgams.

Vily)=— 4)

B. Structure Factors for Binary Alloys

As mentioned in the Introduction, we propose to
use for the Si(y) the hard-sphere momentum-space
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solutions of the Percus-Yevick (PY) equation approp-
riate to binary mixtures.® These are set out in detail in
I, and since the solutions are lengthy we do not repeat
them here but simply refer to the essential equations as
required. In terms of the Ornstein-Zernike correlation
functions C;;(y) we may write

Suly)=[1 —n2c22(y)]/D (y) ,
Se(y)=[1—nCu()]/D(y), ®)

S12(y) = (nn2)*C12(y)/D(y),

and

where
D(y)=[1=mCu1 () J[1—n:Cs2(y) ]—ninsC12(y),

and where the n; are number densities of the ith
component. For a mixture of hard spheres whose
diameters are in the ratio @ (<1 by choice), and whose
concentration is governed by a parameter x for the
larger component, the PY approximation leads to
Eqgs. (B1) and (B2) of I for the Ci(y). One further
parameter, the total packing fraction 5, completes the
description.

A discussion of the determination of 5 and « as
functions of concentration will be deferred until Sec.
III. The case a=1 deserves special mention, however,
because it corresponds to the modified substitutional
model which takes full account of the change in mean
atomic volume. We find that for alloys of polyvalent
metals this atomic volume change is the only important
effect, and that even for monovalent alloys, it is the
dominant effect. From (2) and (5), in which the Cy;(y)
are now all equal, we find immediately that the resistiv-
ity is given by

473t 1
7+ / dy PV 20)S ) +a(l=0) Vi) — Va(y) P

X[A=SO)H1=x)V2@)S»)}, (6)
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where
Sy)=[1—nc(y) I

III. THE ION-ION POTENTIAL:
THE VALUES OF 5 AND «

Here we calculate the actual Born-Oppenheimer
potential acting between two ions in the liquid. We do
this both as a justification for the hard-sphere model of
a liquid metal, and as a method for determining the
parameters 7 and a.

Before proceeding, however, we mention that for pure
metals just above their melting points AL found that
n=0.45 almost universally. We similarly expect here
that physically interesting values of n will be close to
this. We also would intuitively expect the ratio of hard-
sphere diameters to be close to unity. Correspondingly,
in alloys of polyvalent metals where the resistivity is

8 J. L. Lebowitz, Phys. Rev. 133, A895 (1964).
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not extremely sensitive to the structure we set 7
=constant, =1 for a number of cases (as indicated in
the figures) for the whole range of concentrations.

For the alkalis, however, this approximation is
quantitatively inadequate. Hence, we set out to
calculate the ion-ion potential, from which 5 and & may
be determined directly. Within the pseudopotential
scheme, lowest-order perturbation theory has been at
least moderately successful in predicting correctly a
number of electronic properties of simple metals. It is
natural then to anticipate that it will predict reasonably
good ion-ion potentials as well. Tn such an approxima-
tion, the ion-ion interaction is a central, two-body
potential given (in units of £ the Fermi energy of the
alloy) by

b:i(0)=[3(Z2*%)*/x] / Py e* YV (y) V() (52/3)
XL () —11+-6mNZZ,/p, (7)

where V;(y) is the bare (unscreened) pseudopotential
form factor of species 1, e(y) is the dielectric function of
the interacting electron gas, and p is 2kp times the
distance between ions. The last term in (7) is the bare
ion-ion interaction which is assumed Coulombic. The
validity of this latter approximation will be verified
later, when we find (as found empirically by AL) that
the potential (7) is sufficiently repulsive to prevent the
ionic cores from overlapping.

