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Dynamical Spin Correlations in Many-Spin Systems.
I. The Ferromagnetic Case*
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The quantum-statistical mechanics of an anisotropic Heisenberg spin system is studied by a temperature-
time-dependent Green's-function formalism. A consistent scheme of higher-order random-phase approxima-
tions (RPA) is developed and the second-order (2nd) RPA is examined in detail. It turns out that the
2nd RPA can be de6ned in two alternative versions, I and II, with equal u priori justification. These two
versions of the 2nd RPA have then to be supplemented with either a dynamical or a kinematical sum rule,
thus leading to four possible alternative descriptions of the problem. Each of these descriptions can in
principle be used to determine the spectral functions of both the longitudinal and the transverse dynamical
spin-correlation functions. However, upon detailed examination of the 2nd RPA, it is found that only one of
these four possible descriptions satisfies all the various consistency requirements. At low temperatures, this
description reproduces the spin-wave results. To facilitate analytical solutions, an approximate version of
the 2nd RPA, called the modi6ed (mod) RPA, is introduced which leads to a satisfactory expression for
the longitudinal correlation function over the entire range of temperatures. Upon examination it is found
that the mod RPA determines the longitudinal correlation to the same accuracy, for the case of the isotropic
exchange, as the 6rst RPA determines the transverse correlation function. In addition to this mod RPA ver-
sion of the consistent 2nd RPA, there also appears to be another relatively satisfactory solution for the
longitudinal correlation function which follows from one of the less consistent versions of the 2nd RPA.
This is treated as a phenomenological result. The system thermodynamics is analyzed in the region of
the transition temperature in terms of both the consistent version of the mod RPA, i.e., the I mod RPA,
as well as the phenomenological representation, i.e., the II mod RPA, with results which in addition to
being an improvement on those following from the erst RPA are also free from the inherent inconsistencies
of the erst RPA. In conclusion, the related work of other authors is discussed and it is shown that all these
works suffer from serious internal inconsistencies which render their results for the longitudinal correlation
function completely unacceptable and erroneous.

1. INTRODUCTION

r 1HE recent study of the chalcogenides of europium..has provided physical relevance to the study of the
quantum-statistical mechanics of many-spin systems
interacting via the Heisenberg exchange interaction
of the form' '

X~—Q I(12)st Ss.
1,2

Unfortunately, however, the statistical mechanics under
the interaction (1.1) cannot be done exactly and one
has to resort to making approximations. These ap-
proximations fall roughly into the following broad
categories: (a) the cluster approximations~'; (b) the
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high-temperature' ' and the low-temperature" approx-
imations; (c) those which consist in relaxing certain
mathematical constraints"; and (d) the Green's-
function approximations ""

While the applicability of most of the results follow-
ing from approximations (a), (b), and (c) is, in general,
restricted to a limited temperature region, the Green's-
function technique gives results which are seemingly
adequate over the entire range of temperatures. This
approximation, however, suGers from a number of
serious drawbacks. Firstly, it lacks detailed agreement
with both the exact high-temperature and the exact
low-temperature results. Secondly, the existing formu-
lation of this approximation neither lends itself to
effecting higher-order, i.e., increasingly more accurate,
approximations nor adequately determines the longi-
tudinal spin-correlation function.

The purpose of the present work is twofold: Firstly,
it is to present a formulation of the theory which lends
itself naturally to making higher-order approximations;
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and secondly, to obtain a solution for the longitudinal
spin-correlation function which is free from the in-
adequacies of the earlier results. "'~

Section 2 deals with the formulation of the problem.
Green's functions are defined and their equations of
motion are given.

In Sec. 3, the equations of motion are decoupled
according to the first-order (1st) RPA and the analysis
is carried out to rederive the results of Ref. 12.

Second-order (2nd) RPA is defined and studied in
Sec. 4. It is found that there are two possible versions
of the 2nd RPA, both of which satisfy the various
space- and time-symmetry requirements.

In Sec. 5, we study the various sum rules that follow
from the spin-kinematic requirements, i.e., the kine-
matic sum rules, and from the dynamic requirements
under the given Hamiltonian, i.e., the dynamic sum
rules.

Section 6 is devoted to a qualitative discussion of the
Green's function G(11') of transverse spin components.
It is noted that the introduction of suitable spectral
representations for the transverse and the longitudinal
Green's functions would lead to a set of four diferent
integral equations for these spectral functions.

In Sec. 7, the sum rules of Sec. 5 are used in con-

junction with the expressions for the 2nd RPA and
relationships between the longitudinal and the trans-
verse spectral functions are obtained. On combining
these results with those of Sec. 6, we can, in principle,
determine both the spectral functions.

The results of Sec. 7 are formal in character and solu-

tions for the spectral functions can, in general, only
be obtained numerically. An approximation scheme,
to be called the modified (mod) RPA, which yields

satisfactory results for the longitudinal spectral func-

tion, is developed in Sec. 8 and expressions for the longi-

tudinal correlation function obtained. These expres-

sions are analyzed in Sec. 9. The phenomenon of spin
diffusion in the critical region is discussed briefly in

Sec. 10. In Sec. 11, the 2nd RPA is analyzed for the
region of low temperatures and in direct contrast with

the results following for the 1st RPA it is found that
the 2nd RPA results are completely consistent with the
spin-wave theory. Section 12 is devoted to the study of

the mod RPA near the Curie temperature. The system
thermodynamics is analyzed and the critical energy
and the Curie temperature computed. Some of the
various calculational and mathematical details not
given in the text are discussed in the Appendices.

2. THE FORMULATION

The mathematics of the quantum-statistical Green's

functions is by now fairly standard. However, in the
' R. A. Tahir-Kheli and H. B. Callen, Phys. Rev. 135, A679

(1964l.
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Phys. Status Solidi 9, 685 {1965);H. S. Bennett, Ann. Phys.
(N.Y.l 39, 127 (1966).

Here, B denotes an externally applied 6eM directed
along the s axis, pS the magnetic moment per ion,
S~ » ' the Cartesian components of the spin operator
S~ of magnitude S associated with the space point 1,
Sr+= Sr*&iSp, and Io(12) and I+(12) the exchange in-

tegrals between the space points 1 and 2 for the longi-
tudinal and the transverse components of the spins,
respectively. As usual we stipulate that

Ie(11)=I+(11)=0,

and choose our units such that 5=1. )Note that when

I&& I+, interac——tion (2.1) reduces to that due to Heisen-
berg and that the case I+——0 refers to the ising model. ]

Let us define a generalized-spin Green's function
in the presence of an arbitrary space-time-dependent
field I:

where

Q(1) =exp(iXrr) Qr exp( —iXrr), (2.3)

(' ' ') =TrLexp( —PX) ' ' ']/Tr[exp( —PX)], (2.4)

I=exp [—if d, pe(2) S'(2)].
0 2

(2.5)

ln (2.3) 0& denotes an arbitrary Schrodinger operator
associated with the space point 1.The times r are to be
purely imaginary and are to be restricted to the inter-
val $0,—iP]. The time-ordering operation designated

"V.L. Bonch-Bruevich and S. V. Tyablikov, in The Green
Function Method in Statistical Mechanics, edited by D. ter Haar
(North-Holland Publishing Company, Amsterdam, 1962); D. N.
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Phys. —Uspekhi 3, 320 (1960)g; A. A. Abrikosov, L. P. Gor'kov,
and I. E. Dzyaloshinski, in Methods of Quantum Field Theory in
Statistical Mechanics, translated from the Russian by R. A.
Silverman (Prentice-Hall, Inc. , Englewood CliGs, New Jersey,
1963).

'7 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959);
I.. P. KadanoB and G. Baym, in Quantum Statistical Mechanics
(W. A. Benjamin, Inc. , New York, 1962).

literature there exist a number of diferent formula-
tions of this technique which diGer much in detail. ' '~

We have found the imaginary-time-ordered formulation
to be particularly convenient for our purposes. (See
Ref. 17 for details. )

Let us for the sake of generality work with the follow-

ing anisotropic Hamiltonian of a slightly more general
form than (1.1):
X=const. —@IIg Sr' —g Ie(12) Sr* S2'

I 1,2

—Q I+(12)Sr+ S2 . (2.1)
1,2
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by T, consists of ordering the product of the operators (on which it acts) from right to left according to in-
creasing distance from the origin towards —«p along the negative imaginary axis.

Under the interaction (2.1), the equations of motion of (2.2) are

r'(did~~) —«&+u(1) jG[11'1=2&(1—1') &&~'(1) &&+2 z Io(12) ((~'(2) &&G[11'3+«
. KG[11'j

2 bu(2)

—2 g I+(») ((S (1)»G[21'j+«, (2.6a)
. BG[2Vj

2 bu(1)

['(d/d')+. ~-.(1»G[1n=-»(1-1)(&~ (1 ) &)-2 Zl (1 2) &(~ (2')&)G[» j+'. hG[11']
2I bu(2 ) ggl pj/

. 8G 12'+2gl, (12) «S(1)»G[12j+;",
2I Bu(1 ) g«l~«1

where 8G/bu denotes functional derivative of G with
respect to e.

It should be emphasized here that Eqs. (2.6a) and
(2.6b) are exact. If functions of the type 8G/Bu did
not occur on the right-hand side of (2.6a) and (2.6b),
these equations would be exactly soluble in the limit
u=0 and the Green's function G(11'), and conse-
quently the (real) time-dependent correlation function
(5«+ (4) S«(t«) ) would be completely determined.
The appearance of the nonlinear terms 8G/8u is a uni-
versal feature common to all the interacting many-body
systems. Much thought has been given to the problem
of constructing suitable solutions for these terms, "
and it is found that the perturbation-expansion ap-
proach is suitable only for conditions much different
from those which obtain in the neighborhood of the
critical point. '9

As mentioned earlier, the 1st RPA theories, which

in the present formalism are equivalent to ignoring
completely the BG/bu terms occurring on the right-hand
side of Eqs. (2.6a) and (2.6b) and solving for the thus
linearized equations of motion for G(11'), yield results
which, 1n addition to possessing col rect lim1tlng behavlo1
for both the limits p=0 and p= ~, also contain infor-
mation about the transition region. It is therefore
tempting to investigate the possibilities of postponing
the truncation of the Green's function to a later stage
and thus solving for the functional derivative 8G/hu.
The hope is that, 6rstly, this solution for bG/bu would
be more accurate than the erst-order approximation,
which simply ignores it, and, secondly, that upon in-
sertion into (2.6a) and (2.6b) this improved 8G/bu
would lead to a more accurate solution of the Green's
function G(11').

To this end, we functionally differentiate the equa-
tions of motion (2.6a) and (2.6b):

( )
KG[11 j+ ( ) [ I] ( I) b((~*(1)))

dry bu(3) bu(3)

+2 pl. (») G[»'j «~ (2)))
bu(3) bu(3)

—2 Q I (12) G[21']+((~'(1))& +~"'[1;1"3j
b 5*1 8G 21'

bu(3) bu(3)

«+1«B—u(1') —b(1'—3)G[11'j=—28(1—1'), b(&& (1')))
I&/~ bu(3) bu(3)

-2 Z I.(1'2') G[»'j+(&~ (2') )&

+Zf, (12) " G[»j+«~(1»&" +P [1;1;3j, (2»)

'8 See Refs. 16 and i/."M. Mortis, Phys. Rev. 138, A1126 (1965).
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where

8'G 11' PG 21'
F&"[1;1'; 3]=2i Q Io(12) —I~(12)

bu(3) hu(2) bu(3) bu(1)

PGI11'~ Pgl ]2'1
Fo&[1; 1'; 3]= 2—i Q Io(1'2'), —Ip(1'2')

bu(3) bu(2') bu(3)bu(1') „r „r

(2.8)

(2 9)

Let us now proceed to the limit u=0 in Eqs. (2.6a), (2.6b), (2.7a), and (2.7b). The space and time transla-
tional invariance of the interaction (2.1) and the canonical, periodic boundary condition [which follows from the
fact that Tr (ABC) =Tr (CAB)] are incorporated naturally into the following Fourier representation:

G(11') =[G[11']]„o=(—iPN)-' Q'Q Gk(v) expIi[k(1 —1') —Z„(rg—rg )]},

Gk(v) = g G(11') expli[Z„(rq —rp) —k(1—1')]}d(rq rv), —
(1—1I)

P((~'(1) ))/~ (3)]-=o= ( PN) —' 2' Z ~ '"( ) PI [~(1—3) —Z. ( — )]}
X p

[KG[11']/&u(3)]~=o=(1/ —iPN)' g' P G' k, ,k, (v» v2) expIi[kq(1 —3)+k&(1'—3)
kl~k2 vl, v2

—Z.,(r&—r3) —Z„,(rg —r3)]},
[F'"[1;1'; 3]].=o=(1/ —iPN)' Z' Z F'"»,k~(»»)

kl, k2 vl, v2

X exp }i[kg(1 —3) +k2(1' —3) Z„,(ry —r,) —Z.—,(rp —r3)]}; / 1
y

2

[KG[11']/6u(3)lu(4)] =—G&@(1, 1', 31) 4) =G&@(1,1', 4, 3)

