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dielectric constant of the surface layer is comparable
with that proposed to explain the switching properties
in thin crystals of other ferroelectrics.

By suggesting a possible origin for the surface layer
in KH2PO4-type crystals, we do not mean to imply that
other sources of a surface layer, different from the bulk
crystal, are not more common. An obvious source of
such a layer would be mechanical damage during
cutting and polishing operations. Such a layer would
probably be of much greater thickness.

While our considerations have been directed toward
crystals with vapor-deposited electrodes, precisely the

same considerations will account for domain formation
when ferroelectrics are immersed in conducting solution.
Mitsui and Furuichi found that, for well-annealed
Rochelle salt crystals, 180' domain widths are not
affected by immersion in a conducting solution until
the crystal thickness is less than ~0.4 mm. ' Below that
thickness the domain widths of crystals immersed in
solution are much greater than for unshorted crystals.
This may be understood on the basis of our model if,
for Rochelle salt crystals less than ~0.4 mm in thick-
ness, the surface-layer thickness s becomes an appre-
ciable fraction of the total crystal thickness.
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A coupled-fermion representation of spin operators is used to examine the eGect of the kinematic inter-
action on the zero-point motion of a spin--, antiferromagnet. The calculation is carried through fourth
order so that exchange corrections are included. It is shown that the kinematic interaction is not small, but
that the combined kinematic-dynamic corrections to the spin-wave theory are small, numerical calculations
showing a correction of less than 1% of the spin-wave values.

I. INTRODUCTION

r 1HE term "kinematic interaction" was introduced..by Dyson in his study of spin-wave interactions to
characterize certain terms in his boson Hamiltonian.
These terms originate in the expansion of spin operators
in terms of bosoms. The spin-deviation operator S—S'
can have only 2S+1 values, whereas the boson equi-
valent operator a~a is unrestricted. As a result, there
appear terms in the expanded Hamiltonian to effect the
spin-deviation restriction, in addition to the terms
expressing the "dynamic interaction, " the direct inter-
action between spins. An important part of Dyson's
spin-wave results is his demonstration that the kine-
matic terms can be neglected in ferromagnetic systems
at low temperatures.

An antiferromagrietic system has the same eigenstates
as the corresponding ferromagnetic system, but the
energy levels are inverted. The ground state of the
antiferromagnet is therefore identical to the highest
excited state of the ferromagnet (for zero field), and, as
might be expected, is very complicated in its details.
Little is known, in fact, about the details of the anti-
ferromagnetic ground state. It is known that the
perfectly ordered Neel states (s compon. ents of spin
alternating in alignment) are not even eigenstates. The
ordinary spin-wave theory must therefore be regarded
as an approximation even at 7=0, in contrast to the
ferromagnetic case. This situation makes the applica-

tion of Dyson's technique to antiferromagnetism an
almost hopeless task, and the analog of Dyson's work
has never been carried out for the antiferromagnetic
case. There is, of course, no reason to expect that the
kinematic effects should vanish at T=O for anti-
ferromagnetic systems, but the success of the spin-wave
theory at low temperatures suggests that these effects
should be small.

In the present paper we analyze, by perturbation
theory, the low-temperature behavior of the long-range
order of an antiferromagnetic system of spins —,'. Ther-
modynamic perturbation theory is used but, because
of the Qatness of the low-temperature magnetizatio~, it
suffices to study only the zero-temperature limit, i.e.,
the zero-point motion. It is our aim to obtain an
estimate of the importance of kinematic effects on this
motion. The spin statistics are accounted for by the
use of a coupled-fermion representation discussed by
Mattis. '

The separation of the kinematic parts of the inter-
action from the dynamic ones is not explicit in the
fermion Hamiltonian, so we insert here a few comments
oo the subject. When the spin Hamiltonian is expanded
in the coupled-boson representation used by Dyson,
there result terms bilinear in the boson operators, a
diagonal term bilinear in the number operators, and
several higher-order terms. The bilinear terms taken
alone can be diagonalized by use of a simple canonical
transformation, resulting in the ordinary linear spin-
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wave theory. The diagonal-interaction term then
expresses the direct interaction between two anti-
ferromagnetic spin waves (the dynamic interaction),
while the higher-order terms contrive to ensure the
operation of the Pauli principle (the kinematic inter-
action). When the coupled-ferrnion representation is
used, a special set of Fermi operators (which we call
"drone operators") is introduced to account for the
commutation relations of spin operators attached to
distinct lattice sites, while a diferent set of Fermi
operators (which we call "particle operators") accounts
for the commutation relations between operators be-
loliging to the same lattice site. Thus, the kinematic
interaction is itself split into two parts. The expansion
of the Hamiltonian results in terms which are linear and
bilinear in the number operators of the particles, and
in terms bilinear in both the particle and the drone
operators (and therefore quartic over-all). The term
bilinear in the number operators for particles expresses
all of the dynamic interaction, just as in the boson
representation, but it also contains some of the kine-
matic interaction. The remainder of the terms contain
the analog of the spin-wave terms and the rest of the
kinematic interaction. We will consider the difference
between the zero-point motion predicted by the
ordinary spin-wave theory and that predicted by the
present theory when the dynamic interaction term is
neglected to originate in the kinematic interaction.
The dynamic interaction term, of course, does give a
nonzero contribution at T=O, and we will obtain an
estimate of this contribution. The inclusion of these
terms will, however, make separation of dynamic and
kinematic efI'ects impossible; one can then only make a
separation into kinematic and mixed dynamic-kine-
matic eGects.