In evaluating (7), it is extremely important that
accurate values of e(y) be used. The random-phase
approximation (RPA), although sufficiently accurate
to describe the screening of the potentials? in (1), (2),
and (6), is inadequate here because the combination
¢'—1 is particularly sensitive to errors in the polariz-
ability. Now Hubbard® has shown that a number of
important terms in the perturbation theory for the
polarization part may be summed approximately by

writing N 10
y

=14— ,

O )

where g is a function of density alone. Several different
forms of g have been proposed in the literature.l0-12
However, for the values of ionic separation of interest
(near the “hard-sphere diameter”), the integral (7) is
dominated by fairly small y, so it is compelling to choose

©)

¢ In addition to corrections to Lindhard screening, the potentials
in (1), (2), and (6) should contain a vertex correction, which
accounts for exchange scattering with electrons in the screening
cloud. Both corrections are relatively unimportant because the
integrands are weighted at fairly large momentum transfers,
where Coulomb effects are small. The remnant errors are ad-
equately absorbed into our parametrization scheme.

10 J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1957).

L. M. Falicov and V. Heine, Advan. Phys. 10, 57 (1961).
( 12 16)) J. W. Geldart and S. H. Vosko, Can. J. Phys. 44, 2137
1966).
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g such that the identity!? the value of —3.05X10~%/°C implied by the work of
- ) AL. In view of these results, we feel that we can extend
ngy (y)=NK/Ko (9 the results to Na-K alloys with some confidence. We

is satisfied. Here K/K, is the compressibility of the
interacting electron gas measured in units of the
noninteracting electron-gas compressibility and is
known quite accurately. For its evaluation we have
used. the Noziéres-Pines interpolation!? formula,

K/Ke>=(1—N—0.158)\%)1, (10)

Actually, for the lower-density metals, it is not very
relevant whether (10) be quantatively accurate; what
is important is that K/K, is sufficiently large that
1/e—1>~—1 over most of the important region of
integration.

In Fig. 2 we show the results for the potential ¢(p)
between two Na ions immersed in an electron gas of
density appropriate to that of liquid Na just above its
melting point. We expect our potential to be the most
accurate in the region shown in Fig. 2(b). Figure 2(a)
is included to show the “hard-sphere’” nature of the
potential, and Fig. 2(c) to show that the Friedel
oscillations appear as they should.

We now use this potential to determine an effective
hard-sphere diameter o (or packing fraction 1), for use
in the PY equation. Presumably, this diameter is
determined approximately by

¢(2k1"0)'—'¢min’:—%kT/§Ei; (11)

where ¢min is the value of ¢ at its minimum. Application
of (11) to the curve of Fig. 2(b) yields n= (2kpo)3/
1447 Z=0.44 at 100°C. This is in good agreement with
the value of =0.45 found by AL. From the slope of
the potential at p=2kyo, the quantity dn/d7T may also
be determined. We find for Na at 100°C that (dy/dT)
=—3.0X10"%/°C, which is in excellent agreement with

13 For example, see David Pines and P. Nozidres, The Theory of
Quantum Liquids (W. A. Benjamin, Inc., New York, 1966), Vol. I.

also mention that in the region of the hard-sphere
diameter, our Na potential agrees very closely with the
one determined semiempirically by Johnson, Huchinson,
and March using the Percus-Yevick theory.

Our results's are displayed in Figs. 3-6. Finally, as
indicated in Fig. 2, the nearest-neighbor distance in the
solid is close to the minimum of the ion-ion interaction.
Figure 3 shows the Na-Na, Na-K, and K-K interactions,

F1e. 3. The calculated interaction ¢;;(p) between (a) two Na
ions, (b) a Na ion and a K ion, and (c) two K ions immersed in an
electron gas of density appropriate to pure liquid Na at 100°C.

14 M. D. Johnson, P. Huchinson, and N. H. March, Proc. Roy.
Soc. (London) A282, 283 (1964). On the other hand, the amplitude
of the oscillatory part of their potential is considerably larger than
the amplitude we find.

16 In determining the actual density of the alloys we have
made a linear interpolation in volume. Thus, Qaiey= (1—%)Q
+%3, where Q is the atomic volume involved. This seems to be
well in accord with the available experimental data.
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F16. 4. The calculated interaction between (a) two Na ions,
(b) a Na and a K ion, and (c) two K ions immersed in an electron
gas of density appropriate to pure liquid K at 100°C. The arrow
marks the nearest-neighbor distance in solid K.

when these ions are immersed in an electron gas of
density appropriate to that of pure Na. Figure 4 shows
these interactions for electron-gas density appropriate
to that of pure K. Figures 5 and 6 show similar results

-2 T T T T T T T

x 10 ()| ) tc)
3+ .
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Fi16. 5. The calculated interaction between (a) two Na ions,
(b) a Na ion and a K ion, and (c) two K ions immersed in an
electron gas of density appropriate to 32.4% Na and 67.6% K.

for the electron-gas densities of two different Na-K
alloys.