= (1/ —iPN)' Q' Q G&'&ki, k, ,ks(vg, v» v3) expIi[kg(1 —4)+k2(1' —4)+kg(3 —4)
kltk2ik3 vlsv2sv3

Z„,(r& r4—) Z„,(r—&—r4) Z—„,(r3 r4) ]—}. (2.10)

The lV-allowed inverse-lattice points within the first Brillouin zone are denoted by k and 2 and the summa-

tions by the symbol g'k. Moreover,

Z„= (7rv/ iP); —Z, = (~p/ —iP), (2.11)

where v and p take on all even integral values, positive and negative, including zero.
Using the Fourier transformations (2.10), Eqs. (2.6a), (2.6b), (2.7a), and (2.7b) take the following form:

Q, (p) [Zv —Ek]=2a+[2i/( iPN)]—Q' Y G&'&g, , k(pg, —p) jo+(kq —X, 3,q), (2.12a)
~l pl

Gk(p) [Zv Ek) = 2o+ (2i/ iPN—) Y~' g G—&'~&„»(p, pj) J~(X+Xq, 0 q), (2.12b)
Pl

»,4(p» p2) =[Zpi ~4] IF»,4(p» p&) G—&2( p2)+2~ »+k2(p&+p2)L1+G —&~( p2)Io+(»+», &2)]}

(2.13a)

» &2(p» p&) = [Zvs+~k2] IF &uk~(p4 p2)+G»(p&) 2~ 4+F2(p&+p2) [1+G»(p&)~0+(~&+~» ~&) ]}& (2 13b)

where we have used the notation

J„(k)= Q I„(12) exp[ik(1 —2) ];

Jv„(k, 0.) =J„(k)—I, (2); p, p'=0, +,
(S'(1)) =o", Ek ——pII+2oJo+(0, k),

»,x2(ply p2) ( 2/PN) g Q G k,xg,»—k(vi) p2) pl v) IO+(~1 klp k) p

F"'»,k~(pj~ p2) = (+2/PN) 2' Z G"'».k,&~-k(p» lv) p~
—v) Jw-(4 —k, k) ' (2 14)
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3. FIRST-ORDER RPA

As mentioned earlier, exact solutions to Eqs. (2.12)
and (2.13) cannot be obtained and approximations,
therefore, have to be made. A particularly simple
approximation is the 1st RPA." This consists in ig-
noring the variation of 6 in comparison with 6 itself.
Formally this can be represented as

(1/ ipN—) Q' Q G&'ll, , I(pl, —p) Jo+(XI—X, XI)
~1 Pl

= (1/ ipse) Q Q G 11'(pi pl) ju+(2+XI~ XI)~0
~1 Pl

(3.1)

Physically, the above approximation assumes that
the s componeIlt of a spin is mostly uncorrelated with
its surroundings and that its fluctuations are small.
This situation obtains at very low temperatures, where
the system is dose to its ground state, and approxi-
mately at high temperatures, where the randomizing
CGect of the temperature far outweighs the correlating
effect of thc cxchangc interactions. OIl thc Dthcl handq
near the critical region, where the Quctuations are large
and the system is strongly correlated, we would expect
the approximation (3.1) to be unsatisfactory.

Introducing Eq. (3.1) into Eq. {2.12) and carrying
out the sums over the variable p, we readily find

&2o)t ~, exp[ —iEI(rI —rl )
I.~ap~"

' '
&W 1 L1 —exp( —P&1)j

2o, exp[ —i'(rl —rl ))+It rl rl—
cV I, [exp{PZ1) —1j

1t(r) =1, fore in [0, iPj—
otherwise. (3.3)

Analytically continuing to real times, we 6nd the
transverse correlation function

&S+(t)S (t ) &=(2o/A') Z'[1—exp( —PR)3-'

&«xp fi[~(1—1') —&1(tl—tl )3},
('-( ) "())=(./ ) Z'[ (~.)-3-'

g exp I i[k(1—1') —E),(tl —tl.)g}. (3.4)

It should be mentioned here that in spite of the crude-
ness with which the 1st RPA is expected to represent
the physics of the system at general temperatures, it
is found that the expressions (3.4) describe the trans-
verse correlation function adequately over the entire
range of temperatures. "

Lct us investigate the behavior of the longitudinal
correlation function within the 1st RPA scheme. It
is convenient here to treat the case of spin 2. The re-

suits for general spin are expected to be similar. From
Eq. (3.1) and the discussion preceding it, it is apparent
that unlike the case of the transverse correlation func-
tion, the 6rst PRA results for the longitudinal corre-
1RtloIl function RI'c nclghtcI' unlquc Ilor sRtlsfRctoly. Fol
instance, although the following two definitions of the
1st RPA are equivalent:

bG[11'$ . o ~0, for 2W1, (3.5)
be 2

Q Io(12) —Q I+(12) u o 0,
bG[11'j bG[21')

2 bg 2 Be 1

(3.6)

&S zS u) o2 (3.8)

Equation (3.6), on the other hand, leads to two dif-
ferent and mutually inconsistent results for the longi-
tudinal correlation function both of which also di6er
from that given in Eq. (3.8). This can be seen as
follows. Equation (3.6) implies

Z I.(g-f»&S, (")S, {"iS-{")&f
-ZI.(g-»~&S, {")S{")S-{"i&
=-[Z'(g-f) ~&S;(")S-("i&

-Z;(g-f) ~&S"(")S-(")&j. (39)

Pll'ttlllg g=l rl='tl+'tpk, alld taklllg tile llI111't 6=+0
we are led to the following two expressions:

Q Iu( fg) &Sr*S,*&=Su{0)o'

-Z;(fg) [-:~-&&S;S.-&. (3.10)
f

Now, it is readily ascertained that these Ist RPA re-
sults for the longitudinal correlation function, i.e.,
Eqs. (3.8) and (3.10), unlike those for the transverse
correlation function, are utterly inadequate and fail
even to satisfy the important physical requirement of
spatlRl lsotI'opy, l.c.,

[(SI*S2')]0 o, I+=Io, P, &P = (SI*S2'), i=@,y. (3.11)

We conclude, therefore, that without further embellish-

and lead directly to Eq. (3.1), and therefore to Eq.
(3.4) for the transverse correlation function, yet Eqs.
(3.5) and (3.6) lead to different and internally incon-
sistent results for the longitudinal correlation function.
For example, Eq. (3.5) implies

2'&~f'(rl) Su+(rl) SI (rl ) ) =o'2'&Su+(rl) SI (rl ) )~

(3.7)

Putting g=l and rl=rl +(ip)h, 6-++0 we rapidly
get the result
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ment the 1st RPA results for the longitudinal cor-
relation are both inadequate as mell as internally
inconsistent.

In the present paper we seek to achieve improvements
on the 1st RPA with the following motivation: Firstly,
we need a description of the longitudinal correlation
function which should be at least as adequate as the
description of the transverse correlation function
aBorded by the 1st RPA. Secondly, we should Eke to
investigate the possibility of improving on the de-
scription of the transverse correlation function already
obtained within the 1st RPA.

In conclusion, it might be mentioned that the fore-
going discussion also illustrates an important general
point: namely, that the Green's-function truncation
procedures, of which the j.st RPA is a particularly
simple example, in general treat the transverse and
the longitudinal components of the spins on different
footings. As such in any given approximation the ac-
curacy of the results would in general be different for the
spin-correlation functions of the transverse com-
ponents from that of the longitudinal ones. The best
that can, therefore, be hoped for is to And an approxi-
mation that describes both the transverse and the longi-
tudinal correlation functions reasonably accurately if
not equally accurately.

4. SECOND-ORDER RPA

In order to look for a more accurate solution for the
Green's function G(o than is afforded by the relatively
crude but not unreasonable approximation of Eq.
(3.1), we turn to the study of the equations of motion
of the Green's function Go& contained in Eqs. (2.13a)
and (2.13b). Inevitably, these equations involve the
next higher-order Green's function 6&'~.

An appropriate approximation would naturally con-
sist in linearizing these equations of motion by pre-
scribing a procedure for handling the nonlinear terms
containing G('&. For such a procedure to be at all satis-
factory, it wi11 have to be consistent with the synunetry
requirement that the physics of the problem remain
the same irrespective of whether we make our investi-
gations by observing the development of the system
in the time variable v~ or vq ."More precisely, this sym-
metry requirement can be displayed by equating the
two exact expressions for the Green's function G&, (p)
given in Eqs. (2.12a) and (2.12b), i.e.,

Z'Z LG"»,»(p p~)~~(&+&i, &i)
Pl

—G'"&».-~(e —p)~w-(&~ —» &~) 3=o (4 1)

Moreover, since

&(&5"(1)»/»(3) = b«5" (3) »/~N(1) (4 2)

it follows that

~ '"(p) =~- '"(-p). (4.3)

Similarly, the spatial-inversion symmetry of the
Hamiltonian (2.1) guarantees that

G~(p)=G-&(+p)' ~~"&(p)=~-&"&(p) (4'4)

An unembellished second-order approximation, which

slml&ly 1gno les the Go& terms ln Eqs. (2.13a) and
(2.13b), would not satisfy the symmetry requirement
of Eq. (4.1), as can easily be con6rmed by respectively
ignoring the functions F&'& and Fo& (which are equal to
zero if G&'& is) in these exact Eqs. (2.13a) and (2.13b).

To achieve a symmetrical approximation, let us com-
bine Eqs. (2.13a) and (2.13b) as follows.

A simple addition of the two equations gives

2G"", ,&p, p&=L~. —~ S '~2~" +. (p+p)L1+G- (—p)~ (&+&., »j—G- (—p&I

+Lz„+»,1 '
I
—2~"&»+»(a+p2)L1+G»(px) JD+(&i+&2, &i)$+G»(pi) I+f"&»,&„(px, p2), (4.5a)

where

f"»„,&,(p&., ps) =L~p, A„j 'I""»&„—(p&, p2)+f~p, +R,P'F"&»»(p&., p2). (4.5b)

Similarly, multiplying Eqs. (2.13a) and (2.13b) by
LZ» —E»1 and PZ»+E&„&, respectively, and adding
we get

»,4(p4 p&) L~w+~n2++»

=2~"'~,+»(pi+pa) LG»( —p2) &~(&i+ &2, &2)

-G»(p~) ~0+(~x+~2, ~~) ]+G»(p~) -G
&,.(-pn)

+f ».»(pb p&) ~ (4.6a)
where

f"&».&„(p&., p2) =~"&»,&„(px, p2) +&"&»,&„(pi, p2) .
It is clear now that either of the approximations:

fo&»,& u(pi p2) -o 2nd RPA(1) (4 7)

P'&», &„(pg, p2) 0; 2nd RPA(II) (4.8)

would preserve the symmetries outlined in Eqs.
(4 1)-(44).

For brevity, Eqs. (4.5a), (4.5b), and (4.7) will

henceforth be referred to as the 2nd RPA(I), and the
2nd. RPA(II) will denote Eqs. (4.6a), (4.6b), and

(4.8) .
It should be emphasized here that while both the

2nd RPA approximations, (I) and (II), consist essen-

tially in ignoring the second-order variation of G,
i.e., 6"', as compared with the Q.rst- and the zeroth-
order variations, i.e., Gu& and G; approximations (I)
and (II) are not identical. Moreover, it is not possible

'0 Note that the fIrst-order RPA does indeed satisfy this require-
ment, for when the approximation (3.1) is introduced- into either
of the equations of motion of the Green's function Q(p), with
respect to the variables ~I and rj.', i.e., Eqs. (2,j.3a) and (2.13b),
respectively, the resultant expressions are identical.
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+S
II [S*(1)-p]=0

p=8
(5.1c)

(p is integral or half-odd-integral, depending on
whether S is integral or half-odd-integral) .

To convert these relationships to sum rules we have to
incorporate them into the Green's-function formalism.
To this end let us look at the Green's function G[11']
in the limit of spatial locations 1 and 1' identical and
ry ——rp+( iP) 6—; 6~+0:

lim G[11']
i=&I;~1=~1&+(—iP~);t +0

= —i[S(S+1)~ &(S'(1)))—((LS*(1)]'&&] (5 2)

Functionally differentiating both sides of Eq. (5.2),
and proceeding to the limit N=O, we are led to the
kinematic sum rule:

~~,~1-~1~+(-sP)~,i-j.l,~~ bu(3)

h((S*(1)))
bN(3) hm(3)

(5.3)

Fourier transforming both sides of Eq. (5.3) according
to the prescription of Eq. (2.10), we get the desired
sum rule:

(W) iMg&'& (v) +iORg"'(u)

= (1/ —ipse) Q' Q G&'&g y,y(u —p, p) exp(aiZpo),
X p

(5.4)

where ORq&'~(v) is the Fourier transform of the Green's
function

&«[S'(1)]'»/~N(3)
and

e= ( ip) b, ; 5-++0.—
The kinematic sum rule of Eq. (5.4) is valid for general

to say at this stage which of these would be the better
approximation and under what conditions. It might
nevertheless be mentioned that from the point of view
of consistency, the analysis to be carried out in the
succeeding sections favors the 2nd RPA(I) as being the
superior approximation of the two.