In outline, the paper is organized as follows. In Secs.
II and III, the Hamiltonian is put into the coupled-
fermion representation and a fairly standard fermion
perturbation expansion is derived. In Sec. IV, the
expansion is applied to the long-range order and the
graphs are reduced, resulting in an integral equation
for the single-particle propagator. In Sec. V, a resumlna-
tion of kernel graphs over a special class of graphs is
performed, and the resulting equations are solved
approximately. This procedure gives the ordinary
spin-wave theory in lowest order. In Sec. VI, the graphs
representing the corrections to the resummed kernel
are evaluated through fourth order. Finally, in Sec.
VII, the results of numerical calculation of the zero-
point motion are presented and discussed. Certain
mathematical aspects of the problem are given in the
Appendix.

II. THE HAMILTONIAN

We consider a system of 2Ã spins of magnitude —',
situated in a simple lattice and interacting via Heisen-
berg exchange between nearest-neighboring atoms.
Only lattices which can be decomposed into two inter-

where J is the exchange integral, J)0 for antiferro-
magnetism, and where (jk) indicates that sites j and
b are nearest neighbors. The parameter $ is proportional
to a "staggered" internal field, pointing in the +s
direction for atoms in the R sublattice and in the —s
direction for atoms in the S sublattice. The operators
R and 8 satisfy the commutation rules

[S;+, S, ] =28,,S,'; [S,', S,+j =&8;;Sf, (2)

and, for spin —,',

where
[S,+, S, ]+——1,

S+= S aiS&.

(3)

Equation. (3) reflects the general property of spin
operators,

( Sk) 2s+I —O (5)

and suggests that a fermion representation of the spin
operators may be convenient. The only distinction
between the operators (4) and fermions is that the
spin operators commute for distinct lattice indices.
This feature can be incorporated into a coupled-fermion
representation of the spin operators by using a device
discussed by Mattis. ' We introduce two sets of Fermi
operators, with one operator of each set attached to
each lattice site, by the correspondence

S,+~8;~d;

R.+~d 6

S, ~d;u; S ~a;ta; ——,', (6a)

R ~a td E * ' a ta (6b-)—

It is easily verified that these correspondences preserve
the commutation rules (2) and (3) if

d;=b;t+b;; dP=1; [d;, d;j+=28a (7)

I a', j+=Lb', b; 3+=b';, La;, b;)+=La; b'j+=O.
(g)

When Eqs. (6) are inserted into the Hamiltonian, we
get

H= Hp+Hi+H2,

Hp= Zp+pga, &a;+ega, &a„

(9)

(1O)

(11)

(12)

Ep AN Js N$;
——p—= Js+$,—

J g (ag aI +ad%)d~ da, ''
Hp= —2J P cata apts. (13)

III. PERTURBATION EXPANSION

Having expressed the Hamiltonian in terms of
fermions, we can now proceed to develop a perturbation

penetrating sublattices such that the nearest neighbors
of an atom in one sublattice all lie in the other are
considered. The Hamiltonian is

H 2 J g R..S„]QE,s+.]+S„z
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expansion for the thermodynamic average of an arbi-
trary product of such operators. The development of
the expansion is standard, so we give only an outline.
We start by de6ning

&Q)=Z 'Tr(e e 00)

((Q))=Z 'Tr(e e~Q),

Zo ——Tr(e—e~o)

Z= Tr(e e"), (14)

U (I) e~Boe tlrr-
These equations can then be used to derive

«T'I:~i(Ni) ~o(Ni)" ~-(~-) 3))
Zo ( 1)i e

= —ZZ i —o P o

&&(&I &r(») "&r(*.)~i(»)" ~-(N.)3) (18)