One fact that is clear immediately by inspection of
the curves is that

(12)

This is fortunate because (12) was implicitly assumed
in the derivation of the structure factors which we use.

VN&—KZ% (UNa—Na+0'K—K) .
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Next we employ (11) to calculate the hard-sphere
diameters. We find for the packing fraction

1= (r/6)[ (1—x)o3+x055] (2k;)*~0.434-0.02

over the whole range of concentration. The calculation
is not sufficiently accurate to predict the detailed
variation of 5 as a function of concentration, but it

x102
Na, K
o ()| ®) () ¢ ]

-k

-2+

-3

L i 1 L 1 I ]

Fic. 6. The calculated interaction between (a) two Na ions,
(b) 2 Na and a K ion, and (c) two K jons immersed in an electron
gas of density appropriate to 68.5% Na and 31.5% K.

does serve to verify our earlier speculation that such
variation is small. For actual resistivity calculations it
will be sufficient to make a linear interpolation between
the value appropriate to pure Na and that of pure K
(at the temperature involved).

The new result that emerges from our analysis is the
value a, the hard-sphere ratio. We find that

a=01/0:~0.8350.010

+2, T T T T T T T T
Ol

o)

-2 ' 1 L 2 1 1

F16. 7. The calculated interaction between two Li ions immersed
in an electron gas of density appropriate liquid Li metal at 200°C.
Curve (a) corresponds to Roore=0.56 A ; curve (b) corresponds to
Reore=1.06 A. Both values of Reore yield the correct pure liquid
resistivity but only the smaller value gives a reasonable value of
both 2%pe¢ and the ion-ion separation indicated by the arrow.
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F1c. 8. The calculated interaction between two Rb ions im-
mersed in an electron gas of density appropriate to liquid Rb at
40°C. Curve (a) corresponds to Reore=1.12 A while curve (b)
corresponds to Rere=1.44 A. Both values yield the correct pure-
liquid resistivity (see text) but only the smaller value gives a
reasonable value for 2kro and the nearest-neighbor separation
indicated by the arrow.

for the whole range of concentration in the Na-K
system. As we shall see later, the difference in resistivity
predicted for a~1 and a~0.8 is substantial.

Of the remaining alkalis we have computed the
ion-ion interactions in Li and Rb and the results are
shown in Figs. 7 and 8. For each metal we have used

<l 0_25- T T [ T T

l———Hard Sphere Diameter (o)
t o |

17 |

Diameter of ‘
2 [~ atomic d-lheﬁ

I 2 3 4 5

LS

s " 1 ' 1

|
| l
| |
| |
| }
| |
| |
| |

L

F16. 9. The calculated interaction between two Cu ions im-
mersed in an ‘“s”-electron gas of density appropriate to liquid
Cu at 1200°C.

two core radii (indicated), both of which are consistent
with the resistivities of the pure liquid metals. It is
evident from the figures that the smaller radius in
each case is in good agreement with the observed
packing fractions. A similar calculation (Fig. 9) for
the monovalent metal Cu has been carried out with an
Reore=0.43 A which is chosen to fit the resistivity of the
pure liquid metal. The significance of the simple free-
electron theory as applied to a metal with d states is
discussed in Sec. V.
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We have also computed the ion-ion interaction in
Hg, Al, and Pb. The R, for Hg was again chosen to
fit the pure-liquid resistivity: Again two choices are
possible with the smaller radius giving the better agree-
ment with the observed packing fraction as shown in
Fig. 10. In Al, Rere=0.59 A is determined by Fermi-
surface studies,” and the ion-ion interaction given by

T (b

-2k

1 ' L L I L . s 1

Fic. 10. The calculated interaction between two Hg ions
immersed in an “s”-electron gas of density appropriate to liquid
Hg at 50°C. Curve (a) corresponds to Reoro=0.484 A ; curve (b)
corresponds to Reoro=0.860. Again, both values yield the correct
pure-liquid resistivity (see text) but the smaller value gives the
better agreement with 2kro and the nearest-neighbor distance.
As with Cu, the hard-sphere diameter is considerably outside the
atomic d-shell diameter.