S. SUM RULES

The kinematics of the spin operators leads to a
number of exact relationships between equal-time spin-
correlation functions. Ke shall for convenience call
these the kinematic sum rules.

For general spin S, we have

S+(1)S (1)=S(S+1)+S'(1)—[S*(1)]', (5.1a)

[Sl g S2 ]— +~1,2S1 j [Sl ) S ]—

[ g*, Sg'] =0, (5. b)

spin. Much simplification results, however, for the
particular case of S=—,', when

ORg&'&(u) = 0.
8=i/2

(5 5)

Similarly, Eq. (5.1b) readily leads to another set of
useful sum rules:

([Sg+(t), Sg
—(t)] ) =bj.,22o,

([S, (t), S, (t)] )=0.
(5.6a)

(5.6b)

We recall that the expression for the transverse correla-
tion function obtained in the 1st RPA [see Eq. (3.4)]
does obey this sum rule.

In addition to the foregoing sum rules, which follow
directly from the kinematic properties of the spin
operators and which are not dependent on the actual
form of the interaction in the system, there are others
which depend on the dynamic behavior of the spins and
as such are dependent on the exchange interactions. A
particularly convenient example of such a sum rule
is provided by considering the time development of the
longitudinal Green's function:

~((S'(1)))
dry bu(1')

i Q—I+(12)

where

X (T I [S"(2)S (1)—S (1)S (2) ]S'(1')) I„„,
(5 7)

8'(e) =S*(e)—o. (5 g)

In the right-band side of Eq. (5.7) the appearance of
the factor I~(12) guarantees that the spatial argu-
ments of the operators 5+ and S are never the same.
As such the ordering of these operators is immaterial.
This means that the physics of the problem does not
depend on how v2 tends to zj. in each of the two terms
on the right-hand side of Eq. (5.7).

Fourier transforming Eq. (5.7) according to Eq.
(2.10) we get

3IIg+(v)Zy= hm —(1/PN)g g Go~y, g y(p, p —p)
e iPd„t 8~+0

X[J+(X) exp(+is, e) —J+(k—1) exp(+iZ„e)],

(5.9)

where any of the four possible combinations of the signs
of the exponents on the right-hand side of Eq. (5.9)
should lead to the same physical result. This situation
is analogous to that already encountered in connection
with the kinematic sum rule: that in Eq. (5.3) the
physical consequences of either of the limits, v&= r& &0,
are to be identical and as such the two alternative ver-
sions of Eq. (5.4) should yield the same results.

Equation (5.9) provides us with a dynamical sum
ru)e which is valid for all values of the spin S. A
further consequence of this sum rule is the symmetry
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L{&e(r, t)/8lj+V g(r, 1) =0 (5.11)

where g(r, &) is the particle or the electrical current,
depending on whether a &s(r, 1) is the particle or the

requirement that

Z' Z LG")x.~-x(p ~—p)~++(&, lr —~)
jE p

+G{")„», ,(p, —
&
—p) J+p(X, —lr —X)]=0, (5.10)

where we have used the information that M&,{o(&)=
M &,

{')(—&).
The physical content of the foregoing dynamical

sum rule is analogous to that of the current-conserva-
tion laws for particle systems, e.g.,

charge density in the neighborhood of the space-time
point (r, f) . The sum rules and the symmetry require-
ments of Eqs. (5.7)—(5.10) may therefore be called the
spin-current conservation laws.

It is with satisfaction that we note that inasmuch as
both the 2nd RPA expressions, i.e., (I) and (II),
satisfy the dynamical symmetry condition of Eq.
(5.10), they both obey the current-conservation laws.

6. FORMAL SOLUTION FOR G(ll')

In this section, we shall discuss the two alternative
solutions for the Green's function G(11'), which foHow

as a result of substituting the two 2nd RPA expressions
for G{ox&,&s(p&, ps) into the original equation of mo-
tion (2.12):

2M{".. .(p-p)I:I+G (p)& (~-~, ~) j-G (p)

snd RpA{r) sW 4 pz ~Pl +~1

+LZ.—~x] '
C
—Gx (m)+2M"'x -x(e—p) t:I+Gx (p&)~~(~~—&, ~I) lj (6»)

2
G, (p)LZ, —Exj—2~ Q'Q J{&+(Z&—X, X&)CZp, —Zp+Ex E)„1 '

snd npA{Ix) P~ xt pl

X ICG (p ) —G (p) )+2M"' —(p —»P~(& —&, &)G (p) —~ (& —&, & )G,(p )3I (6 lb)

Equations (6.1a) and (6.1b) provide the two alterna-
tive 2nd RPA expressions for the transverse Green's
function G(11') . Again it is clear that except for carry-
ing out the relevant calculations there is no obvious
{s Pno&'s way of deciding as to which of the two Eqs.
(6.1a) and (6.1b) would lead to a more satisfactory
solution.

It should be mentioned here that an alternative
procedure could have been to equate the two 2nd RPA
expressions for the Green s function G"~, and to es-
tablish thereby different independent relationship
between M&" and G. This procedure would have the
further virtue in that equations (6.1a) and (6.1b)
would then be identical to each other. There is, how-

ever, a serious drawback in following this procedure.
As already mentioned, the two approximations, 2nd
RPA(I) and (II), are not identical and any predictions
based on a procedure which electively subtracts one
from the other may lead to serious error. Moreover,
the present scheme of deriving an independent re-
lationship between. 6 and 3f('&, using a rigorous sum
rule, has the added advantage that the results then
automatically conserve the sum rule in question. More-
over, as a general rule, in approximate treatments
of many-body systems, the results obtained are the
more satisfactory, the greater the number of rigorous
sum rules satis6ed by the approximations involved, '~

"G. Baym, Phys. Rsv. 12'7, 1391 {1962).

Similarly, the preservation of the physical symmetry
requirements is also of paramount importance.

In both the expressions, (6.1a) and (6.1b), the trans-
verse Green's function G(11') is coupled to the longi-
tudinal Green's function Mx{'&(p). In order, therefore,
that a complete solutio~ be achieved we need an addi-
tional relationship between the Green's functions G
and M&". The various sum rules discussed in the fore-

going section provide just such relationships. For
present purposes, however, it suKces to know that
there exist suitable spectral representations for G and
M{"& (see Appendix' A) with the help of which the 2nd
RPA expressions (I) and (II) can straightforwardly be
transformed into integral equations connecting the
transverse spectral f'unction with the longitudinal one.
In a similar fash&on the sum rules of the preceding sec-
tion can be made to yield additional relations between
the two spectral functions (e.g., see the following
section). When this is done, we have, in principle,
four corresponding sets of integral equations for each
of the two spectral functions. The reason there are four
sets of equations is that there are two versions of the
2nd RPA each of which can be combined with either
the kinematical or the dynamical sum rule. Not sur-

prisingly at general temperatures these integral equa-
tions do not turn out to be amenable to analytical solu-

tion and Inust as such be studied by numerical methods.
Ke might add here that only one of the four possible

integral equations for each of the two spectral functions
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turns out to be completely satisfactory. This is so
6rstly because the 2nd RPA(II) leads to internal in-
consistencies under both the kinematic and the dy-
namic sum rules. Moreover, the results of the 2nd
RPA(I) under the dynamic sum rule are not found to
be satisfactory Dear the transition point. Thus only
the 2nd RPA(I), calculated under the kinematic sum

rule, is a completely consistent approximation. It is
to be noted that since both the 2nd RPA expressions
are spin current-conserving approximations, the ap-
plication of the kinematic sum rule to the 2nd RPA(I)
should lead to an approximation which embodies as-
pects of both a current-conservation symmetry and
the spin kinematics.

'T. LONGITUDINAL GREEN'S FUNCTION M(1)

While a detailed study of both the longitudinal and
the transverse correlation functions as well as their
inter-relationship must await a numerical analysis, it
is instructive to investigate the form of the dependence
of the longitudinal Green's function on that of the
transverse one.

It has already been noted in the preceding section
that the 2nd RPA manlfests an implicit conne{ tlon
between the Green's functions G and 3fo&. Our task
in the present section is to investigate the additional
relationships between these Green's functions which
result as a consequence of the kinematic and the
current-conserving sum rules. Once this is done, the
program of the preceding section will also be completed
and a set of closed integral equations for the spectral
functions of the transverse and the longitudinal com-
ponents can then be achieved.

It has already been mentioned that the 2nd RPA(II)
is an unsatisfactory approximation because it leads
to some internal inconsistencies. EThe appropriate
analysis for this case is rather instructive and is brieQy
discussed in Appendix B. The rationale for including
this analysis is that it is only after carrying it out that
the internal inconsistencies of the 2nd RPA(II) are
discovered). As such in the present section we shall
only study the 2nd RPA(I).

Let us consider first the dynamical sum rule of Eq.
{5.9). Introducing Eqs. (4.5) and (4.7) into {5.9) we

get

—~j,"'(v)Z„= »m ~P'(v) (1/PE) Q' Q EJ+(2) exp(+z Ze) —J+(k—2) exp(+ ~Ze)]

XIEZv —R] '+EZv —Z.—Ek-)] '+EZv —R] '&0+(k k—&)G-~+~( —v+p)

+LZ.—Z.—E~-~] 'G~(~)~~(k, &) }+(1/2W') Z' Z~++(&, k—&)

X/G~(p)EZ, —Z,+Em x] '—G~ g(p —v)EZ, —R] '}. (7.1)

Using the spectral representation of Eq. (A5) for the Green's function G, and summing over p, Eq. (7.1) readily
leads to the fo11owing result:

E~~'" (v) ]
~nd Res(I)

dyn am ic s um rule
=o~(v) E4(v)] ', (7.2a)

ag(v) = (21')-' Q' fj,((o)J~+(k—0„X)Ee(Eg g) —e((o)]IEEk g —(u+Z„] '—EEg y
—co —Z„] '} der, {7.2b)

bg(v) =Z, +&V ' Q' fg(ar) J0+(k, X)Jp+(k —2, X) En(Eg ),) —N(a)]

X IEEg g —a)+Z„] ' —EEg ),—s)—Z„]—'I da& (7 2c)

Note that all the four sign combinations in the exponents on the right-hand side of Eq. (7.1) lead, as they should,
to the same result given in Eq. (7.2) above.

Using the procedure outlined in Appendix A, Eq. {7.2) leads to the following expression for the longitudinal
spectral function:

dynamical sum rule
=Ex"'( o)*"'( ) —*"'(.)x"'( )]IE*"'( )]'+ 'Ey"'( o)]'} ', (73 )
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x&'& (a)0) = —xo& ( —»)
+m

= —» —Z' f&(~)~++(k—z, z) [e(E»)—N(~) ){LE,,—~y —»'}-' ~~, {7.3b)

+GO

x&'&= —x~2&(») =» 1—O' Q' f&,{or)Joi.(k, 2)Jp p(k —Z, x)

)&[N{E&, &,) —N(i0) j[(E&, &,
—i0)' —»'$ ' d(u, (7.3c)

yo&{») =+y"&(—») =& ' Q' f~(~)~~(k, &)&pp(k —&, &)

x"&(») =+a"&(-»)
X[&i(E, i) —e(~}jP(E, g

—~y~,) yS(E, ,—~—»)] d~, (7.3d)

= (2X) ' Q' f&{M)J~ ~(k—2, 0 ) [N(E&-. &)
—n(s)) ][8(E&, g

—o&+») +5(E&, &,
—(0—») $ d(0

%e notice that since
Ft(») = —Fa( —») ~

(73e)

(7 4)

as such the longitudinal spectral function satisfies the sum rule (5.6b) . [See Eq. (A4b) .)
Let us use next the kinematic sum rule. Introducing the 2nd RPA (I) expression for G&'&&, », , , (&

—p, p) into the
kinematic sum rule of Eq. (5.4) we get

+iM&, &'&(&)+ABBR&,&'&(») = lirn ( 1/2iPN—) g g exp(~iZ, ~) IG&, q(» —p)[Z,+Exj '
e=(—sr3) d, ;A~ X p

X[1-2m.&'&(.)J~{ k-~) j-2~.o&(~) [Z,+E.3-'+m'"&(~) [Z.—Z,-E.—.&'

—G-~( —~) L1—2~~"&(~)~~(» &)3[Z.—Z.—E~-~1 '}

The p sums are performed as usual by introducing the spectral representation for the Green's function G. %e get

+c&0

OZ&, &'&(&) =—Q' f&, (co) [N(E&, &)
—n(rs)g}[E&, &,

—(u+Z, g-'+[E&, &,
—a —Z„g 'I da&

2E

—M&,&'&(&) 1+2n+E-' Q' J~(k, 3) f&,(co)[e(E&, &,) —n{o))Q

X[(E&, &,
—a)+Z ) '+(E&, &,

—(v —Z )
—'$ d(u (7 6a)

where
n= (1/E) Q' ii(E&,). (7.6b)