P

dory
' '

dory

where Hl =H—Ho, T isWick's ordering operator, which

arranges the operators in its argument in order of
increasing argument from right to left and attaches
the signature of the permutation corresponding to the
rearrangement, and n; stands for one of (u;, a;t, d;).
The average on the right-hand side of Eq. (18) consists

of a sum of averages of products of creation and annihi-

ation operators, each product containing the g "ex-
ternal" operators n;, and a number 4p oi operators

arising from the interaction terms Hl. Each such

averaged product can be written as a sum of products
of averaged pairs by the use of the thermodynamic

analog of Kick's theorem. There are several derivations
of such expansions, the simplest being that given by
Gaudin. 3 After the use of the "Wick's" theorem, one

can derive a system of graphs representing the terms of
the expansion and perform a simple but necessary
rearrangement of the series to eliminate certain un-

physical terms. This last step is called the linked-cluster

expansion, and is discussed in detail in standa, rd
references. ' The over-all result is that only connected

graphs, i.e., graphs which can be traced in their entirety
without lifting one's pellcil, are to be counted, Rnd the
factor of Zo/Z in Eq. (18) is canceled off.

I"or convenience in describing the graphs to bc used

in the analysis, we introduce the following terminology.
An. average (in the ensemble of Ho) of a pair ot opera-

where P = 1/k T and 0 is any operator. Further, we define

Q(N) =e""Qe "",

0(N) = e"~00e

Then, one has the relations

0(N) = U(N)Q(e) U '(I),
«0))= (Zo/Z) (U(&)0)

(1) For each particle contraction, going trom it; to
o~, a factor Go{o'—o;) and for each drone contraction

Spin-Flip Vertices

&10. 1. Moored interaction
vertices.

tors will be called the "contraction" of the operators;
the operators "u" will be called "particle" operators,
and the operators "d" will be called "drone" operators;
the interaction Hq will be called the "spin-Qip" inter-
action, while the interaction II2 will be called the
"longitudinal" or the "diagonal" interaction. In the
graphs, the interactions are represented by wavy lines,
the contraction of two particles lines by R directed
solid line, the contraction of two drone lines by a
directed dashed line, Rnd the external operators aj by
dots. It will be assumed that the external operator
product appears under the T sign in Eq. {18) in the
order indicated in the Hamiltonian (normal order),
i.e., R-sublattice operators to the left of S-sublattice
operators, then particle operators to the left of drone
operators, then creation operators to the left of annihi-
lation oper Rtors.

A graph consists of e external lines connected to the
dots and to the wavy lines and some number of internal
lines connected only to the wavy lines. The dots are
labeled with the variables I;, the wavy lines with
variables x;, and the directed lines with the a,ppropriate
lattice indices, lines connected to the two ends of a
wavy line being constrained to carry nearest-neigh-
boring indices. The allowed types of interaction vertices
are indicated in I'ig. 1, in which it should be noted that
the particle lines and the drone lines going with a
spin-Qip interaction are independently required to be
either both incoming or both outgoing, with respect
to the wavy line. Each dot of a graph is connected to
exactly one other dot through an open polygon whose
sides Rl e foI'Died by spin-Alp-Intel Rctlon lines Rnd
contraction lines of the same type (particle or drone,
not inixed) as the external lines connected to the dots.
In addition, there may be some number of closed
polygons involving only internal lines but otherwise
formed in exactly the same way as the open polygoas.
I'inally, there can occur longitudinal interaction lines
in which one end is connected to itself through a single
contraction line, closed on itsen. All contraction lines
belong to exactly one polygon, open or closed.

The contribution of a graph is calculated as follows:

' M. Gaudin, Nucl. Phys. 15, 89 (1960).
4 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (195$);

J. Hubbard, jhjd. A,240, 539 (195~); C. Sloch, Nucl. Phys. 1
451 (1958),

Longitudinal Vertex
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from v; to v;, a factor q(v; —v;), where v represents
Nol S)

(2) for each spin —fhp-interaction line, a factor +J,
and for each longitudinal interaction line, a factor
+2J;

(3) for each interaction line of any type, a factor
B(k j—o—), where 8( —) is the Kroneker delta, and 5
is one of the set of lattice vectors connecting nearest
neighbors, and vrhere k and. j are the indices associated.
with the tv o ends of the interaction line;

(4) a factor (—1)'+", where / is the number of
closed polygons in the graph, and m is defined below;

(5) the product of all these factors is now integrated
over the internal variables, x;, from 0 to P, and a
summation over the nearest-neighboring pairs of
lattice indices associated vrith the interaction lines is
card.ed out.
IIereq