Eq. (7) is shown in Fig. 11. Also shown in this figure is
the same interaction calculated at the density found in
the solid metal. The rather dramatic density dependence
of the ion-ion potential (in the region of the next-
nearest-neighbor distance) is most pronounced in the
high-density metals where Eq. (7) is sensitive to the
value of €(y).

x103 | (q) '

@
]
L

AL

_ab

-6F

Fic. 11. The calculated interaction between two Al ions im-
mersed in an electron gas of density appropriate to (a) liquid Al
at 660°C, and (b) solid Al at room temperature. The arrows show
the nearest-neighbor and next-nearest-neighbor distances. The
volume dependence of the ion-ion interaction is most pronounced
in high-density metals (as above) where Eq. (7) is most sensitive
to the value of e.
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Fic. 12. The calculated interaction between two Pb ions
immersed in an electron gas of density appropriate to liquid Pb
at 350°C. Curve (a) corresponds to Reore=0.59 A and curve (b)
corresponds to Reoe=0.78 A (see text). The latter gives good
values for 2kpo and also for the nearest-neighbor distance shown
by an arrow.

Finally, we show in Fig. 12 the ion-ion interaction in
Pb for two values of Reore. The final choice of Reore for
this metal is discussed in the next section.

IV. ELECTRICAL RESISTIVITIES OF
BINARY ALLOYS

We turn now to an application of Eq. (2) to a number
of alloys, commencing with the Na-K system. Although
each component has a resistivity of around 10 uQ cm
just above its melting point, an alloy of equal parts
yields a resistivity of about 40 uQ cm, a substantial
increase. For both pure Na and K at 150°C the resistivi-
ties have been evaluated with the Reor. given in Table I
and 7 is adjusted to the compressibility as outlined in
AL. These were chosen to give the correct resistivities
at their melting points with n=0.456 and in both cases

T T T T

Na-K; 100°C

—_———

p& cm

F1c. 14. Calculated resistivity of the K-Rb system at 75°C.
The experimental points are taken from Ref. 19. The solid curves
correspond to different values of a for Reore(Rb)=1.12 A. The
dashed curve corresponds to Reore(Rb)=1.44 A (and a=1). For
pure K we use 7=0.453 and for pure Rb we use n=0.433 (at 75°C).

Reore is in accord with the Fermi-surface data.”!6
Throughout the range of concentration, values of 5 were
chosen in two ways: (a) a smooth interpolation between
#=1 and x=0 and (b) by using the difference between
the working temperature and the liquidus (along which
we assume 5= 0.456) together with the dn/dT curves for
pure K and Na (which are similar) and also assuming a
similar variation in the alloy. The difference in the
results of the two methods amounts to only ~2 uQ2 cm
at the most and therefore cannot be considered signif-
icant. For the present, we regard the linear interpolation
to be sufficiently accurate. A plot of resistivity against
is given in Fig. 13: The experimental data are taken
from Freedman and Robertson!” and from the Liquid
Metals Handbook.'® The four theoretical curves corre-
spond to a=1 (modified substitutional model), «=0.9,
0.8, and 0.75. The last is seen to fit the data quite well,
and this value of a is close to that obtained in the
previous section.

TaBLE I. Core parameters (in angstroms) used to fix the
Fourier transform of the electron-ion interaction in the transport
region. The values in parentheses are alternative values of Reore
which also reproduce the resistivity of the pure liquid metals but
give poor agreement for other properties as discussed in the text.