It should be emphasized here that both the p sums in Eq. (7.5), i.e., involving the expressions exp(&iZ, e), respec-

tively, lead as they shouM to the same relationship between the Green's functions M&, o& (») and 5R&,"&(&):
For 5=-'„5R&,&'&(») =0 and we get

~~'"(~) =~~(~) [&~(~)r',

~,(.) =(2&)—' Z' f,(~)[&i(E,-,) —e(~) j[(E, ,—~+Z)-+ (E, ,—~—Z„)-]Z~, (7.7b)

d&(v) =q+X-' P' Jo,(» a) f&(~) [~(E& i) —ri(~) g[(E»—~PZ„)-'+(E»—~—Z„)-'] d~. (7.7c)

It is shown in Appendix E that tbe above equation holds even for the case of general spin, where g is given by
Eq. (E15).Of course, for 5= i~, »=1+2n.
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Expressions p.7) now readily lead to the following relationship between the spectral functions F),(co) and f), (M):
2nd RPA (I)

where

I F~(«)j
kllMIQ$4lc sQIQ Fille

=Ly") («)*")(«) —y")(«)*("(«)OILS"(«)3'+~'Ly") («)7) ', (7 8a)

*"(o) =+*"(-o) =&-'~ Z' f.( )L (~.—.) - ( )jL~.-.- j~r~.—.—&'- "~-'-, (7.8b)

y")(«) = —y"'( —«)

=(»)-'Z' f ( )L'(&.-)- ( ) jL~(~. —+ .)-~(~.—.——.)l~, (7.8c)

2
z(4)(«) =x(4&(—«) =)&+—(P Q' J0+(k, X) f),(co)fe(E), ),)—n(ar))LE), i—col(LE), g

—(0]'—«')-'d(0, (7.8d)

y(4)(ao) = —y(4&( —«) =iV 'Q' J0+(I—r, X) f) ((0)L&i%)—))—N(~) jL()(F)—) —(d+«) —()(E)—)
—&—«)j d&.

P.8e)

Once again the above expressions for the longitudinal
spectral function obey the relation F),(co) = F),( co)— —
and as such preserve the kinematic sum rule (5.6b).

The fact that the foregoing solutions for Fi(cu),
i.e., Eqs. (73) and (7.8), differ and would possibly yield
results which would be diGcrent in detail, is a demon. -
stration of the difhculty which usually arises with ap-
proximate treatments of the many-body problem where
complete internal dynamic and statistical consistency
is not attained. Indeed, the two approximations, (7.3)
and P.8), emphasize different aspects of the dynamics
of the interacting many-spin system and their results
wouM di6er as likely from each other as they certainly
must do from the exact result.

It might be mentioned here that from the results
of the present section an approximation scheme to be
called the modified RPA is developed in the following
sections. The mod RPA provides an expression for the
longitudinal correlation function, following from Eqs.
P.6)-(7.8), which seems to describe the equilibrium
thermodynamics reasonably adequately over the entire
range of temperatures. The Eqs. P.2)-P.3), on the
other hand, do not yield such a satisfactory representa-
tion of thc Jongltudlnal correlation function ln thc Inodl-
fied RPA (see Appendix D).

In Appendix 3, during the course of the study of the
2nd RPA(II), it is discovered that ln spite of the
inherent weaknesses of the 2nd RPA(II) due to in-
ternal inconsistencies, it leads to at least one expression
for the Green's function M('& which yields satisfactory
results in the mod RPA for the longitudinal correlation
function Lsee Eq. (35)j.As such, in the following sec-
tions the 2nd RPA longitudinal correlation functions
will be analyzed following from both Eqs. (7.6)—(7.8)
as well as the phenomenological Eq. (35). For the
sake of bI'cvlty thcsc approximations will I'cspcctlvcly
be called the (I)mod RPA and the (II)mod RPA

8. MODIFIED RPA AND THE LONGITUDINAL
CORRELATION

F~(2()((g);F~(&o((g) L f~(&o («)j
K&8. y.6)—(7.S);(Sg

f) ""(~) f~""(~)L—f~ "*'(~i);F~.""(«)3
Ega. (6.1a) (6.11)

(8.2a)

(8.2b)

%'e have observed in the preceding sections that
formal expressions for the transverse spectral functions
can be obtained by a self-consistent applica, tion of the
second-order RPA when some exact relationships, i.e.,
the suxn rules, expressing the longitudinal spectral
function in terms of the transverse one, are invoked.
As these expressions are in the form of complicated
integral equations to which analytical solutions are
hard to And, it is therefore necessary to look for an
approximation scheme, based preferrably on physically
meaningful considerations, whereby the resultant ex-
pressions would be easy to handle mathematically.
One such scheme is the mod RPA, which consists in
inserting the j.st RPA result for the transverse spectral
function, i.e. fq('&(a&), where

f('&( )=2 &( -a)=f( ), (8I)
into the 2nd RPA expressions relating the longitudinal
spectral function to the transverse one and thus ob-
taining an approximate, i.e., mod RPA, expression for
the longitudinal spectral function. While we cannot at
this stage predict how satisfactory this approximation
procedure would really be for the description of the
longitudinal correlation function, we can anticipate
that this description would not include relaxation
CGects, much as the 1st RPA did not include these
cAects.

It is convenient to represent the mod RPA pro-
cedure schematically as follows:
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where F),(2')({d) and f),(")({o) denote the consistent
second-RPA solutions for the spectral functions Fi(o))
and f&,((o), respectively.

The inod RPA is defined as

or indeed

f)((o) f)(o))[f»(o)1) ~ F& ' ' (»)] (8.3c)

P&(( mod) (o)) ~ P&(2~) ((o)[f (1) ((o )] (8 3a)
Eq. (8.2a)

where i=(I) or (II), depending on whether we use
Eqs. (7.6)—(7.8) or (85) in the relation (8.2a) .

It should be emphasized here that the mod RPA,
defined in Eq. (8.3a), is not the first step of a logical
iteration procedure and any further iteration, e.g.,

fi(~)~f1(~) [f~ "'(~1);P"' '"(~2)] (83b)

is completely inadmissible. The methods of the present
section are therefore, strictly speaking, not suitable
for the study of the transverse correlation function in
any form of the 2nd RPA.

Introducing, according to the prescription (8.3a),
the expression (8.1) for the spectral function f1(oo)
into the right-hand side of Eqs. (7.8) and (35),
we obtain, respectively, the following expressions for
P ({mod) (& ) ~

P&(i mod) ((o ) [P'(1) ((oo) X(2) ((o ) X(1)((o ) P'{2) (o)o)]( [X{2)(o)o) ]2+)r2[I"(2)((o )]2I
—1

P& (1™d)((oo) [I"(2)((o )X(4) ((o ) X(2) ({oo)I"(4) ((oo) ]I [X(4)({o) ]2+.2r2[P(4) ((o ) ]2}—1.

X(')((oo) =X(' ( —ooo) =(2o/N) P' [22(E&, ),) —22(E))][E&—1 E)][(E&—), Ei)

(8.4a)

(8.5a)

(8.4b)

(ooo) = I" ( (oo) = (o'/N) 2'
I 22(Ea—1) —22(E&)][()(E~-)—E)+(oo) —{)(E&-),—E~—(oo)] (8.4c)

(8.4d)X(2)((oo) =X(2&(—{do) =2&+(40/N) p' Jo+(ky 2)[22(E&, 1) —22(E))][E&, &,
—Ei][(E&, ),

—E)) —(o ]
I"'"(~o) = —I'"'(—~o) = (2~/N) Q' J~(k, &) [22(E&,—),) —22(K) ][h(Ek 1—K+~o) —h(E~ 1—E),—~o) ], (8.4e)

X(2) (o)o) = —X(2) ( —(oo)

= (2~/N) Q' Jd. +(o., k —o.) [22(E,) —n(E, 1)][~o+E, 1—E,]-', (8.5b)

I'(2)((oo) =+V(2)( —o)o) = (2o/N) Q' J++(X, k —X) [22(E))—n(E&, ))]{)((oo+E&,),—E1),

X( )(o&o) = —X ( —o)o) ={do+(4o'/N) g J++(&, k &) [o)o+Et—), Ei]

x IJo+(k, 3 ) 22(E1) —Jo+(k, k —3 )22(E(, 1) I, (8.5d)

F(') ((oo) = I'(') ( —(oo) = (4o/N) Q' J+ +(2, k —2) {)(o)o+E), ),—E)) (Jo+(k, 2) 22(E)) —J{H (k, k —Z) 22 (E), )) I.

(8.5e)

The above modi6ed-RPA solutions for the longi-

tudinal spectral function F),((d) are in a form suitable
for computing the time-dependent, longitudinal spin
correlation (Si'(ti) S2*(t2) ) [see Eqs. (A7) ]. While
a detailed computation will be given elsewhere at a
later time, we give such analysis as can be carried out
analytically in the following sections.

9. THE CRITICAL FLUCTUATIONS

The ferromagnetic-paramagnetic phase transition,
occurring at the Curie point, is an example of a second-
order phase transition; the study of the system thermo-
dynamics in the critical region is therefore of much

physical interest. The phenomenon of magnetic criti-
cal scattering, " analogously to the scattering of light
from a liquid near its critical state, i.e., opalescence,
and the scattering of x rays from a metallic alloy in
the vicinity of its ordering temperature, embodies vital
information about the critical region through its de-

pendence on the dynamical spin-correlation functions.
In the present section we shall analyze the mod RPA
correlation functions with a view to studying their be-
havior in the critical region and to relating it to the
critical magnetic scattering of neutrons.

"L.van Hove, Phys. Rev. 93, 268 (1954);95, 249 (1954);95,
1374 (1954).
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L~.(')( )7('- "=~.(z.) L&.(z.) 7-',

I:~ ")(~)7"' ")=(-" (Z ) I:D~(Z )7 '

~~(Z.) =~~(—Z.) = (2~/» Z'

(9.1a)

(9.2a)

XLn(&) )) —n(K)7Ã~ )
—&),+Z,] ' (9.1b)

B),(Z„) =8),( —Z„) =))+(2o/» Q'

XLJo+(k, X)+J()+(k, k —X)]Ln(E), )) —n(E)) 7

XI E), ).—&x+Z.] ', (9.1c)

C~(Z.) = —(=~(—Z.)
= (2o/» Q' J~+(k, k —2) Ln(E),) —n(E), g)7

Let us recast Eqs. (8.4) and (8.5) into a form more
convenient for analytical analysis, i.e.,

The expressions for the longitudinal correlation func-
tion are now obtained by summing over v and by ana-
lytically continuing to real times:

(s"«)8' «.» = {1/» Z I i«+~. 7»-
I mo(I k

X expLik(1 —1') ], (9.9)

(SI'(l)) SI"()',I ) ) = (1/N)
II mo(I

X Q' expLzk(1 —1') ]Lo.),/2(o),]I I n((o),) +1]

X expL —i(o), (tr —tt.)7+n((o),) exp» i(o), ()'I—t) )]},
(9.10a)

X Q' expLik(1 —1')]Ln)/2(o), 7(expL —z(o), (lr —lr.)]
—exp» i(o), (/I —tr )]}, (9.10b)

(o),= +L2 Q +t),"))(r),]')'. (9.10c)

XLE) ),
—R+Z.] ', (9.2b)

vrhere
D),{Z„)=—D), ( —Z„)

=Z„+(4o/» Q' Jp + (2, k —X) I E), I—E),+Z„] '

X [Ln(Eg) ]Js+(k, 0) —Ln(E), ))]J()+(k,k—2) }.
(9.2c)

Equations (9.1) and {9.2) correspond, respectively,
to Eqs. (8.4) and (8.5) and )) is as given in Eq. (E15).

In the critical region, i.e., I )t),—P I((P., if the applied
6eld H is vanishingly small, the magnetization 0. is
much less than the saturation value S. Then

n(&~) = (1/2o&) I (&+4] ' o&—
+a(oP)'«+h7 —O(oP)'}, (9 3)

lim PpP/2o]=i; )),=Jo+(0, k). (9 4)

Because of the cooperative nature of the problem, the
criticRI region is kno%'n to be characterized mainly
by the long-ranged part of the correlation functions, and
is therefore Inanifested in their small-k transforms.
Moreover, it is beheved" that much of the critical
scattering is elastic in character and is as such de-
scribed adequately by the equal-time correlations, i.e.,
by Fg, where F):Is as deftned III Eq. (C/):

Y.7 = L2~{i+&."))7-', (9.11 )
Pc&P'~~

LF),7 =
I a),/2(o), 7 coth(P(o), /2) . (9.11b)

Pc3P;e =0

%hen k&&j., the above expressions have the Hmit

&.= I2~L~+IW} '-.(9.12)
kg/1

XLxS(S+1)—17+0(o') (9 5)

L~) ")(~)7" "'=Cb. .a+0(~'/Z. ')]
X» —2«+4")7+OLo'v(k) 7}-', (9.6)

Pf&(1)(&)](II mod) ~ L1+0(o)]
X IZ '—2«+(~")]~k} ' (9 7).=(2/&~) Z'L~. ~.]«&+.]-',-

f~")=J.(o) —Jo(k)

where y(k) is the same as in Eq. (D5c) .
(9 8)

Let us study the situRtion obtaining Rt RncI. beyond
the Curie point where 0.—R as H—&0:

2S(S+1) 81o'

3o 20S'(5+1)'

Equation (9.12), being similar to that obtained by
Elliott and Marshall, " displays an important fact,
namely that in the irrnnediate vicinity of the critical
polllt. , when i((1—note that at P=Pg) i =0—the col-
relations become extremely long ranged. As the cor-
relation function is a measure of the magnetization
density fluctuations bS' around the statistical average
r, a sharp increase in the range of the correlation func-
tion is a manifestation of the phenomenon of critical

fluctuations.