Gp(v —v ) =—{TLa t(v }a.(v )])
= expLe(v; —v;)](a;ta;)b~g

= —expfe(v —v )](a a t)b"

if e;Qv;

lf Sz+Vg'~

if v;&e;

1f 8zg'Vgq (20)

and the factor m is determined as follovrs: If there are
no drone open polygons containing an odd number of
drone lines, then m=o. If there are one or more such
polygons, each must be examined individually. Each
of these polygons has one incoming and one outgoing
external ljne. If the operator corresponding to the
incoming line lies to the left of the operator corre-
sponding to the outgoing line in the original product
v e;(I;), then the m value for that polygon is zero,
othervrise it is unity. This examination is necessitated
by an ambiguity in the definition of normal order
caused by the fact that the drone operators are
HCDQltlan.

IV. LONG-RANGE ORDER

For spin--,' systems, the long-range order may be
deGQcd as

particle operators because of the way in which the
drone operators enter the interaction Hamiltonian.

The graphs contributing to G all have one incoming
and one outgoing particle-contraction line. The drone
operators, if they appear at all, are contracted in closed
polygons. In general, there mill occur places within
these graphs vrhere the removal of a single particle-
contraction line vrill cause the graph to fall into tvro
disconnected pieces; we say that the graph is reducible
at this line. Because of the vray in vhich the drone
operators enter the interaction terms, the lines at which
a graph is reducible all carry the same lattice index as
the external lines. A typical graph contributing to G
consists of several contraction lines at which the graph
is reducible, connected by graph parts containing no
such lines, i.e., graph parts which cannot be reduced.
We call the irreducible parts "kernel pieces" and
denote the sum of all kernel pieces by E'(x&—x,).Let
us lay out the graphs contributing to G horizontally,
with the incoming external line on the left and the
outgoing external line on the right, and focus our atten-
tion on the leftmost kernel piece. To the right of this
kernel piece is another graph contributing to G. Hence,
surrnning over kernel pieces in the leftmost position,
and over graphs contributing to G on its right, we arrive
at the integral equation

G(»—N2) = Go(&i~ e2) +—

+ Go(» —xg) EOG(xg —I,}dx„(23)

vrhere Eo is the constant part of E', i.e., that part of
E' vrhich is attached to the external-line open polygon
by exactly one (longitudinal) interaction line, and
E:=E'—Eo. This integral equation represents an
elementary resummation of the perturbation series
vrhich takes into account multiple returns of the spin
deviation to the same lattice site.

The cyclic invariance of the trace operation by
which the average in G is dined requires that Go, G,
and E be antiperiodic functions of their arguments in
the interval L

—p, p), with period p, i.e., if F(r) repre-
sents one of them, then we have

F(r—P) = F(r}, —0&r(p.
vrhere the lattice index has been omitted because the
translational invariance of the lattice makes averages
of operators subscripted vrith only one lattice index
independent of the index. We are therefore interested.
in the average ({ata)),which may be found by applica-
tion of the perturbation theory discussed in Sec. III to
the single-particle propagator

(22)

This is, in fact, the only nonvanishing average of two-

Since the functions are defined only in the interval
L
—p, p], we can extend them periodically outside this

interval and expand the resulting functions in a Fourier
series:

F(r) = Q f(m) exp(Armr/P), m odd, (25)

f(m) = (2P)
—' F(r) exp( iv.mr/P) dr. (26)—
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Ix

4 ~ 0 ~

g(m) =2/im~, m odd.

Using Eq. (33), then, we find

o.op Jsyg
k, ( )=—Zr-gg

Flo. 2. Form of the 0',phs included. in E,.

The integral equation (26) then becomes

g(m) =go(m)+p'go&m) k(m) g(m)+pEogo(m) g(m),

an algebraic equation. The Fourier coefficient go(m)
ls glvcn by

ep+s(m+m') s.

Suxnlrung this from %=1 to 3I= 00 gives the con-
tribution of all kernel pieces in the class, which wc
denote by k, :oo, t' pe—s(m+m )7're(m )''= ~~~(""' (p.)+(-+-)-

(2g) where
go(m) = —(sp sms—) ', m odd.

ID this section~ vM perform a suIHInatlon ovcl R

spcclRl clRss of kcrDcl parts. Thcsc pRI'ts Rll have thc
form iHustrated in Fig. 2) vrith all internal particle con-
traction lines bracketed by a drone line. This bracketing
of the internal particle lines has the effect of eliminating
the normally strong statistical interference between two
particle lines which xnay belong to the same lattice site.
This lRck of lDtcIfclcncc ls chRIacterlstlc of bosons,
which leads us to suspect that these graphs may contain
the spin-wave contribution.