Metal Rcore Metal Rcore
Li 0.560 (1.06) Hg 0.484 (0.856)
Na 0.880 Zn 0.673
K 1.115 Al 0.590
Rb 1.120 (1.44) In 0.700 (0.590)
Cu 0.430 (0.93) Sn 0.686
Ag 0.550 (0.99) Pb 0.780 (0.59)
o I 1 1 1 Au 0.430 (1.08) Bi 0.790
2 4 6 .8
Na X K

Fic. 13. The calculated resistivity for the Na-K system at

16 M. J. G. Lee, Proc. Roy. Soc. (London) A295, 440 (1966).

100°C, for several different « values. The curve for =0.8 best
fits the experimental points on the interpolated dashed curve.
These were taken from Ref. 18. For pure Na we use 3=0.455
and for pure K we use n=0.443 (both values are appropriate to
100°C).

17 J, F, Freedman and W. D. Robertson, J. Chem. Phys. 34,
769 (1961).

18 [ iquid Metals Handbook (U. S. Office of Naval Rescarch in
Cooperation with the Atomic Energy Commission, Washington,
D. C., 1952).
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In Fig. 14 we show the results of our calculations on
the K-Rb system. The data are taken from Kurnakow
and Nikitinsky.?® The theoretical curves shown corre-
spond to Reore=1.44 A (dashed) and Rere=1.12 A (full
curves). The latter with @=0.85 is seen to be in reason-
able agreement with the alloy data, and in particular
with the resistivity for pure Rb at 75°C. We comment
on this in the next section.

In Fig. 15 we show the results for the Pb-Sn system
at 500°C. This temperature is reasonably near to the
melting points of both metals; and in accordance with
the results of Ashcroft and Lekner, we expect a packing
fraction of close to 0.45 to be valid throughout the
concentration range. The results for the modified
substitutional model given in Fig. 15 are in good
agreement with the data of Adams and Leach.20 Table I
summarizes the R, data used here. No account has
been taken here of the contribution to the scattering
from spin-orbit terms in the potential ! The R for
lead is somewhat different from the value which is in
accord with the Fermi-surface data for the crystalline
solid. This (central) potential leads to poor agreement
with the data (cf. also the Hg-Pb system as discussed
more fully below).

Mercury Amalgams

The mercury amalgams are interesting in that apart
from Na, K, Rb, and Cs (which show some evidence of
chemical bonding) all other metals produce a sharp
decrease in resistivity when alloyed in Hg. It is appeal-
ing to attempt to explain these results in terms of the
model proposed here. There is at the outset a difficulty
in that it is by no means apparent that simple free-
electron theory is appropriate to Hg. This follows from
the experimental observation of the presence of d-state
electrons which have also been predicted in the calcula-
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F1c. 15. Calculated resistivity of the Pb-Sn system at 500°C.
The experimental curve (dashed) summarizes the data of Ref. 20.
The 5 values used here are n=0.410 for Sn and n=0.415 for Pb.

¥ N. S. Kurnakow and A. J. Nikitinsky, Z. Anorg. Allgem.
Chem. 88, 151 (1914).

® P, D. Adams and J. Leach, Phys. Rev. 156, 178 (1967).

L A. O. E. Animalu, Phil. Mag. 13, 53 (1966).
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Fi16. 16. Calculated resistivity for the Hg-Zn system at 250°C
with a=1. The dashed experimental curve is taken from Adams
and Leach (private communication). The dotted portion of the

theoretical curve indicates a solid alloy. The 5 value for Hg is
0.183 and for Zn is 0.456.

tions of Keeton and Loucks.?2 The d states are evidently
located near the bottom of the s-electron conduction
band. It follows that our criterion for the applicability
of Eq. (4) for the electron-ion interaction is not exactly
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F1e. 17. Calculated resistivity for the Hg-In system at 20°C
for several a values. The dashed curve summarizes the experi-
mental points of Ref. 25. The 5 values used are 0.346 for Hg and
0.456 for In. The dotted portions of the curves indicate regions of
solid alloy.

%8. C. Keeton and T. L. Loucks, Phys. Rev. 152, 548 (1967).