We conclude this section by emphasizing the fact
that near and beyond the Curie temperature, the
mod RPA results for the static longitudinal correla-
tion function are found to be fairly satisfactory; they
lead to an explanation of the critical fluctuations and

23 See Ref. 22, notwithstanding the recent objections by M. E.
Fisher, in the Proceedings of the InIernuHonal Conference on
Magnetism, EoIIinghcm 2W4, I'The Institute of Physics and the
Physical Society, London, 1965),p. 79; also L. Passel, K. 3linow-
skl P. Nellson and T. Brun Rid. p. 99."R.J. Klliott and W. Marshall, Rev. Mod. Phys. 30, 75 (1958).
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moreover obey the spatial isotropy requirements of
Eq. (3.11).This is in obvious contrast to the behavior
of the 1st RPA results (see Sec. 3) .

spectral function F),(a1) prefer Eq. (C6) j, i.e.,

k'$),(s'=F "' k'$ '"=F (@—LF "]' (10.7)

&0. SIm DnzUS&Om

The conservation of the total magnetization, i.e.,

0(r, t) dr=0,
df

(10.1)

where 0 (r, t) describes the local magnetization density
at a space-time point (r, t), can also be expressed in
the differential form:

(a/a&) ~(r, t)+V j (r, &) =0, (10.2)

()0(r, t)/at=D|7so(r, t) (10.4)

Whereas the form of Eq. (10.4) has been suggested by
general phenomenological arguments, to 6nd the value
of the diffusion constant D we have to refer to the
microscopic dynamics of the system. It is natural
therefore to look for a description of the diGusion con-
stant in the dynamical correlation functions.

Following Kadanoff and Martin, " a generalized
diffusion spectral function $(k, M) can be deined, the
high-f1 cqucncy moments of which arc 1clatcd to slmllar
moments of the longitudinal spectral function F),(&0)

)refer to Appendix C, Eqs. (C3)—(C6) for details'.
According to Bcnnett and Martin, " a suRcicnt ap-
proximation to the spectral function $(k, &v) is the two-

parameter representation:

$(k, a)) A(k) P (k) exp I
—a)LP {k))'I, (10.5)

where F(k) is interpreted as a collision time for proc-
esses involving wave-vector transfer k. The diffusion
constant D is the hydrodynamic limit of $(k, a)), i.e.,
D=h(0) F(0).

The relation (10.5) readily leads to the result

h(k) =Vs-$),(') . P (k) =L$g(s)/2$), (')]'", (10.6)

where S&"~ is the eth-order frequency moment of the
spectral function $(k, a)) and is, in general, related
to the (++1)th-order frequency moments of the

«L. P. Kadan06 and P. C. Martin, Ann. Phys. (N.Y.l 24,
419 (1963}.

268. S. Hennett and P. C. Martin, Phys. Rev. 138, A608
(1965).

wllcrc j(r, f) ls a spill c111'1'cllt. Ill thc hydrodynamic
limit, when all properties of the system vary slowly
in space and time, " the spin current is related to the
derivative of the magnetization density, i.e.,

(10.3)

and as such the magnetization density obeys a diGu-
sion equation:

F (se-1) 5 ~&(1)(0)j—1

s=O i 2

k'$1,")=2I i'+P),(') jnt, .
(10.9a)

(10.9b)

Equations (10.9a) and (10.9b) display the result
already anticipated that the modihed RPA description
of the longitudinal correlation function does not include
any relaxation cGects and leads to a vanishing spin-
dlGuslon cocfflclent. Fol a satlsfactoly dcscllptlon of
these c6'ects, it is presumably necessary to solve for
the longitudinal spectral function in the self-consistent
second RPA, i.e., solve Eqs. (8.2) without the ap-
proxirnation (8.1) .

It should be mentioned that Bennett and Martin'6
have recently given a Green's-function treatment for
the paramagnetic region of a Heisenberg many-spin
system. On comparing our results with Ref. 26, it is
established that while the 6rst moment of the spectral
function F),(a))—or equivalently the zeroth moment
of the function $(k, (0)—is given correctly in the
(II) mod RPA, the third moment of Fk(cu) —or the
second moment of $(k, a))—is in error. The reason
for the success of the truncated sum-rule procedure~
of Bennctt and Martin in the calculation of the third
moment of F),(a1) which—uses an approximation similar
in spirit to our 2nd RPA—seems to be that, as they
study only the paramagnetic region, they are able to
carry out analytical evaluation of the hydrodynamic
behavior —i.e., the limiting behavior for k=0 and
+=0—through the use of the exact relation

G1(p) = 2M/("(p) (10.10)

In conclusion it may be mentioned that Eq. (10.9a)
is identical to the result that would have been obtained
by invoking the spatial isotropy and assuming that the
resultant longitudinal correlation at P,&P and. H=O
would be the same as the transverse correlation func-
tion found in the 1st RPA. This means that the (I)
mod RPA expression for the longitudinal correlation
function, in contrast with (II) mod RPA, is for all
intents and purposes at the same level of approximation

~7 Reference 26, Eqs. (7i), (72), and (74).

=L
—M),")(0)j 'm), (s") (10.8)

where teak&'"& are de6ned as the large-Z expansion co-
efBcients of the Green's function M),(')(Z) Lsee Eqs.
(C1)-(C2)j. The moments $),(s) and $),(') are now
calculated readily from Eqs. (9.6) and (9.7) and in
the limit P,&P and H=O we get, respectively,
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as the 1st RPA expression for the transverse correla-
tion function.

The consistent nth iteration would therefore simply be

(11.4a)
11." SOLUTION OP 2ND RPA AT LOW

TEMPERATURES where

M(~»('& =M('& t G(~»). (11.4b)

G = G(0)+e(G M('&]
Eg. (6.ia)

M"' = M(»[G)
Eq. (V.Z)

(11.1a)

(11.1b)

where G(0~ denotes the 1st RPA solution for the trans-
verse Green's function G and where the function 0'
is the less dominant part of G referred to earlier. Clearly,
since the transverse Green's function M&') is much less
than unity in the low-temperature regime, it therefore
suffices to use, for the 6rst iteration, the (I) mod RPA
expression for 3I&'), i.e.,

M") =M(»LG )=M 0
('&

and as such the 1st iteration is

(11.2)

Whi1.e, as has already been noted in Sec. 6, it is true
that self-consistent solutions to the 2nd RPA cannot
be obtained analytically at general temperatures, the
situation at low temperatures is radically diferent.
Here a rapidly convergent iteration scheme can be
designed whereby the low-temperature system thermo-
dynamics can be determined, within the self-consistent
2nd RPA scheme, as a power-series expansion in terms
of a small dimensionless parameter 0 proportional to
the ratio of the system temperature and that referring
to the transition point.

Before we proceed with this analysis it is helpful to
remind ourselves of a few relevant details known from
Refs. 12 and 13. The 1st RPA solution for the trans-
verse Green's function G describes the low-temper-
ature system thermodynamics correctly up to and in-
cluding the second dominant power of 0. Moreover,
from the last of the three papers referred to in Ref. 13
we know that in the regime of low temperatures, i.e.,
0(&1, a valid 6rst step in an iteration procedure is to
replace the less dominant terms in the equation of
motion of the Green's function G by the approximate
1st RPA results for the relevant terms and thereby to
obtain a more accurate expression for the Green's
function G which, in turn, can then be used to improve
on the 1st RPA results for the less dominant terms on
the right-hand side of the equation of motion of G.
A second iteration can now be started by inserting these
improved results on the right-hand side of the original
equation of motion of G and proceeding therefrom to
the computation of an even more accurate solution for
the Green's function G. In what follows we carry out an
explicit solution of the 2nd RPA(I) along these lines.

Representing the 2nd RPA(I), described completely
by Eqs. (6.1a) and (7.7), schematically as follows:

The above is a succinct description of the program
to be followed for the computation of the self-consistent
2nd RPA. The relevant algebraic details, albeit tedious,
are rather straightforward and do not at all warrant
recording in their entirety. In our opinion, the following
outline is both instructive as well as adequate.

Let us consider the special case of Heisenberg iso-
tropic exchange in lattices of cubic symmetry where
the range of interaction is limited to nearest neighbors
only. According to the analysis of Appendix E, the
parameter g occurring in the expression for 3f&'~ can
be expanded in powers of the small parameter 0 as
follows

)) =2S 2n+4r(bs—,)(g+o (8 ),
8((l

where n is of order 0@'. As such, we have

M),(»(p) =t 1+o(83)')]N ' Q' Ln(E), )) —n(Ey))

Xt.E), ),—E),+Z.) ' (116)

Equation (6.1a) for the Green's function G can now be
rewritten as follows:

a(p) LZ, —E&.)=2o+~(&)G), (p)

+12i/( iPN))—Q' Q J(X(—2, X()M)„),(»(p) —p)
Pi

Xf(Zni —E») '+(Zn —E)) ')+X(& p) (11 7a)

where

A(X) = 2i( iP—N) '—Q' Q J(Xg—2, Xg)LZ„—E)„) ',
~1 Pl

(11.7b)

and, where X(X, p) is of order 83)' of the terms retained
on the right-hand side of Eq. (11.7a) .

The second term on the right-hand side of (11./a)
causes the poles of the the Green's function G to shift
from E~ to E~, where

Ey=E&,+h(X) =pH+2SJ(0, lr)

XLi —(n &'0/S) Z (~)8'('+o (8') ), (11.8)

where pa=i, for simple cubic; =(~3)(2)')' for bcc;
= (2)'" for fcc

8= t(3/4~) OSPJ(0));

Z(n) =Q (r)—"
expL —ppBr).

C~'G(» =G(0)+4$G(0» M(0)'"]. (11.3) Inserting Eq. (11.6) into the right-hand side of Eq.
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(11.7a) and carrying the sums over the variables p and

p~, we 6nd

o =5—a~8"' —ai8"'—az8'" —az8' —o (8'"), (11.10)

where uo ay 02 and c3 are the well-known coeS.cients
given by the spin-wave theory. It should be emphasized
that while Eq. (11.10) is strictly speaking the result
of the erst iteration only, i.e., it corresponds to G(&)

of Eq. (11.3), it turns out that no further iteration
is necessary because the dominant difference between
Giz~ and Gn~ is in the order X(X, p), which contributes
to the system thermodynamics in the order 0'~' higher
than the terms retained. Moreover, it is important to
note that the results of Eq. (11.10) are obtained cor-
rectly only up to the second power of the fugacity
exp( —zzPH), thereby emphasizing the correspondence
of the 2nd RPA with the second virial expansion de-
veloped elsewhere ""

It will be recalled that the anomalous 0' contribution
in the 1st RPA expression for the low-temperature
magnetization had two origins: Firstly it arises because
of the incorrect normalization of the elementary ex-
citation energies, i.e., Ek instead of Ek, and secondly
for the special case of S=-,'there is an additional con-
tribution of the form 0' which results because of the
first term on the right-hand side of Eq. (11.7a) being
equal to 2o- rather than 25. This latter type of 8' con-
tribution is in eGect cancelled by the second set of terms
on the right-hand side of Eq. (11.7a) while the con-
tribution from the X(X, p) terms is at least in the
order 0'~' higher. These results are in agreement with
those following from the application of spin-wave
theory.

Finally let us say a few words about the longitudinal
correlation function in the limit of low temperatures.
Inserting the approximate expression for Mq~" (p)
given in Eq. (11.6) into the relation

(5 *5,') =o' —(1jPAT) Q' Q Agio(z) expt zk(g —l) j,
k

we readily And

tained in the 1st RPA and by the high-temperature
series expansion techniques of Refs. 8 and 28.