The contribution to E from the graph of Fig. 2,
containing 2JI/I spin-Rip interactions, is given by

It, (x—x') = —(Js)' S(2M')

q'=e' —(ao Jsyg)' (36)

ls thc usual spin-%'Rvc dlspersloD cul vc DcRI' 2 =0)
whclc ao= l.

The summation over m' in Eq. (35) can be carried
out by elementary methods, ' giving

'f0 0 coths pro e+io e—y
( J&v~)'

q mm ipse ms+—spo
'

(37)

When Eq. (40) is inserted into Eq. (27), there results

Op 2 cothsPy
g (& ) =p o' —e——Z(~st~)2E

x . + . , (»)
~&m+P ~m

0 0

XGo(xs —xs) ri(xs —xs) ~ Go(x' —ussr t)

Xri(g —assr t)ri(x —s), (29)

where $(23f) ls given b$

S(m) =X- g&, ~; &,=~tg c~(s S), (30)
k

as is shown in the Appendix. Introducing the Fourier
expansion for the product g (r) Go(r) m,

5'Iq(r)Go(r) I =os(eP iver) ', —l even-, (31)

into Eq. (32) gives

Essr(x x')—
=—(Js)s~S(2M) P'" sg eats~-m, (~ ~')/Pj-

tnIrrt2(od tj)

Thc usuR1 ploccdulc Qovf would bc to continue Nfl into
the complex plane and use standard methods6 to derive
from Eq. (38) a spectral function, from which the
thermodynamics of the system described by g, can be
determined. In practice, this procedure is virtually
impossible to carry out, because the way in which the
suxQIDatloDS ovcl ~ enter into gs makes thc deterlnlna
tion of the poles of g, equivalent to the solution of an
algebraic equation of degree 2/+1 Instead, we w. ill
siIDply accept the iterated solution

g, (m) = go(m) +P'gok, go(m) +P'(gok, ) 'go(m) + ~ . (40)

The evaluation of the contribution of the lth iteration
in (40) to the average spin deviation per site is straight-

X
ep —s(mt+ms) ~

ti (ms), (32).p+i(m, +m) ~

~The procedure is revievred in the appendix of K. Tomita,
Proc. Phys. Soc. (I ondon) 88, 293 |,'1966).

& D. N. Zubarev, Usp. Fiz. Nauk V1, 71 (1960) PEnghsh transi.
Soviet Phys. —Usp. S, 320 (1960)g.
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forward but tedious. Denoting this contribution by e&,
we 6nd after much algebra

1 00
nt ————g f(ki) ~ ~ ~ g f(ki) g Q C, (ooi ~ yt)

2 2Ã k1 j=1 (a)

X
tanh-', pp,

(e+V») '

where io, =p(k, ),

(—1)' d' tanh-', ps

l! ds' (s+(p, )
s= e (41)

e+Ã*
C~(ot" oi)=

( J'syk) ' coth-,'P(p (k)
(b)

and where the symbol S means that the result is to be
symmetrized with respect to the y, . The total spin
deviation is then given by

I= ((ata))= (ata)+ Q rtt. (43)

&i'= —
I Zf(ki)" Zf(kt)g2S) k1

X Q C, (oot ~ ooi) ', , (44)
|t(o»)

e+pj

where 0(x) is the Heavyside unit step. The presence of
the symbol S makes even this simple expression tedious
to evaluate. The term for l=i gives the spin-wave
result

n,„io=rtio= (2Ã) 'Q[e/oo(k) —1]. (45)

The term for /=2 gives the lowest-order kinematic
corrections to the spin-wave theory

(e+&i) (e 0't)

klks 'Pl +1++2 +2 (e+ooo)

2 k Oo(e+Oo) k q
(„,o) o

(46)

Higher-order terms are increasingly complex and we
will not consider them because they are expected to
give only a small contribution.

IV. LOW-ORDER CORRECTIONS TO K,

In this sectj.on we will calculate some low-order
corrections to E„taking the calculations through fourth
order. We choose fourth order because that is the first
order in which graphs containing exchange among the
drone lines occur. It is important to obtain an estimate

At low temperatures, n is not strongly temperature-
dependent, and its value is well approximated by the
zero-point deviation, determined by (c)

Fro. 3. (a) Graphs included in Eo', (b) fourth-order exchange
graphs (c) mixed graphs

of the contribution of such graphs because they are the
graphs which correct E„and therefore 6„ for the
commutation relations of the spin operators. E, itself,
of course, already contains strong correction terms of
this sort, expressed by the noninterference of the
internal-particle lines.