508

Hg-Pb; 350°C
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F16. 18. Calculated resistivity of the Hg-Pb system at 350°C.
The solid curves correspond to Reore=0.78 A and ¢=1.0 and 0.9.
The dotted curve corresponds to a=1, but Reore=0.59 A. The
dashed experimental curve summarizes the data of Adams and

Leach [P. D. Adams (private communication)]. The n value for
Pb is 0.456, and for Hg is 0.146.

met. As a consequence, we cannot expect the form of
the potential to be invariant with changes in electron
density. On the other hand, if the d states are not too
close to the Fermi surface (which from Fermi-surface
studies appears s-like®®), then the changes in this
potential may not be too important as regards transport
properties, although the energy derivatives of the
potential may have a marked effect on, say, the thermo-
power. It follows that we may use, with some caution,
the simple potential and evaluate the parameter Reore
from the resistivity data for the pure metal. At 20°C
Reore=0484 A, which compares reasonably well with
the radius of the isolated potential required to yield the
ionization energy” (R,=0.52 A). An alternative value
Reore=0.856 A also gives the correct pure-liquid
resistivity but is in poor agreement with the tempera-
ture dependence and also with the alloying data which
we now present. Finally, as shown in Fig. 10, the latter
value gives an ion-ion potential which corresponds to
the value of =0.74 (i.e., near random close packing).
Figure 16 shows the data for the Hg-Zn system at
250°C. Reore for Zn and Hg are shown in Table I. Note
that at 250°C the alloy does not exist as a liquid for
£20.6. The theoretical curve is computed on the
assumption of a liquid throughout the concentration
range with n=0.456 at the Zn-rich end. Values of 7 are
linearly interpolated between n=0.456 and n=0.183.2¢
23 G. B. Brandt and J. A. Rayne, Phys. Rev. 148, 644 (1966).
24 250°C is over twice the melting temperature (in °K) of Hg.
The change in packing fraction quoted indicates a decrease in the
hard-sphere diameter by about 25%. This reduction indicates an
increase in penetration due to the high thermal energy of the
Hg atoms. The curve of Fig. 10 is not sufficiently accurate to
predict the numerical value of this decrease. In Sn, between its
melting point and 1200°C, the shift in 4 required to match the

resistivity requires a reduction in the hard-sphere diameter by
15%, indicating a comparably soft ion-ion interaction there as well.
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The latter gives, with Reore (Hg)=0.484 A, the correct
resistivity of Hg at 250°C. The over-all agreement with
experiment is quite reasonable: The rapid decrease in
resistivity at the Hg-rich end which appears on addition
of a few percent of Zn is not well reproduced. This
feature is common to a number of Hg amalgams and
seems inexplicable in terms of the present model.
There seems little doubt that the effect is connected
with changes in properties of Hg on alloying, and
probably (as we have suggested) with its potential.
Note that there is a 259, change in Fermi energy in
going from pure Hg to pure Zn.

A similar sharp drop in resistivity is observed in the
Hg-In system. The results for this alloy are shown in
Fig. 17: The experimental data are taken from Cusack
et al?® Again we have chosen Reoro(Hg)=0.484 A, and
for In we have taken Reoe=0.700 A. This value fits
the resistivity of the liquid just above the melting point,
and the band gaps resulting from this choice give good
agreement with the available low-temperature galvano-
magnetic data.?® It is interesting to observe that quite a
large change in « produces relatively little change in
the initial slope of the resistivity as a function of x at
the Hg-rich end.

For the Pb-Hg system, the agreement with the
available potentials is not very encouraging. If we
choose Reore (Pb)=0.57 A, then V() fits the potential
of Heine and Abarenkov with some accuracy. The
values at the reciprocal lattice points on the latter are
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Fic. 19. Calculated resistivity of the Hg-Bi system at 270°C
for two values of «. The dashed experimental curve is taken from
the data of Adams and Leach (private communication). The 5
value for Bi is 0.456, and for Hg is 0.175.

2 N, E. Cusack, P. Kendall, and M. Fielder, Phil. Mag. 10,
871 (1964).

26 N. W. Ashcroft and W. E. Lawrence (to be published). The
value Reore=0.59 A also gives fair agreement with Fermi-surface
data. The resistivity results are, however, somewhat poorer than
those for Reore =0.700 A.
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in good agreement with the empirical values of Anderson
and Gold?” which are deduced from Fermi-surface
studies. As was pointed out in AL, this potential gives a
resistivity of 69.8 uQ cm (compared with an experi-
mental value of 95 uQ cm). We have computed the
resistivity of the Pb-Hg amalgam and found the
discrepancy to persist throughout most of the concentra-
tion range. We have also computed the resistivity with
Ro0:e=0.78 A. The results of both calculations are given
in Fig. 18. The slight maximum observed in the experi-
mental curve is given by the choice Reore=0.78 A but
not by Reere=0.57 A. We comment on the Reore values
in Sec. V.

The maximum in the resistivity-versus-concentration
curve at the Pb-rich end of the Hg-Pb system is also a
feature of the Hg-Bi system. The results for this alloy
are obtained with the choice Roro=0.79 A (similar to
the Pb value as expected), and are given in Fig. 19.

Our remaining results concern alloys of the noble
metals. Some comment is required about the potential
for these metals. It is well known that the d states in
Cu, Ag, and Au are of critical importance in determining
their optical, cohesive, and band-structure properties
for the solid phases. The anisotropy of the d bands gives
rise to considerable distortions of their Fermi surfaces.
Much of the anisotropy of the d states is of course
linked with the structure of the unit cell, in this case
the fcc system. For example, the d bands come quite
close to the Fermi energy at the point L, and are
partially responsible for the contact of the Fermi surface
with the (111) planes. Otherwise, the Fermi surfaces
in Cu, Ag, and Au are principally spherical (i.e.,
“s-like”). We now suggest that if the symmetry is
removed (as on melting), the Fermi surfaces become
essentially completely s-like. The anisotropy of the d
states is smeared out by the disorder of the liquid : Their
average width is of course unaffected, but the important
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F16. 20. Calculated resistivity of the Au-Ag system at 1200°C
for several values of . The dashed experimental curve is taken
from F. Gaibullaev and A. R. Regal, Zh. Teckhn. Fiz. 27, 2240
(1957) [English transl.: Soviet Phys.—Tech. Phys. 2, 2082
(1957)7]. The n value was taken to be 0.45 for all .

%7 J. R. Anderson and A. V. Gold, Phys. Rev. 139, A1459 (1965).
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Cu X ’ Sn

F16. 21. Calculated resistivity of the Cu-Sn system at 1200°C
for a number of « values. The dashed experimental curve rep-
resents the data of K. Bornemann and G. Wagenmann, Ferrum
11, 276 (1913) and is cited in Ref. 1. The 4 value taken for pure
Cu is 0.456 and for Sn is 0.266.

departures from the average, present in the solid, are
eliminated. Thus, as regards transport, the states at the
Fermi level are almost entirely s-like, the only differ-
ences from pure plane-wave behavior arising from s-d
overlap (which is now, however, isotropic). The latter
should be small on the average, if the d system is
substantially below the Fermi surface (as appears to
be the case). We now find that the molten noble metals
can behave as simple s-like metals and the results
calculated below have been arrived at upon this
assumption. ‘

Figure 20 shows the computed resistivity for the
Ag-Au system at 1200°C. The values of R, used are
given in Table I and are chosen to fit the resistivities of
the pure molten metals. Again the choice is not unique
but the value chosen is in agreement with the ion-ion
interaction and the hard-sphere diameters estimated on
the basis of a packing fraction of =0.456 at melting,
while the other choice is not.

Finally, we have computed the resistivity of the
Cu-Sn system, and the results are shown in Fig. 21.
The Rgore used for Cu is the same as the value which
reproduces the ion-ion interaction shown in Fig. 9. We
find reasonable agreement with data by taking ocu/osn
~0.7. For this particular system in which there is a
considerable difference in valence, we anticipate that
the actual hard-core ratio will be dependent on the
concentration parameter.

V. DISCUSSION

From the agreement with experiment that we have
found, we conclude that it is possible, within the simple
Ziman theory, to expalin quantitatively the observed
resistivities of the simple binary alloys. Our calculations
have required knowledge of the structure of the alloys
and of the electron-ion interactions. The predominant
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effect appears to be the volume dependence of the
pseudopotentials rather than deviations from the
modified substitutional model. Actual calculations of
the ion-ion potential have enabled us to check the
validity of the hard-sphere approach and, furthermore,
indicate when deviations from this substitutional model
are to be expected.

As regards the pseudopotentials (4) our agreement is
particularly good when Ree. is consistent with both
Fermi- surface data and the resistivity of the pure liquid,
and it is further known that the d states (if any) do
not play an important role. In several cases there
were ambiguities, which we now discuss. First, in
rubidium we find the value Reore=1.12 A to fit both the
pure-liquid resistivity and the alloy data (Fig. 10) and,
moreover, give good agreement with the ion-ion interac-
tion (Fig. 7). The value Ry .=144 A also fits the
resistivity of the pure liquid and is in fair agreement
with the measured distortions on the Fermi surface.?®
These distortions amount to about 19, whereas the
value Ruoro=1.13 A predicts less distortion, as evaluated
by a simple s-electron model.?6 However, it is known®
in Rb that the core states are not well separated in
energy from the conduction band. It is quite possible,
therefore, that a substantial part of the 19, distortion
may be due to the anisotropy of the core states, and this
effect cannot be absorbed into the simple plane-wave
interpretation. The evidence on balance seems to indi-
cate that Rere=1.12 A is the preferred value.

For lead, Rer.=0.78 A is in agreement with the pure-
liquid resistivity, alloying data (Figs. 15 and 18), and
the ion-ion interaction (Fig. 12). Band gaps taken from
(4) with this value of R.ore also predict the same basic
topology for the Fermi surface as observed.®® The
alternative value, Rore=0.59 A, which matches the
band gaps suggested by Anderson and Gold gives little
agreement for all but the Fermi surface. At this point,
we cannot of course discount the possibility that the
spin-orbit coupling in the solid produces considerable
anisotropy of the bands sufficient to alter the values of
the band gaps predicted by a simple central potential of

28 N, W. Ashcroft, Phys. Rev. 140, A935 (1965).

29 For the free atom, the core states are only about 20 eV below
the s states. In lead the value is 27 eV, in Hg it is 15 €V, and in
Cuitis 13 eV.

% W. E. Lawrence and N. W. Ashcroft (private communication).
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the type (4). The latter is assumed to incorporate both
central and noncentral terms and should be applicable
to the liquid state where the disorder averages over any
anisotropy present. We should also note that the 4
states in Pb are not far removed from the s band?” and
may also cause some slight additional distortion to the
Fermi surface, not accounted for by the simple plane-
wave-like expansion of the wave function.

In Cu, Ag, and Au, the d states in the free atom are
fairly close in energy to the s states. Further, the usual
ionic radii of singly ionized Cu, Ag, and Au are on the
order of 1.0-1.3 A; yet for the transport potential we
find values of R close to 0.5 A for the three noble
metals. These low values of R, suggest strongly that
the repulsive terms in the pseudopotential arise
principally from the tightly bound inner core states.
The repulsive part of the potential, arising from
orthogonalization to d states, is relatively unimpor-
tant.’! These same d states seem to be unimportant in
determining the structure factor of the liquid metal,
since our calculated hard-sphere radius comes well
outside of the radius of the d shell. This is indicated in
Fig. 9.

In summary, we find the Ziman formula for the
resistivity to be quite adequate for simple binary alloys.
A binary alloy is a more stringent test of the Ziman
approach than a pure metal (where accidental agree-
ment is more probable), so we regard our results as
additional verification of Eq. (6) for a pure metal as
well. Furthermore, by direct calculation of the interionic
potential, we have confirmed the validity of the hard-
sphere approach to the structure of liquid metals (at
least in the region of momentum transfers important to
electronic transport properties).
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31 This follows because at the Fermi surface the overlap of a plane
wave with a d state is about the same as the overlap with an inner
core state, but the inner core states are much lower in energy
than the d states. The small values of Reore are also consistent with
the ionization energies of the model potential for the free atom.