To illustrate the nature of the problem of calculating,
from the expressions for the spin-correlation functions
obtained in the present paper, the equilibrium thermo-
dynamics for temperatures in the vicinity of, and
higher than, the transition temperature we consider
first the (I) mod RPA )see Eq. (9.1)].It has already
been noted that while the longitudinal correlation
function is determined via the mod RPA, we do not
have a prescription for the calculation of the transverse
correlation function within the mod RPA scheme.
Nevertheless it is recalled that the 1st RPA results
for the transverse correlation function were found
to be reasonable over the entire range of temperatures.
Therefore, as a working arrangement, the system
thermodynamics may be studied within the following
scheme —to be called the scheme (Ia)—which consists
in using the 1st RPA expressions for the transverse cor-
relation function, i.e., Eq. (3.4), and the (I) mod RPA
results for the longitudinal correlation function. In
order for this scheme to be satisfactory, it is greatly
desirable that the level of approximation for the trans-
verse and the longitudinal correlations be the same.
While in general it is true that the Green s-function
truncation procedures do not automatically insure
such an equality of the level of approximation, it turns
out, through perhaps a chance coincidence, that the
scheme (Ia) does possess the equality in question for
the particular case of isotropic exchange interaction.
Moreover, as long as the exchange anisotropy is small,
i.e., I+ Io, the level of approximation of the longi-
tudinal and the transverse correlations is substantially
the same.

To make this discussion precise let us dehne the
transition temperature for a vanishing applied 6eld II.
(The case for finite H—which can easily be handled
in an alternative fashion within the correlation func-
tion scheme —will not be discussed here). As the spin—
kinematic requirement S(2) ~ S(2) =5(S+1) holds
for all space-time points 2, the following is a rigorous
sum rule:

"'&="+"'- ~+'&g-" &" '" l- r&s(2) S(2) &j=C-&s.(2) ~ S-(2) &

where R(g —1) is a, function of the vector (g—1) and
is at least of the order O'. Ke shall not carry out an
explicit evaluation of the function R(g —f) here. It is
clear, however, that at low temperatures the expres-
sion (11.12) would be satisfa, ctory. Moreover, it evi-
dently preserves the sum rule:

&S,*Si')= &LS*]'&, g=7, (11.13)

which most unembellished spin-wave theories do not.

12. THERMODYNAMICS —CRITICAL REGION

In this section we analyze the critical properties of
the interacting many-spin system in the mod RPA
representation and compare the results with those ob-

+l &s (2) s'(2) )+&s'(2) s'(2) )1

( 12.1)= S(S+1),

'8 C. Bomb and A. R. Miedema, in Progress in Low Tempera-
ture Physics, edited by C. Gorter (North-Holland Publishing
Company, Amsterdam, 1964), Vol. 4, p. 296.

and as such should obtain for all temperatures. Ke
remind ourselves here that excluding the immediate
neighborhood of the transition point the spontaneous
magnetization 0. is nonzero throughout the ferro-
magnetic region and the parameter 1', being propor-
tional to the inverse of the static parallel susceptibility,
is zero (except at the trivial point P= ~). The para-
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TABLE I. Critical parameters of a simple cubic lattice with nearest-neighbor Heisenberg interaction. Column headings are identified
as follows:

(Ia); {IIa)=P,J0(0), in the (Ia) and the {IIa) schemes.

(II); (I») =P,Jf)(0) of the longitudinal correlation in the {I)and (II) mod RPA.
(t) =p, JO(0) of the 1st RPA transverse correlation.
(R%') =P,JO(0) due to Rushbrooke and Rood.
(Ib); (IIb) = —e,P„ in the (I) and (II) mod RPA pictures according to the procedure explained in Sec. 12.
(1st RPA b) = —e,p„ in the 1st RPA picture with the longitudinal' correlation function given by Eq. (3.8).
(TK b) = —~,P, found by the interpolation procedure due to Tahir-Kheli, Ref. 13.

Spin (Ia); (n); (t) (IIa) (I») (Ib) (IIb) (1st RPA b) (TK b)

3.03
1.14
0.607
0.260
0.144

3.37
1.19
0.620
0.262
0.145

4.$5
1.29
0.650
0.265
0.147

3.53
1.14
0.588
0.242
0.134

0.775
0.775
0.775
0. /75
0.775

0.73'?

0.760
0.766
0.771
0. /73

0.517
0.517
0.517
0.517
0.517

0.626
0.651
0.664
0.674

magnetic region, on the other hand, is characterized
by the requirement that in the absence of an applied
field II the magnetization o be zero and i be finite
except in the neighborhood of the Curie point. Thus,
the Curie point is simply characterized by the require-
ment that for II=0, Eq. (12.1) should hold when both
f' and o. are simultaneously zero, i.e.,

lim $(S(2) ~ S(2') ))=5(5+1), only for P =P,.
~~I,~m, g=o

(12.2)

For the isotropic exchange cas" — i.e., the Heisenberg
cas- — in addition to Eq. (12.2) the following sum rules
also obtain:

lim $(5*(2) 5*(2') )= (5"(2) 5&(2') )
2=2I;o=0;t'M; I+ Io

= (5*(2) 5*(2') ))
=-',LS(5+1)). (12.3)

LNote that for 5=-', the sum rule (12.3) should obtain
for arbitrary values of II, o, 1, and the exchange inter-
action. Even for this case, however, the stated limit
refers only to the Curie temperature. 7

Since for the Heisenberg case the individual sum
rules of Eq. (12.3) are obeyed, the scheme (Ia) has
complete internal consistency when Io ——I+ and for
this particular case the various alternative procedures

for the determination of the Curie temperature all
lead to a unique result. (Note that while this result
for the Curie temperature is necessarily identical to
that given by the 1st RPA of Ref. 12, the essential
difference here is that we now have achieved a satis-
factory description of all the relevant correlation
functions. )

The behavior of the nonisotropic case, within the
scheme (Ia), is in direct contrast with that of the
isotropic exchange case discussed above. Here the longi-
tudinal and the transverse correlation functions are
not at the same level of approximation (the difference
in the accuracy of the two correlations becoming the
more marked the smaller the ratio I+/Is) and this situ-
ation in effect ensures that diferent numerical values
for the transition temperature are obtained when
only one of the two correlation functions is used for
its calculation. To illustrate this point further we con-
sider the two correlation functions separately. As the
transverse correlation function refers to the 1st RPA,
the procedure of Ref. j.2 provides a unique way of
determing its Curie point, and we get

25(5+1)
3

=& '(&) 'Z'LIo(O) —I+(&)) ' (124)

For convenience these results will be referred to as (t).
The Curie temperature from the longitudinal correla-

TABLE II. Critical parameters of a body-centered cubic (bcc) lattice with nearest-neighbor Heisenberg interaction. Column head-
ings are identified in the caption of Table I.

Spin (I ); (»); (t) (» ) (Ib} (IIb) {1stRPA b) (TK b)

2.79
1.04
0.557
0.239
0.133

3.03
1.08
0.567
0.241
0.134

3.64
1.15
0.587
0.265
0.135

3.08
1.06
0.544
0.227
0.127

0.590
0.590
0.590
0.590
0 ' 590

0.570
0.582
0.58S
0.588
0.589

0.393
0.393
0.393
0.393
0.393

0.48/
0.508
0.51'?

0.525
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FIG. 1.A plot of P.JO(0) 8(S+1)
against the ratio of the transverse
and the longitudinal components
of the exchange interaction, i.e.,
I+/Io, for a simple cubic lattice
with nearest-neighbor exchange.
Curve a:(IIa) scheme for spin —,',
curve b:(IIa} scheme for spin -,';
curve c:(Ia) scheme for all spins;
curve d:(t) scheme for all spins.

0+90 0.92 0,94
1

Oo96

I

0.98 $.00

TABLE III. Critical parameters of a face-centered cubic (fcc) lattice with nearest-neighbor Heisenberg interaction. Column headings
are identiGed in the caption of Table I with the following addition:

(Domb-Sykes b) = —e,P„ found by Domb and Sykes, Ref. 8.

Spin (»); (»); (t) (»a) (I») (Ib) (IIb) (1st RPA b) (TK b) (Bomb —Sykes b)

2.69

1.01

0.538

0.231

0. 1.28

2.90

1.04

0.546

0.233

0.129

3.41

1.10

0.563

0.237

0.129

2.89

1.00

0.522

0.219

0.122

0.517

0.517

0.517

0.517

0.517

0.505

0.512

0.515

0.516

0.345

0.345

0.345

0.345

0.433

0.450

0.465

0.439

0.449

TATE IV. Critical parameters of a simple cubic lattice with nearest-neighbor Ising interaction. Column headings are identiGed
in Table I and as follows:

(MF) =P,J0(0), in the molecular Geld-approximation.

(MF b) = —P,e„ in the molecular Geld-approximation.
(Series); (Series b) = the high-temperature series method results for P,J0(0) and —e.P„respectively,

Spin (Ia); (IIa) (t):(») (Series)
(1st RPA b);

(Ib); (IIb) (MF b) (Series b)

2.34

0.879

0.469

0.201

0.112

3.03

1.14

0.607

0.260

0.144

0.750

0.400

0.095

2.66 0.258

0.258

0.258

0.258

0.258

0.218



Fro. 2. A plot of p.JO(0)S(8+1)
against the ratio I+/I~ for a hcc
lattice wreath nearest-neighbor ex-
change. Curve a:(IIa) scheme for
spin $; curve b:(Da) scheme for
spin —,'; curve c:(Ia) scheme for all
spins; curve d:(t) scheme for all
spin s.

+5

2,00
~lb

I

0.96

tion function can also be found simply from the follow-
ing requirement: As the Curie temperature is ap-
proached (from either side), the correlation range
lengthens and approaches infinity at P=P, for II=0.
We refer to these results as (11). Finally, for the ani-
sotropic exchange case, the Curie temperature can also

be determined in an analogous xnannel to that Qf Kq.
(12.2). These results will therefore also be referred
to as (Ia).

%'e emphasize here that voile strictly speaking the
set of results (t) are exclusively the 1st RPA results
and the set (Il) pertains only to the (I) mod RPA, in

I@M,E V. Critical parameters of a bcc lattice with nearest-neighbor Ising interaction. Column headings are identi6ed in the captions
of Tables I and IV.

(1st RPA b) i
(Ib); (IIb) (MF b) (Sexes b)

2.26

0.848

0.452

0.194

0.108

2.79

1.04

0.557

0.239

0.133

2.00

0.75

0.400

0.171

0.095

0.197

0.197

0.197

0.197

0.197

0.169
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2.fa -=

$ $0

Vlo. 3. Aplot of P,X,(0)S(S+1)
against the ratio I+/Eo for a fcc
lattice with nearest-neighbor ex-
change. Curve a:(IIa) scheme for
spin —,'; curve h:(IIal scheme for
spin —,', curve c:(Ia) scheme for all
spins; curve d:(t} scheme for all
spins.

1.72
Os%0 084

(I,/I. )

L96 0.98 $.00

the present paper we prefer to regard the set of results

(Ia) as being the averaged (I) mod RPA results.
Let us turn next to the discussion of the (II) mod

RPA. In this representation even the isotropic case
does not lead to a unique result for the Curie temper-
ature for the reason that the level of approximation
of the 1st RPA transverse correlation function results
is quite diferent from that of the longitudinal results

obtained. within the (II) mod. RPA. However, in view
of the fact that Eq. (12.2) leads to an acceptable com-

promise, we have again computed the Curie temper-
ature using this relation and we refer to these results
as (IIa). The longitudinal correlation is also analyzed
in a similar fashion to that explained previously and
its Clll'le tcnlpcl Rtlll cs fol' fills CRsc Rl'e denoted Rs (IIl) .

Let us consider next the calculation of the exchange

TARLZ VI. Critical parameters of a bcc lattice with nearest-neighbor Ising interaction. Column headings are identihed in the captions
of Tables I and IV.

(Ia); (na) (t); (MF) (Series)
(1st RPA b);

(Ib); (IIb) (MP b) (Series b)

2.23

0.836

0.446

0.191 0.23i

2.00

0.400

0.1'li

0.095

2.45 0.72

0.1/2

0.159

0.160
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energy at the Curie point, i.e.,

(BC)1I=Q;P=P = 1Veg.

Rather than discuss the contributions to e, arising from
the longitudinal and the transverse correlations sepa-
rately, we have found it more convenient to analyze
the quantity P,e,—where P, is close to, but in general
not identical with, the corresponding results (Ia) and
(IIa)—as follows: Expand the correlation functions
in powers of 0. and proceed to the limit H=O, 0=0,
replacing all P's occurring in the expressions by P,. We

0,775—

0.7I5

0.655

0.80

0.55

0.535

0.45

5 l.000.S60.47
0.90 0.92 0,S4 0.98

( Iy/Io)

Fxo. 5. Plot of —P,~, for a bcc lattice with nearest-neighbor
exchange. Curve a:—P,6, in the mod RPA(I) scheme for all spins;
curve b:—p,6, in the mod RPA(II) scheme for S=~. (For spins
& 9', the curves would lie between a and b and wouM practically
coincide with curve a for S&3.l

0.40

0.50

0.55
0.90

I
0,9R

I

(r./r. )

I

0.98 l.00

Fro. 4. Plot of the critical energy per spin measured in the
units of critical temperature for a simple cubic lattice with
nearest-neighbor exchange. Curve a:—P,6, in the mod RPA(I)
scheme for all spins; curve b:—P,6, in the mod RPA(II) scheme
for S=-',. (For spins &-,', the relevant curves would lie between
a and b and would be practically indistinguishable from curve a
for S)$.)

refer to these results as (Ib) and (IIb), respectively,
depending on whether the longitudinal correlation is
given in the (I) mod RPA or the (II) mod RPA
representation.