We are interested here in the low temperature
properties (in fact, we are considering only the zero-
point motion in the final analysis), so any graph which
contains one or more factors of (ata) can. be ignored.
This enables us to discard any graph which contains a
closed-particle loop which connects only to longitudinal
interaction lines, and any graph which contains a pair
of oppositely directed particle lines connected to the
same pair of interaction vertices. The remaining graphs
which contribute near T=O can then be divided into
three classes. The graphs which give Eo are illustrated
in Fig. 3(a); the drone-exchange graphs are illustrated
in Fig. 3 (b), and the remaining graphs which contribute
near T= 0 are illustrated in Fig. 3.

The graphs of Fig. 3 (a) contribute to Eo. When they
are introduced into the transformed integral equation,
Eq. (27), they produce a shift in the energy e carried
by the propagator go in the equation, which can then
be rewritten in the form

g= go+p gong,
where

go= —
t (e+Iko) p —ivor] '. (48)

It should be noted that it is possible to eliminate Eo
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TABLE I. Corrections to the spin-wave value of the zero-point
motion. In the erst column is given the nomenclature used for
the terms shown in the second column. The subscripts refer to
the kernel part from which the terms arise, while the superscripts
refer to the order, in the iterated solution, in which the term
occurs. Thus, n,(') is the contribution from k. alone in the second
iterate. The third column gives the expressions resulting from
the Fourier inversion. The functions So and P~(p) are delned
in the text.

C(r) = A I [opoP (1+2/s) +o (1—1/s) —1/s]

+2e[&o (1+1/s)+1/s][r —op)(r)]I. (53)
The Fourier coefFicients of these functions are easily
evaluated in terms of

n

n (I)

n (I)

P2g 02k,

P'go'k

P'go'&. x

nk (2)

nk ()
2P3kogo%e

2P ~ogo {~m+~ex}

n, (') P'go'0, '
2P4g0»~4

n,„,('& 2P4go'k, k,

(»)- ~ (1-~)/~

(2+&/e) /(4e')
—3(1+1/s) /(16s2)

So—1/2 S,So—(n,&')) o

8P'o(3) —(2+&/e) &o( t) j
2t4&o( —3)/e —&o(&)—2.p(1+2/~) Z, (—1)

+(~—2/e) Po( —&)1

(1+1/.) S,/(2s)

{1+1/8)(1—1/88}j(2s) '

gp, (m) = —(3ep —imor) '.
Ke Gnd near 7=0 and for zero field:

k.„=(4A/s) gpo*(m) —Ago(m)

—2 PA (1+2/s) [go*(m) ]'+A (1—2/s) go*(m) (55)

k =4A[go (m) —(2+1/s) g,*(m)]. (56)
In Sec. VII, numerical results for the contribution of
E„E,„, and E to the zero-point deviation will be
displayed and discussed.

from consideration entirely by introducing an internal
field as suggested by Mills et ul. ,

' and as was done by
K.enan. However, one then finds that the function p
occuring in E, can become imaginary for some values
of k, corresponding to long wavelengths. Furthermore,
the boundary between real and imaginary values of p
is some surface in the Brillouin zone, making both
physical interpretation and numerical work rather
dificult. Similar difFiculties arise in the use of Eqs.
(47) and (48), because kp is negative. For our purposes,
it is sufhcient to account for Eo explicitly as it appears
in Eqs. (23) and (27).

The graphs of Fig. 3 (a) give for Ep.

Eo= —
g J(js/p) '[1+oro( J/p) ][2o'o—pp(1 —o'o') ]. (49)

The exchange graphs shown in Fig. 3(b) are most
easily evaluated by direct integration, as are also the
mixed graph' of Fig. 3(c). The algebra involved is
somewhat tedious and entirely unilluminating; we will
not include it, but instead we quote the answer. De-
noting the contribution of the exchange graphs by E,
and that of the mixed graph' by E, we Gnd

Z.„=(4A/s) G, ( r)+C(r) G, ( r)— , AG. (r), —(50)—

VII. NUMERICAL RESULTS AND CONCLUSIONS

The evaluation of 6 by Fourier inversion of g using
the kernel given by Ep and the sum of Eqs. (37), (55),
and (56) is a hopeless task because of the complexity of
k, . For our purposes it suIIIices to use the iterated solu-
tion of Eq. (40), taken through the second iterate. It
is expected that the principal error committed here
will be in the neglect of higher-order terms in k, and
Kp, since k, is at least of order 1/s, and Kp is of order 1/s,
while k, and k are both of order 1/s'. The second
iterate is chosen as terminating point because the
cancellation occurring between kinematic and dynamic
eGects is clearly demonstrated at this level, while the
terms arising from k, remain tractable. The approximate
form of Eq. (40) tobe used is, then,

g=go+Pg p'&o+P'go'k+P'go'Eo+P'go'k'+2P'Eogo'k.

(57)

The first, second, and fourth terms here contribute

TABLE II. Numerical values of the various corrections to the
spin-wave"". zero-point motion for the NaCl (s=6) and the CsC1
(s=8) lattices. n, &'~ is the spin-wave value, displayed here for
comparison with the corrections.

A = (Js)'/4p's' (52)
7R. L. Mills, R. P. Kenan, and J. Korringa, Physica 26,

S-204 (1960).
o R. P. Kenan, in ProceeChngs of the Eighth International Con

ference on Lozv-Temperatlre Physics, London, 196Z, edited by
R. O. Davies (Butterworths Scientific Publications Ltd. , London,
1963).

It."„=4AGo'(r)

—A (1—opo) [1+2p[r——',Pg (r) ]+-', (oop) ]Go(r)
—4A(2+1/s) G, (—«), (51)

where

Term

n (1)

(1)

n (2)

nip (2~

Total correct&on
to n, ('&

NaC1

0.0761
0.0150

—0.0061
—0.0132
—0.0074

0.0019
0.0094
0.0007

+0.0004

CBC1

0.0587
0.0083

—0.0033
—0.0078
—0.0033

0.0009
0.0053
0.0003

+0.0002
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Si=& 'Q(1—~')/v,

(59)

(60)

(61)

F&(» }= En(~) 3'+'&& 'Z (1+& ) 2'~(» s )
( ~!3)

'-.. . v~'

16s'

(62)

1
X

(1+&)'(1-u) '+' (1+«)'(1-~)'+'

(3+1)(1+2)
2 (1+&)(1—&)"'

r+2 (—1)"
+'g(P) g

2 ( + )~ ~i(1 )&y3 ) I & ( )

2'i(&, 1)=(1+I~I) ' '(1+&) '

In these formulas, we have taken $=0 so that e = Js, and
have redefined p as y/e; the symbol S again means that
the factors to its right are to be symmetrized with
respect to q, i.e.,

gF(v) =F(v)+F(—v). (65)

The sums over vectors k are taken over the 6rst
Brillouin zone of the sublattice. The triple integral
which results from

'QF -, -d'kF (k),x-- (2~)' nz

can be approximated directly by quadratures using a
computer. However, such codings are rather slow in
execution; furthermore, the double sum in Sq goes
into a sixfold integral, which would lead to a prohibi-
tively slow program. Since the most important feature
of the dispersion relation

nothing at T=0 because

Q go'+'(m) =
t (eP) '/2l! j tanh&'&-,'eP,

lIl 08'

which vanishes for P~ co. The remaining terms give
rise to eight sums which we display in Table I. The
terms quadratic in k, or k and the term in k, k have
been omitted as being of order smaller than 1/s . The
sums So, Si, S2, and the function F~(p) referred to in
the table are

(1—
v 2)'(1+& 2)

&50

kz k2 Pl( 1+'Pl) 'Pi+A Ã2

is the curvature and not the angular depc~dc~ce on h,
we have chosen to approximate the integrals using the
function

v.= »n
I

d II & I/I & II & I, (68)

which results from avcragiog y~ over the directions of
k. The sum over k then becomes a single integral over

( k ~, while So becomes a double integral. This procedure
has been used by Mills ef aP with good accuracy.

The integrals shown in TaMe I have been approxi-
mated numerically using a computer (CDC 3400); the
results axe displayed in Table II.There are two features
of this table which we wish to emphasize. First, the
purely kinematic corrections to the spin-wave theory
(I &'&) given by

n&, =e,.&'&+I.&'&+I,,&'&

are not small, being about 23% and 18% of rs, &'& for
the NaCl and CsCl lattices, respectively. Second, the
mixed kinematic-dynamic corrections, given by

inixed rim +'+ms ++ks +Nkmex(u n) n) &2)

almost exactly cancel the kinematic ones, the residual
corrections being 0.5% and 03% for the two lattices.
The result is that the spin-wave theory is a good
approximation. Furthermore, the corrections which
arise when finite temperatures are considered are all
of order (ate)=e s' for P large, so these effects should
only begin to bc sign]Geant when T bccolTlcs an appIc-
ciable fraction of, say, the molecular-field transition
temperature, T~ (where eP=2}. If we presume that
the coefFicient of e 't' in the temperature-dependent
part of the long-range order Is of the same order of
magnitude as the zero-point motion, then we hand that
these corrections are as large as 1% only for eP$5,
which is about 40% of TN. While this analysis can.
hardly be termed accurate, nonetheless it should soften
some of the surprise often expressed over the observed,
wide range of temperature over which the simple spin-
wavc theory agrees with experiment.