The foregoing results are tabulated in Tables I-VI for
the Heisenberg and the Ising cases and are displayed
on graphs in Figs. 1—6 for intermediate values of the
exchange couplings.

The high-temperature behavior of the present theory
pl.e., mod RPA (I) and (II)g ls slrnllaI' 'to tllat of tile
1st RPA and the susceptibility agrees with the exact
one" to the order P'.

"H. A. Brown and J. M. Luttinger, Phys. Rev. 100, 685
(1955).

I
0,40

0.55

l
0.980.50

0.90
I

0.94 0.96 I.Q0

( If./I, )

Fzo. 6. Plot of —P,e, for a fcc lattice with nearest-neighbor
exchange. Curve a:—P,e, in the mod RPA(I) scheme for all spins;
curve b:—p,e, in the RPA(II) scheme for S=~S. (For spins &-,',
the curves lie between a and b and are indistinguishable from
curve a for S&-',.)
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As long as the spectral functions fj,(~), Fq(IO) are real,
satisfy the positivity conditions cofz(a&) &0, coF&(co) &0,
and the integrals of their absolute values, i.e.,
f ~ f~(I0) (

did, f ~
Fl(a&) { da& exist, the representation

(Aia) and (A1b) is legitimate. " It shouM be rnen-

tioned that Eqs. (A1a) and (Aib) also satisfy the
fundamental property of periodicity, with the period

ip in —the variables rl and rl .
Moreover, from the spin-commutation relations

APPENDIX A

In this Appendix we outline a procedure for analyzing
the Green's functions G(11') and M&" (1, 1') into
suitable spectral representations.

Let us assume the following spectral representation:

iG(11') =ri(rl rl )—X ' g' fg(cu) [e((o)+1]

X exp[ik(1 —1') —i(g(rl —rl )j d(o

+v) (rl —rl) E ' Q' fj, (a)) e(a&)

X exp[1k(1 —1') —i~(rl —rl )j d~, (A1a)

iM(1 1') =S 'Q' P (co)

X exp[ik(1 —1') —ico(rl —rl') j
XI[e((o)+1]rI(rl—rl)+N(a)q(rl rl) I d—(o

= &2'[8'(1)8*(1)j), (Aib)

wllel'e SII) ls defined as 111 Eq. (5.9) alld wllele

[SI+(r), SI (r)1-=2t'l, l SI'(r); [SI'(r), SI"(r)3-=0

(A3)
it follows that

fj, ((o) dk) =20;

n(ro) = [exp (P&u) —1]-'.

Note that because of Eqs. (2.10) the representation
(Ala) and (Aib) can also be equivalently expressed

(A2) as follows:

G(1V) = ( —ipiV)-I p' g exp[ik(1 —1') —iZ„(rl —r,') ] f, (~) [Z„—M]-I d,

M&1& {1,1') = ( iPÃ)—' P' g exp[ik(1 —1') —iZ. (rl —rl.)] P~, (~) [Z„—or( ' do&. (ASb)

The representation (A1) provides an immediate relationship between the Green's functions for imaginary times

and the physically relevant correlation functions. For instance, analytically continuing (A1) to real times we

readily get the results

(51+(tl) SI (tl ) ) =inst
—' Q' fj, (I0) [e(&o)+1)exp[ik(1 —1') i(u(tl tl )j d—(v, —

and similarly

t

(SI'{tl') SI+(/I) )=$-1 Q' fj,(o)) n(Id) exp[ik(1 —1') —i(o(tl —il )]dId,
k —QQ

+GO

(Sl (~I) SI"(~I ) )=&-' Q' F,(~) [II(~)+ij exp[ik(1 —1'}—i~(&I—&I )j d~,

+cia

([81 (~1) i Sl' {~l')]—) il g Pk(co) cxp[lk(1 —1 ) IM(tl —kl~)] dli), —

+QO

(L81 {fl)q
81' (/l') j+)—X Q PJr(G)) coth(Pcill2) exp[I+(1 1 ) R0(/I fl') j dlo. (A/c)

Note that the expressions (Avb) and (A7c) express
the well-known fluctuation-dissipation theorem, which

relates the system fluctuations (characterized by the
statistical average of an anticommutator of the dy-
namical operators) with the dissipation characterized

by the imaginary part Fl, (0&) of the frequency wave-

dependent susceptibility.
There now remains to establish a similar direct re-

lationship between the Green's functions and the
spectral functions. This is provided by the representa-
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tion (AS). To this end, let us study the following
functions:

Gk(Z) = fk((o) LZ —0&]
' d(o, (ASa)

Mk"'(Z) = Fk (&o) (Z a&]—' kv (ASb)

where Z is an arbitrary, complex variable. We note
that firstly

these conditions, the extension of the Fourier trans-
forms Gk(Z„) from a set of discrete points at the imagi-
nary axis to the whole of the complex Z plane as
Gk(Z) and Mk~'&(Z), is unique. "

Equations (ASa) and (ASb) now readily lead to the
desired relationships:

fk(co) = lim (2zri) i/Gk((o —iA) —Gk(a&+id)],

(A10a)

Pk(ce) = lim (2zrz) 'LMk&'&(a& —zh) —Mk&'&(&o+zh)].
G.(Z) lz=z, =Gk(Z.),

Mk&' (Z) iz z„=Mko (Z„). (A9)
(A10b)

Secondly, Gk(Z), Mk&"&(Z) are analytic functions of the
variable Z when Z does not lie on the real axis and
thirdly that both Gk(Z) and Mk"'(Z) approach zero
in the limit that

~
Z

~

—+~. It can be shown that under

APPENDIX B

In this Appendix we shall study the 2nd RPA (II)
expressions for the longitudinal Green's function. Let
us 6rst use the dynamic sum rule of Eq. (5.9) . We get

Mko&(v)Z„= lim g' g LJ~(X) exp(&iZ„e) —J+(k—2) exp(&iZ, z)][Z„+Ek k —Ek] i
,=iP~,~=+0

X I2Mk"'(v) LGk—k(p —v) J0+(k, k —2) —Gk(p) Jo+(k, X) ]+Gk(p) —G&, k(p —v) I. (B1)

In the right-hand side of Eq. (B1) all the four possible combinations of the signs of the exponents should lead
to the same result for Mk&'&(v) . We find, however, 'that this is not so, the results being the following:

2nd RPA. (II)

where

LMk"'(v) ]
dynamical sum rule

=~k(v) /Bk"'(v), (B2)

Ak(v) =(1/N) Q' J++(2, k —x) [Z„+Ek k—E&,]—' zz(~) Lfk(~) —
f&, k(~)] d~, (B3)

Bk&»(v) = Z„+(2/S) Q' J++(2, k —2) LZ„+Ek k —E&,]—'

X Pzz(~)+j —1]t fk(~) Jo+(k, &) —fk—k(~)J~(k, k —&)]Au, (B4a,)

Bk&J&(v) = Z„+(2/E) Q' J+~(g, k —g)LZ„+Ek &,
—Ek]—'

(i=3,4)

X zz(~) } fk(~) Jo+(k, &) —fk k(s&) J0+(k, k —&)]d~+&(j),

C(i) =(2~/1V) g' J+(g) t Z„+Ek k
—Ek]-i J++(k—g, X),

= (20./X) Q' J'+(k —2) LZ„+Ek k
—E&7

—' J~+(Z, k —Z),

j=3

Mko&(v) =2k(v) } Bk"&(v)] ' (BS)

The above expressions are all different unless v=0.
While it is clear that due to these internal incon-

sistencies the 2nd RPA (II) dynamic-sum-rule results
are suspect, it should nevertheless be mentioned that
one of these four expressions given in Eqs. (B2)—(B4),
i.e.

leads to a surprisingly good result for the longitudinal
correlation function in the mod RPA representation.
We shall therefore treat this expression as though it
were obtained phenomenologically and use it for the
study of the longitudinal correlation function whenever
necessary."G. Baym and N. D. Mermin, J. Math. Phys. 2, 232 (1961).
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Finally, let us study the co~sequences of imposing the kinematic sum rule of Eq. (5.4) on the 2n.d RPA (II).
For simplicity let us consider 5=-', ; the results are expected to be similar for general spin Lsee Eq, (E15)]:

2n&i RPA, (IX}
LM~") (v) ] lim (+i) (—i') ' Q' Q G(l&I, )„),(v —p, p) exp(+iZve). (86)

kinematical Sum rule 1/2 &=i',h~o &&&

Let us 6rst do the p sums on the right-hand side of Eq. (86). Taking into account the upper signs 6rst we get

Ml, (I&(v) =SI,(v) Lhl, (+&(v)] I (BVa)
+m

c~(v) = —
l

Z' ~(~) Lf~(~) —f~-1(~)]LZ.+»—»-.] ' d~,
Ãj ), -m

{87b)

2
hl, (+)(v) =1+ —Q' N((0) pZ.+»—6-1] 'Lfi(~)~~(k, &) —fi, ),(~)~0+(k, k—~)]d~

E
Analogously, treating the lower signs, the result is

MI,"&(v) =CI,(v) fh), ( &(v)] ',

h), (-& =hi, (+&—2Z„(1/E) Q' PZ„+»—E), 1]-I. (88b)

So, once again we find that except for the trivial case of v=0, the results following from the 2nd RPA (II) are
internally inconsistent. )We recall that no such obvious diKculty arose with the 2nd RPA (I) .]

APPENDIX C

In this Appendix we establish some general relation-
ships between the high-frequency moments of the
longitudinal spectral function and the large-Z expan-
sion coefficients of the Green's function M), (l& {Z). These
relations are exploited in the study of the longitudinal
correlation function in general, and of the critical Auctu-
ations and the spin diffusion in particular (refer to
Secs. 9 and 10). Expanding both sides of Eq. (Agb)
in inverse powers of Z we get

Expanding both sides of Eq. (C3) in inverse powers
of Z and comparing codBcients, we estabHsh the follow-

ing relations between the moments of the spectral
functions Pg((d) alld X)g(07):

lr&/g(0) —py(I) ~ k4$)g(l)+lr4Lg)g(o) y =pg(1)

Q2~~(4)+21r4~~(0)~~(2)+lr6p)~(0)]3= p~(6) ~ ..e (C5)

where

nl, (")=(Ir) '

M), (I&(Z) = Qm), (")(Z) v

t I»& u~ p (n& =L—M &'&(0)]-' p), (o))rP da& (C6)

cx& +cQ

P„(~)~nn —1 d~ {Z)-2n Finally, let us analyze the equal-time longitudinal

correlation function (81'(/) S2*(1)). Fourier transform-

ing with respect to the inverse lattice, i.e.,

P.= Z (~"(~)8"«)) pL-'k {1-2)],
(1—2}

and using the relation (A9b), we get

+~ dN
~~=p ' —p~(~)

Comparing coeScients, it follows that

s= j. 2 3
+QD

P~(~)(gn —I d~

The above relations are exact whenever the high-

frequency moments of the spectral function exist.
The Green's function Mi, (I&(Z), being even and

analytic in the variable Z o8 the reRl Rxis admits
the following spectral representation'5'6:

1—Mi, (1&(Z)LMI,(I)(0)] '
QQ +CD —1

= 1— nk(co) $Z' —(0'] ' d(0, (C3)

where the spectral function SI,((0) is a generalized fre-

quency wave-dependent c46uslon constRI1t. II1 the
llydl'oclylla111lc llrlllt. , X)g(Gl) 1'cclllccs 'to tllc dlffuslon

constant D i.e.

&&L1+Z(-1)"-'2l-.(O )'"i(2 ) t], («)
e=l

where 82 1 are the BernoulH numbers 8~=6~, 83——~'~,

Bg——@~~, etc. %bile the 6rst terIn on the right-hand

side of Eq. (C8) is proportional to the wave-dependent

susceptibility and is easily expressed in terms of
Mg( )(0) via thc relation

—M), "&(0) = dg
+m pq(~)

(C9)

X)I,((0) = D.
lixnkW;co-+0

Prefer to Eq. (A5b)], the remaining terms are expres-

(C4) sible in terms of the large-Z expansion coeKcients of

the Green's function Mi, (I&(Z) Lsee Eq. (C2) above].
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Therefore

p —
P

—l~ (1)(0)+g ( 1)a—1Il (P)2n—lm (2s)/(2+) f

n=1

(C10)

APPENDIX D

It was stated in Sec. 9 that the dynamic sum-rule
solution of the 2nd RPA (I), as evidenced from its
result for the longitudinal correlation function in the
mod RPA, is unsatisfactory. The reason for this is the
following. A rigorous physical requirement is that
when the system is spatially isotropic, i.e., IO=I+, H=o,
and is in a phase other than the condensed one (i.e.,
paramagnetic rather than ferromagnetic) the spin
correlations should display spatial isotropy. The be-
havior of the Fourier transform of the equal-time
(transverse) spin correlation is known in the para-
magnetic region to be of the form"

fk Q(——St+(t) Ss (t) ) exp[ik(1 —2)]
(1-2)

= const[k'+e'] —', (D1a)

where

fk (D1b)
1imP c&P;H=O;I0=I+

and where e' is inversely proportional to the suscepti-
bility and is as such «1 when

~ P,—P~&&P, and is ))1
when P«P, .