Finally, it should be remarked that although we have
included all terms of consequence near T=O, through
fourth order, our treatment of the integral equation
itself is somewhat less precise. Our aims have been to
dexnonstrate that kinematic efFects are not particularly
small in the Heisenberg antiferromagnet and to display
the cancellation between these effects and dynamic
CBects at low temperatures. The cancellation may be
less exact when the complete integral equation is used
or when higher-order terms are included in the kernels.
%'alkcr' has carried out a perturbative treatment of
the ground-state problem and finds some disagreement
with the spin-wave theory, but he does not, unfortu-

9 R. E. Mills, R. P. Kenan, and P. J. Milford, Phys. Rey. I45,
7'04 (1966).IL. R. Walker, in I'roceedings of the International Conference on
Magnetism (The Institute of Physics and The Physical Society,
London, 1964), p. 21.
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The contribution of any graph to the perturbation
expansion consists in part of a summation over the
nearest-neighboring pairs of lattice vectors with which

the interactions are labeled. The summation is restricted

by the topology of the graph via the Kroneker deltas
introduced by the particle and drone contraction lines,
and by the requirement that the vectors occur in me

pairs, introduced by the interaction lines. In order to
accommodate the first restriction, we note that the

graphs all consist of loops of contraction lines, either
connecting extern. al lin. es (open loops) or closed on

themselves (closed loops) . The various loops of a graph
are connected to one another via the interaction lines

(these loops should not be confused with the open and

closed polygons defined earlier, which may have spin-

Qip-interaction lines as part of their perimeter. The
present loops have only contraction lines in their
perimeter. ) All of the lines in a loop carry the same

lattice vector. The second restriction on the sums can
be accounted for by introducing the representation of a
Kroneker delta as a summation over the reciprocal
lattice space

QB(i—j—5) =1V ' g expLzk (i—j—6)]
k, b

= (sP') Zv~ expLzlr (i—j)] (A1)

where yq is defined in (30). The summation over the

lattice vectors of the closed loops will then give
Kroneker deltas in the k's, and the exponential factors

arising from the open loops will give phase factors which

depend only on the differences of the lattice vectors of

the open loops. In terms of a prescription, we have:

(1) label the loops with lattice vectors;

(2) for each interaction line connecting loops i and j,
include a factor

s/NQyg expzk (i—j) (A2)

in the summand;
(3) perform a surrunation over the lattice vectors of

the closed loops and a simplify the resulting expression.

nately, give any numbers with which we may compare.
In any event, it would be surprising if the cancellation
w'e have shown were to become inoperative to any very
severe extent in higher-order calculations.

APPENDIX: LATTICE SUMS

multiplied by pow'ers of s. Further, application of the
prescription to the graphs of Fig. 2 shows that the
lattice sum for these graphs are simply s™S(2M). It is
intuitively clear that the S(2M) are the largest sums

that can occur in order 2M, since the graphs from which

they arise contain the least restrictive closed loops.
This can also be proved directly by using the expressions

given by Kubo" for the sums

(2'
Szzz= 2 '~~ CsCl lattice,

&M
(A4)

(2' ~ 2l gII '
Szzr=3 ' z '~

~ g ~

NaCl lattice. (A5)

Sounds on the lattice sums can be obtained by noting
that

S(2M) (S(2M —2) and S(2M) & S(2) ~ S(2M—2)

from which, since S(2) = 1/s,

S(2M—2) & S(2M) & S(2M—2) /z.

"Ryogo Kubo, Phys. Rev. 87, 568 (1952).

(A6)

For the graphs which contribute to the magnetization,
we can make the prescription somewhat simpler. These
graphs have only one open loop, and are therefore not
dependent on the lattice vector of this loop. As a result,
one can use the following prescription:

(1) For each interaction line, a factor yq, , where i
enumerates the interaction vertices;

(2) for each closed loop, a Kroneker delta in the sum
of all the k vectors associated with interaction lines
that touch the loop;

(3) an over-all factor ofS™,where I is the number
of interaction lines, and J is the number of closed
loops in the graph.

Summation over the k vectors then gives the desired
lattice sum. The use of the sum of the k vectors in step
2 above is justihed by the inversion symmetry of the
lattices under consideration.

The fact that the lattice sum for the graphs con-
tributing to the magnetization (or long-range order)
involve only the functions pj, implies that they can all

be expressed as products of simple sums,

S(2M) =1V 'Qyg'~, (A3)