In the mod RPA, the 2nd RPA (I) can be equiva-
lently written as

(I) mod

[1lIk"'(Z)] =Ak(Z) [Bk(Z)] ' (D2)
dynamic sum rule

where

A„(Z) = (2(r/1V) Q J(k—Z, X) [e(Ek k) —ts(Ex) ]
X[&k k

—S.+Z] ' (D3)

Bk(Z) =Z+(2o/1V) Q' J(k—X, 2)

X[J(k, ~)+J(k, k-~)]
X[tt (&k—k) —tr (E&,)][8k—k Ek+Z] t. (D4)

In the paramagnetic region when the applied 6eld
B is vanishingly small, the magnetization o. is much
less than the saturation value 5, and therefore

Mk&'i(0) = (
—2[l+J(0, k)]+y(k) J

—'+0(o) (D5a)

where

T(k) =f(2/&) z'9+J(0»)] 'l

X fE ' Q' [f+J(0, X)] '[l+J(0, k—2)] '} '

X(k) =(2/P1~r) P'[J(0, k —2) —J(0, X)]

X[l+J(0, 2)] ', (D6b)

I'(k) =2[i-+J(0, I )]X( )
—(2/PN) Q' [J(0,k —0„)—J(0, g)]s

X[l+J(0, 2 )]—'. (D6c)

For simplicity let us assume the lattice to be simple
cubic and the range of I(12) to be restricted to the
nearest neighbors only. Then,

X(k) = (P)J(o, k);
F(k) =2[i+J(0,k)]c(P)J(0, k) —d(P) [J(0,k)]',

(D7a)
where

c(P) =(2/H') (1/J(o)) Z' J(&)[l+J(0, &)] '

(D7b)

d(P) =(2/P&)[1/J(0)]'Z'J'(~)it+J(0, ~)] '

(D7c)

C(P) and d(P) depend only on P, I, and the crystal
structure. "

I.et us now look at the limiting behavior of the
functions y(k), X(k), and Y(k) when k«1. For the
study of the function p(k) we only need the sum in
the denominator of Eq. (D5b). For small k,

(1/&) Z' [f+J(0, ~)]-'I l+J(0, k-~)]-'

= (1/N) g' [i+I~+0(~)']-t

X[t +I(k'+2' —2k' cose) +o (k —2) '] '. (D8)
For a system of macroscopic dimensions, the sum

over X is well approximated by an integral, e.g.,

6g dXy dX~ ( '),

lD9)
and since for sufliciently small f'—which is the case in
the neighborhood of the critical point —the major con-
tribution to the integral comes from small values of 2,
we can extend the range of integration to the whole of
the 2 space, and Eq. (D8) becomes

(2s.)
—'(~Pk) ' X dX[(t/I)+3"]—'

X j in[( f/I) +(k+ 3 ) '—in[(f'/I) + (k—&) ']
(D10)

Similarly,

Mk&" (Z) = X(k)[Z' —F'(k)] ',
Z&0

» See Refs. 23 and 24.

(D5b) In the limit that f'/I«1, Eqs. (D5b) and (D10)
82Inverse lattice sums of the form (D7) etc. can be easily

obtained from the well-known extended Watson sums which have
(Q6a) been extensively tabulated for crystals of cubic symmetry with

nearest-neighbor interactions; see, e.g., I. Mannari and C. Kawa-
bata, Okayama University, Department of Physics Research
Note No. 1S, 1964 (unpublished).
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readily lead to the result

y (k) —ypk+o (k'), (D11)

where yp is a constant depending on P and I.Similarly,

X(k) = xpk'+o(k4),
X(j,'1

F(k) = y()k'+o(k4).

Thus

F), ~ [2P(i+J(0, k)) —Pypk+o(k2)] '+o(k').
I ((~

{D12)

()g[11']

uM;1 1~;ry vy~+e;=a=( ()&)p —~u(3)

g@(2)(1)
(tu(3)

in the limit that +=0, and where

[pO(1)/~u(3)] ~=( ~P+) Z 201(p)
X p

X exp[22(1 —3) —iZv(2-1 —rp) ]. (E5)

As before, let us use the mod RPA, obtained by ap-
proximating gi(p) by the 1st RPA result following
from Kqs. (E2a) and (E2b) introducing it into the
right-hand side of Eq. (K4).

The kinematic sum rule is

The above result differs markedly from the generally
accepted one given by Kq. (Di). As such the expres-
sion (D2) for the Green's function M), (» (Z) is to be con-

sidered unsatisfactory.

where

(1) —((e p[xS'(1)]S—(»S+(»));

&( )(»=((S+(» exp[»*(»]S (1)))

(E6a)

(E6b)

APPENDIX E

In this Appendix we extend the kinematic sum-rule

treatment to general spin (see Secs. 7 and 8). To this

end, let us define a generalized transverse Green's

function of the form

g[11']= —i((S+(1) exp[xS'(1') ]S (1') )), (E1)

where x is an arbitrary variable. Within the 1st RPA,
g[11'] satisfies the following approximate equations
of motion:

[i( dd/r) i—&4H+u(1) ]g[11']
2(&(1—1')0(1)+2 Q [I()(12)((S'(2) ))g[11']

1st H,PA 2

[i(d/d21 ) +&4H —u (1')]g[11']
= —2()(1—1')0~(1') —2 g [Ip(1'2') ((S*(2')))g[11']

2I

—I+(1'2') (&S*(1')))gL12']]"= (K2b)
where

o'(1) = «[S"(1) exp[xS'(1)]S (1)]-)) (K3)

Note that the given form of Eq. (E2b) is the result

of an implicit 1st RPA assumption, without which the
symmetry of Eqs. (E2a) and (E2b) would not be
maintained.

Functionallydifferentiating both the Eqs. (E2a) and

(K2b) with respect to'u(3), Fourier-transforming in a
manner analogous to'&Eqs. (2.10) and performing an

addition similar to that done in 2nd RPA (I), we get

g(»„„(pi, p,) =[Z„—E1,] '{01,+1,(pt+p2) —
g )„(—p2)

X[1—2M(')1y+12(pl+P2) Ip+(~1+~2) ~2)]}

+[Z„+E1,] '

X {gi,(pi) [1—2M('», „1,(pi+P2) jp&.(&1+4, &,)]

where g1(p) and g(»&„&,(p, v) are the Fourier transforms,

respectively, of the Green's functions g[11'] and 8g/(tu

= [&—M), (» (v) B]O[1—n(exp( —x) —1)]-', (E8)

where n and M&,(»(v) are defined as in the text and
where

0=[0(1)]„=(),.

~ = (2/ill) Z' [n(z.-i) —n{z1)][a, 1—z,+z„]-1,

&=(1/ll') 2' In(&~-1) —n(K)] [&)-1—6+Z.] '

XPp+(k, X)+Jp+(k, k —3)], (E9)
(& ((exp [x$4(»]))

~u(3) ~=p

X

exp[i'�(1

—3) —iZ, (T1 rp) ]. (E10)

The required solution to the differential equation
(E8) satisfying the kinematic boundary conditions

M(x; k; v) I,=p
——0, (E11a)

=0 (E11b)

is found to be

M(x; k; v) =P —BM),(»(v)][n(1+n)]—'

X —on(x), (E12a)
dQ(x)

dg

Fourier transforming both sides of Eq. (E6a), we get

liiii (1/ —iplV) g g g(»2 1 1(v—p p)
~ (-sP)O X p

X exp(aizvp) = —iy, +&(v), (Ei)
where the Fourier transforms p2(+) (v) are taken anal-

ogously to Eq. (E5).
Inserting the mod RPA result for g(»1, 1,(p, , p,)

following from Eq. (E4) into Eq. (Ei), we are led
to the following differential equation in the variable x:
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and we get

M&, "& (v)

where

general spin
(2oA) [»+2aB] ', (E14)

g =2an(1+n) [S(S+1)—o (o.+1+2n) ]-', (E15)

o =[dQ(x)/dx], p. (E16)

For S=—',, o = (2+4n) ' and r&= (1+2n) in agreement
with the results given in the text.

APPENDIX F
In this Appendix we shall give a brief discussion of

the results of the various existing calculations for the
longitudinal correlation function (see Refs. 14 and 15) .

Tahir-Kheli and Callen's RPA treatment gave the
following result for the equal-time longitudinal corre-
lation function:

(S *(~)S"(~))=[ (1+ )] '[([S"(1)]')—']
X {nb&,p+[C (11')]'}, (F1)

where

C (11')= (1/1V) g' e (Ek) exp[ik(1 1')];—
n=4 (11). (F2)

Whereas the expression (F1) is reasonably satisfactory
at low temperatures, it fails completely near the Curie
point —except for the trivial case of 1=1'. In fact, it
violates the fundamental requirement of spatial isotropy
referred to in Appendix D and in the text, which should
obtain at and beyond the Curie point.

I.iu has calculated the time-dependent correlation
function (S&*(4)Sp*(tp) ) for the Heisenberg interaction.
In the notation of the present paper, his result for the
Green's function M&,&'&(Z) is

M&, "&(Z) =Q&,'»(Z) [Q&,&'&(Z)] '
where

Q,&»(Z) = (4oP/N) g' [~(E, ,) —~(E,)]

(F3a)

X[E~-x—4,+Z] ', (F3b)

Q„&'&(Z) =1+(4 /1V)g' [E —E„&,][n(E )—&'p(E& z)]

X[E&—x —Ex+Z] ' (F3c)

For simplicity, in Eq. (F3) we have considered S=p.

where

Q(x) = [(n) 's+' exp( —Sx) —(1+n) 's+'

X exp[(S+1)x]].[(@Psyi (1++)Ps+&]—i

X[(1+n) exp(x) —n] '. (E12b)

[Note that Q(x) is the solution of the homogeneous
differential equation on the left-hand side of Eq. (ES),
as first noted by Callen in Ref. 13.]

The Green's function M&,o&(v) is obtained simply
from the function M(x; k; v) by the relation

[(d/dx)M(x; k; v)], p
——M&, o&(v) (E13)

Fg(co) do&=0. (F4b)

It should be noted that if the sum rule (F4b) does not
hold, there is, in general, no consistent way of calculat-
ing the longitudinal correlation function.

For the speci6c case of Z=O, the symmetry condi-
tion (F4a) is trivial and as such Liu s result for M&, o& (0)
is valid. It turns out that his M&, o&(0) is the same as
our modified RPA—kinematic sum rule result and is,
moreover, in agreement with the Kawasaki and Mori"
result for the wave-dependent longitudinal suscepti-
bility.

Kaschev has also reported a solution of the time-
dependent longitudinal correlation function for the
Heisenberg model. He employs the Tanaka-Tom. ita'4
decoupling prescription and in the present notation
his result is

M& "'(v) =
Q& "'(v) [Q~"'(v) ] ', (F5a)

where

Q&,&P&(v) =(2o/N) Q' J(X, k —2) [Z.+E&, x
—E&,] '

X[n(E&,) —&p(E&, x)], (FSb)

Q&,&'&(v) =Z„+(4o/N) g' J(X, k —2)

X[Z„yE, &,
—Ex]-'{[&p(Ex)+1]J(k, &)

—[n(E&, x)+1]J(k,k —2) } '. (F5c)
This result looks much like our mod RPA, dynamic
sum rule result following from the 2nd RPA (II).

Near and beyond the critical point, the difference
between Kq. (FS) and our result is of the order o and
is as such negligible. In the ferromagnetic region, how-
ever, the difference is likely to be appreciable.

Very recently Bennett has also reported a solution
of the Green's function M&, u& (Z) . He works with
the Heisenberg interaction and his result is [see his
Kq. (83)]
M& "'(Z) =Q&, '@(Z) [Q&,"' (Z) ] ' (F6a)
where

Q&,&P&(Z) =Z —(2/1V) P' J(X, k —2) &p(Ex)

+(4o/N) Q' J(k—2, 2)J(k —2, k)[m(Ex) —e(E&, &,)]
X[Z+E&, &,

—E&,] '. (F6b)
Once again, the above Green's function does not

satisfy the symmetry condition (F4a) nor the sum
rule (F4b).

» H. Mori and K. Kawasaki, Progr. Theoret. Phys. (Kyoto)
2'?, 529 (1962); K. Kawasaki and H. Mori, ibid. , 28, 690 (1962).~'M. Tanaka and K. Tornita, Progr. Theoret. Phys. (Kyoto)
29, 651 (1963).

The difliculty with Liu's result is that the symmetry
condition

M&, '"(Z) =M &,"'(—Z) =M&,o&( —Z) (F4a)

is violated, and consequently the spectral function
F&,(~) fails to obey the sum rule:


