
REORIENTATION FREQUENCIES OF FERROELECTRIC DIPOLES

pointing in the plus or minus directions of the ferro-
electric axis. While one would expect to see a triplet in

the ferroelectric and paraelectric phases, the hfs should
change to a quintet in the vicinity of the Curie point.
The instability of the lattice with the resulting large-
amplitude protonic motion at a frequency which is still
much higher than the hyperfine splitting —expressed in

frequency units —should accordingly result in an
averaging of the contact coupling constants over the
protonic motion, so that in this region the electron
would be equally coupled to all four surrounding
protons.

None of these effects has been observed, and one

may say that the present results support the dynamic
proton order-disorder model of the ferroelectric transi-

tion in KH~As04 rather than the one involving proton
displacements. The absence of such ferroelectric-mode
phenomena in the proton hfs, however, does not
necessarily imply that the rest of the crystal lattice
does not become unstable against some collective mode
as one approaches the temperature of the protonic
order-disorder transition. The transition may well be an
order-disorder one for hydrogens and a displacive one
for the K ions.
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The energy bands in ferromagnetic nickel have been calculated within the framework of the unrestricted
Hartree-Fock scheme, in which the exchange terms were approximated by a local potential. The aug-
mented-plane-wave method was used to find the eigenvalues of the approximate Hamiltonian, and self-
consistency was achieved after several iterations of this method. It was found that the use of the averaged
free-electron exchange potential, i.e., V,&'&= —6(6p,/8~)'", gave results in qualitative disagreement with
experiment. Reducing the exchange potential by a factor of —;gave more realistic results. Comparisons with
the experimental data are presented which show that the unrestricted Hartree-Fock scheme may be an
acceptable model for the ground state of a ferromagnetic solid.

I. INTRODUCTION

EXPERIMENTAL information on the metallic
& properties of nickel, which are dependent on the

electronic configuration, has recently become available,
and with it some analyses that explain these properties
on the basis of the energy-band model. .Energy-band
models have been presented' ' which attempt to explain
empirically the available data on the electronic and
optical properties. Also, within the last five years,
several papers have appeared in the literature~' which

give the energy-band structure calculated from basic
considerations, i,e., they present solutions for
Schrodinger's equation in a crystal using some form of
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one-electron potential. This potential, in all cases, has
been derived from an atomic calculation corrected for
the eGects of placing the atoms in a crystalline lattice.

Although these previous calculations are qualitatively
quite similar, the arbitrariness of the potential used is
enough to create differences between them which are
large with respect to the experimental effects which are
to be explained. The calculation described in this paper
attempts to eliminate this dependence on an arbitrary
potential by solving the equations self-consistently, in
the same way as the Hartree-Pock method used in
atomic calculations. In this way, it is possible to
examine the validity of the approximations which
must be made in order to solve the equations.

The case of ferromagnetic nickel turns out to be
extremely sensitive to slight changes in these approxi-
mations. In particular, the form in which the exchange
effects responsible for the ferromagnetic structure are
inserted into the theory can radically change the final
results. This eBect was not pointed out in previous
calculations on nickel or other materials, either because
the solutions were not carried to self-consistency or
because the particular case was not sensitive enough to
show a definite discrepancy with experiment.
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II. METHOD OF CALCULATION

The one-electron model for a crystal consists of the
assumption that the electronic wave functions P; satisfy
a Schrodinger equation of the form

(—~'+ V(r) )0'(r) =E4'(r), (1)
where V(r) is a potential identical for all electrons, and
includes: (i) an attractive term Viv due to the nuclei
situated on the lattice sites, (ii) a repulsive term V, due
to the Coulomb interaction with the other electrons,
and (iii) an attractive term V, which simulates the
exchange effects of other electrons, so that iP; will

approximate the Hartree-Fock solution.
As a first approximation, V(r) can be generated

from the assumption that the electronic wave functions
are unchanged from their atomic values. The atomic
potentials on the appropriate crystalline lattice sites
are then overlapped to form what has been called a
"superimposed atom -potential "Th.is, of course, makes
V(r) dependent on the particular atomic configuration
chosen. Although the most logical choice wouM be the
ground-state configuration of the atom, this is not
always the best choice. It is true that the wave func-
tions do not change greatly on going from a free atom
to a crystalline environment, but the effective occupa-
tion number of each type of orbital (s, p, d, etc.) may
change. The reason for this is that the discrete atomic
levels which the electrons occupy in a free atom broaden
into bands when these atoms come together to form a
solid. If these bands happen to overlap, as they do in
many metals, then electrons in one band will "spill
over" into the other, thus reducing the e6ective number
of the first type in favor of the second. This occurs in
the case of nickel, in which the overlap of the 3d and 4s
bands alters the condguration so that the effective
number of d-like electrons is increased from the atomic
ground state value of 8, to approximately 9 in the
solid.

However, in a self-consistent calculation, where the
potential is regenerated after each iteration, the
arbitrariness in the choice of V(r) disappears. The
superimposed-atom potential is used only as a starting
point for the self-consistent procedure.

For a ferromagnetic solid, the one-electron model is
modified to allow V(r) to be spin-dependent, so that
the one-electron functions will approximate the un-
restricted (spin-polarized) Hartree-Fock solution. s I
Equation (1) then becomes two equations, one for
each spin. The nuclear and Coulomb terms in these
equations are straightforward, but some kind of average
must be used for the exchange part of the potential.
One such average, suggested by Slater, "and used with
success in atomic calculations, " is the averaged free

9 J. H. Wood and G. W. Pratt, Phys. Rev. 107, 995 (1957).
io R. E. Watson and A. J. Freeman, Phys. Rev. 120, 1125

(1960)."J.C. Slater, Phys. Rev. 81, 385 (1951)."F.Herman and S. Skillman, Atomic Structure Calc@latiorIs
(Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, 1963).

electron exchange V,"= —6(3p/8s ) 'ts (in atomic
units), where p is the local charge density. In the
unrestricted case, this is generalized to

Vx", s = —6(6p,/8s. )"'
where p, is the local charge density of spin s.

Once the initial potential is chosen, the energy bands
are calculated for a selected number of vectors in
reciprocal space by means of the augmented-plane-wave
(APW) method. " This method has been sufTiciently
developed and checked out against other methods, so
that it gives a solution (for a given potential) as
accurate as desired. In its simplest form, the AP%
method solves Eq. (1) for a V(r) of the "muflin-tin"

type, i.e., spherically symmetric in spheres about each
lattice site and constant between these spheres. This is
not a necessary restriction, " but it can be removed
only at cost of much greater complexity, without much
improvement in the final results.

The eigenvalues and eigenfunctions are obtained by
solving a series of linear equations for each reduced
vector ko

Z I &ko+g I
5t'

I
ko+g'&

—E(ke+g I ke+g')Ic(ks+g) =0,

K= —V'+ V(r), (3)

where [ ke+g & is an APW corresponding to the recip-
rocal lattice vector g. The overlap and interaction
integrals are given by the expressions

(ki [ks &
= &ki I

~
I ks&+ 2 (ki I vi I ks&li(E),

(k, [x[k,&=(k, I p[k&

+2&k Iv Ik)[D(E)+«(E)], (4)

where

(k, [
n [ k, )=n,)(k„k,) —[1—S(k„k,)]

4irR ji(l ki —k
I R)/I ki —ks I

(ki [ p [ k, )=ki ks(ki [ n [ ks),

and

(ki [ pi [ ks) =4s (2t+1)jt(kiR) ji(ksR) Pi(fci fcs).

R is the radius of the spheres, Qo is the volume of the
unit cell outside the sphere, and

Di(E) =R'ui'(R, E)/ui(R) E)

is the logarithmic derivative (at R) of a solution of the
radial Schrodinger equation inside the sphere;

[rui(r, E)]"+[l(t+1)/r'+ V(r) —E][rut(r, E)]=0.

13 J. C. Slater, Phys. Rev. 51, 846 (1937)."P.D. DeCicco, Phys. Rev. 153, 931 (1967).
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The quantity II(E) is an integral of this function,
related to the logarithmic derivative,

sg(s) =[oP(s s)I-' f oP{r, s)iur
0

=—(B/BE) DI(E).
The eigenvalues are determined by calculating the
determinant

dct P(k+g I P E—+ZDI(E)vI I ko+g'& I (6)

for a range of energies E and inverse interpolating for
its zeroes.

Once the eigenvector c(ks+g) is determined, it is a
straightforward matter to calculate the charge density
corresponding to one of the zeroes of (6) . The (spheri-
cally-averaged) charge density inside the sphere is

p; (r) =(4rlvs) IQ ' Q o~(ks+g)c(ks+g')
NIs(r, E)

I NP(R, E) «i

X (ko+g I vI I ko+g'» (I)
and the averaged (constant) charge density in the
outside region is

pout (flail 0)

&& Z ~*(ko+g) ~(ko+g') (ko+g I
~

I ko+g') (8)
sa'

So is the normalization integral, which is expressible in
terms of a, yI, and II(E) . The Coulomb part of a new
muffin-tin potential can then be derived, ""by the
method of Ewald sums, to be used in the next iteration
in the self-consistent procedure,

2Z 2
V;.(r) = ——+ — 4~Pp;. (t) 8&+2 4 ~p;„(t)d&

0

V,„t 2p.„Otic/g, ——— (9)

where u is the lattice para, meter and v=2.4j.583 is a
constant characteristic of the face-centered cubic
lattice.

The exchange part of the new potential is obtained
by substituting the expressions (7) and (8) into Eq.
(2). As in atomic calculations, " it was found that the
llsc of the potcIltlal dc611ed II1 (9) vcl'y oftc11 leads to a
divergence in the iteration procedure. However, the
scheme invented by Pratt'I (in which a new potential
is interpolated from the potentials of two preceding
iterations) was found sufficient to give a rapid con-
vergence.

In practice (e.g., Ref. 18), in order to reduce the size
of the determinant (6), symmetrized combinations of

'5 J. C. Slater and P. D. DeCicco, Massachusetts Institute
Technology Solid State and Molecular Theory Group Quarterly
Report No. 50, 46, 1963 (unpublished).

'6 J. W. D. Connolly, University of Florida Quantum Theory
Project Technical Report No. 94, 1966 (unpublished)."G. %'. Pratt, Phys. Rev. 88, 1217 I'1952).

'8 J. H. Wood, Phys. Rev. 125, 517 (j.962).

APK s are used as basis functions, i.e., instead of taking
matrix elements between

I ks+g& in Eq. (3), we take
them between functions of the type

I k,+gPu)=61, I k,+g&,

where 6Ig~ is the standard "symmetrizing" operator

elJp=(I Gs I/rIp) Q rp'(6t)lg(R.
Iegp

I Gs I
is the order of the group Ge of the vector ks. The

function as de6ned here will belong to the Ith row of
the Pth representation of Gs (dimension Np). Pp((R)IJ
is the (I, I) element for the Pth representation
corresponding to the element 8.&GO. The matrix ele-
ments (of any operator A which commutes with Gs,
such as n, P, and yI) between two symmetrized APW's
can be related to those between the unsymmetrized
functions by the equation

(k,PI&
I
a I k,P'I'I'&

Bpp 811—.(kl I A
I
ksPII')

—(I Gs I/rIp) Bpp 811 Q Pp*((R) IJ (kl I
A

I (Rks), (10)
Rat"0

where I(Rk& is an unsymmetrized. APW corresponding
to the wave vector obtained when the group element (R
operates on k. The Kroneckcr deltas occurring in (10)
have the eGect of block-diagonalizing the determinant
(6) if Gs contains more than one element. The problem
then reduces to 6nding the zeroes of the determinant,

det
I (ks+g I p En++BI(—E)yI I

kp+g'P II'&I'
for each representation I' of Go. Care must be taken to
insure that the set of (g, I) are chosen so that the
functions

I ks+gPII& are linearly-independent. Meth-
ods for this choice are given in Refs. 16 and j.9.

The expressions for the charge density are the same
as in Eqs. (7) and (8) with the n andy matrix elements
replaced by their symrnetrized forms as given in (10).

III. RESULTS OF THE CALCULATION

A. The Self-Consistent Syin-Deyendent Energy Bands

The energy eigenvalues were calculated -and com-
puted self-consistently for two values of the exchange
potential: (i) the averaged free-electron value
V,"=—6(6p,/8tr)II' and (ii) the value suggested by
Kohn and Sham20=3t/, ". The initial potential was
chosen to be a superimposed atom potential generated
from unrestricted self-consistent atomic orbitals corre-
sponding to the con6gul ation

(M~) "(3&p)"(4~~)"(4')"
(denoted by VI). The value of the lattice parameter

19 A. W. Luehrmann Advan. Phys. (to be pub1ished); Ph.B.
thesis, University of Chicago, 1966 (unpublished) .

'o W. Kohtt aI)d L. J. Sham, Phys. Rev. 140, A1133 (1965).
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FIG. i. The self-consistent energy bands for U3(U, =V, e) along the three principal symmetry direction in reciprocal space.

used was the one quoted by Wyckoff, " i.e., a=6.6586
atomic units. The summations over t in the matrix
elements in the secular equations were taken up to a
va'u of I„, =6 and the maximum reciprocal vector
magnitude was E =6s/a. By calculating the energy
ei.genvalues at a few points for larger values of these
parameters, it was found that the chosen values of l,„
and X„,„were sufhcient to insure a convergence of less
than 0.005 Ry. The d-like states tended to converge
more slowly than the s- and p-like states. This is because
of the large negative value of the logarithmic derivative
for /=2, which forces a large discontinuity in the
derivative of the wave function at the sphere radius.
Thus, more basis functions are necessary to smooth
out the d-like wave functions.

The eigenvalues and the corresponding wave func-
tions were calculated at the 32 points of a cubic mesh
in reciprocal space (Grid I of Table I) during the
course of each iteration. Because of symmetry, actually
only 6 points were calculated, and the charge densities
were multiplied by the appropriate weights to derive
the total charge density. For the last two iterations of
both calculations, the mesh was reduced to half the
former size, for an equivalent of 256 points (Grid. 2 of
Table I). It was found that 6 or 7 iterations were
sufhcient to achieve a convergence of the energy levels

"R. W. G. Wyckoff, Crystat Structures (John Wiley 0 Sons,
Inc., New York, 1963), Vol. I.

TABLE I. Coordinate grids in reciprocal space. Only the erst
two are listed here. Grids Nos. 3, 4, and 5 are similarly dered,
having 89, 505, and 3345 nonequivalent points, respectively,
and 2048, 16384, and 131072 total points in the Brillouin zone.

Grid No. 1 |',6 nonequivalent points, 32 total points)

(a/~) ir Symmetry' Weight (a/~} .ir Symmetry Weight

000
001
002

1 011 Z 12
6 012 TV 6
3 111 I.

No. 2 (20 nonequivalent points, 256 total points)

Symmetry Weight I',2a/vr) .k Symmetry Weight

000
002
003
004011
012
013
014
022

6
6
3

12

24
12
12

023
024
033111112113114
122
123
222

The symmetry symbois are those of L. P. Bouekaert, R. SrnolIIchowski,
and E. signer, Phys. Rev. 50, 58 (1936).

to within 0.01 Ry. More accuracy was deemed unneces-
sary, because of the uncertainties in the one-electron
potential and the approximations inherent in the
muffin-tin form of this potential.
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TABLE II. Comparison of energy diGerences for various potentials.

Potential

d-s separation

~25 ~l X5 ~1

d width

X5-X1

s-p width

X4 —I'1

splittings

V1a~
U1p
U2nb

V2p
V3ac
V3p
V4ced

U4p
V5e'
V5p

0.481'
0.537
0.437
0.491
0.322
0.403
0.478
0.542
0.488
0.535

0.627
0.687
0.571
0.633
0.441
0.531
0.625
0.698
0.639
0.695

0.320
0.349
0.299
0.325
0.251
0.282
0.330
0.362
0.347
0.372

0.837
0.838
0.836
0.837
0.833
0.834
0.841
0.842
0.865
0.866

0.070

0.0/0

0.076

0.060

0.067

0.016

0.013

—0.005

—0.004

0.018

a V1 =a superimposed-atom potential (non-self-consistent) with V& =
V&, corresponding to the atomic configuration (3do.'=5.0, 3dp=4, 4,4' =4sP =0.3).

V2 =a superimposed-atom potential (non-self-consistent) Va =Va e,

corresponding to the atomic configuration (3du=4. 8, 3dp =4.2, 4sn=
4sP =0.5).

Vg =the self-consistent potential with V~ = V&
V4 =the self-consistent potential with V& = (2/3) Va' Vq =Wakoh's potential of Ref. 8.

I The energy differences are given in rydbergs.

In each iteration, after the energies were computed,
the Fermi energy E~ was estimated by counting the
states of both spins in order of increasing energy until
10 bands were 6lled. Because of this procedure, the
configuration (i.e., the number of s-, p-, and d-like
states) can change from iteration to iteration, unlike the

usual atomic self-consistent calculation, in which the
configuration is held fixed. This might be expected to
lead to a "collapse" of the P bands on to the n bands
(or perhaps a divergence, as found by Switendick" for
chromium) .

In the course of the calculation, it was found that
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0
OI-

o o.5I-
LLI

Q
CO

4J
K

l2a
25 J3

25 a

5a
2a 2'

3a

I-~ 0.4—
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5
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I"ro. 2. The self-consistent energy bands for V4(V, =-,V, ') along the three principal symmetry directions in reciprocal space.

"A. C. Switendick, J. Appl. Phys. 3'7, 1022 (1966).
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TA&LE III. Parameters used in the interpolation procedure. The units of all parameters are in rydbergs, except o.' (dimen-
sionless) and B1 {atomic units of length).

T.B.A. d-function parameters'

z.„.,(0, o, o)

z.„,.„(1,1, o)
E „,,„(0,1, 1)
Z.„...(0, 1, 1)

s „a(1 1 0)

E,„,g, „(1,1, 0)
O.P.W. parametersb '

P
V111

V200

Hybridization parametersb d

81- (~/4a)
82
83

0.325
0.319

—0.0212
0.0048
0.0063
0.0125

—0.0078
0.0111

1.000
—0.037

0.131
0.167

0.416
1.050
1.227

0.402
0.395

—0.0232
0.0055
0.0074
0.0138

—0.0085
0.0126

1.000
—0.042

0.133
0.166

0.423
1.128
1.254

V4o.

0.518
0.511

—0.0263
0.0058
0.0076
0.0154

—0.0096
0.0147

1.000
—0.009

0.128
0.159

0.419
1.240
1.375

0.580
0.570

—0.0282
0.0062
0.0083
0.0177

—0.0104
0.0157

1.000
—0.012

0.129
0.158

O. 424
1.262
1.433

Notat, ion of Ref. 25."Notation of Ref. 23,' These parameters were kept fixed during the least squares fitting pro-

cedure, so that the conduction-band effective mass was 1.0, and the con-
duction states Fi, I.s', and X4' had their calculated values.

'I In Ref. 23, B& and B3 were assumed equal.

the difference between the number of electrons of
either spin dhd decrease slightly, but leveled o6 at a
constant value. This may be a fortuitous result of using
a 6nite number of points in the Brillouin zone to
calculate the density, but the fact that this constant
value is close to the experimental is encouraging.

The calculation was carried out on an IBM 709
computer. The time taken per iteration was approxi-
mately one hour for Grid 1 (32 points in the Brillouin
zone) and three hours for Grid 2 (256 points in the
Brillouin zone) .

Figure L shows the final bands for the first calculation
(denoted by V3) in which the exchange was chosen to
have the averaged free-electron value V,". Here, 6
is the $100] direction, A is the [111]direction, and
Z is the $110] direction in reciprocal space. Figure 2
shows the same information for the second calculation
(denoted by V4), for which the exchange potential was
taken to be -', V,".Both sets of bands have the same
general shape, which is essentially determined by the
symmetry of the face-centered cubic lattice. Both show
the feature, typical of the transition metals, of a narrow
(~0.3 Ry) d band imbedded in a much broader con-
duction band. The splitting between the two spin
bands is not uniform throughout the zone, but is
approximately 0.07 Ry for the d-like states and —0.005
Ry for the conduction states. The principal difference
between the two sets of results is in the width and
position of the d bands. These are considerably wider

( 30%) and higher ( 0.15 Ry) with respect to the
conduction band for U4 than for U3. The reason for this
is that reducing the exchange eGects elevates the
potential by an amount proportional to p'~'. Therefore,
the energies of the d-like electrons, which are confined
to the higher-density interior of the atom, are raised

a
)b

0.5

& OAI-
I-

o- 0.3
Isl

Vga Vy&

0.7-
C9

LLi

~ 0.6
Q+

Lp

Lp

0.4-

FrG. 3. Detail of the energy bands in the region of the I point
(x/e, m./a, ~/u) for the tvro self-consistent potentials.

more than the energies of the conduction electrons,
which are found further out where the density is less.
This elevation of the d bands tends to spread out the
wave functions, thus increasing the band width. A
detailed comparison of the calculated energy bands is
shown in Table II.

Although the general shape of the bands is quite
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similar, the change in the position of the d bands with
respect to the conduction band is sufBcient to alter
some of the details. For example, at the L point (m/a,
z/a, vr/a) there are two doubly degenerate d-like levels
LI, and two singly degenerate levels: Li (a mixture of
s and d-like states) and L&' (which has p-like sym-
metry). Figure 3 shows the bands in the region around
this point. h. is the line from F(0, 0, 0) to L, and Q is
the line perpendicular to A on the face of the zone,
going from I. to W (~/a, 2~/a, 0) . It can be seen from
this figure that the energy bands are substantially
different in the two cases, the p-like level L2' being
much lower with respect to the d bands for V4 than for
V3. This is particularly significant in that the position of
the Fermi level with respect to the conduction band,
and consequently the Fermi surfaces, are considerably
altered by the shifting of the 1.2' level. In particular,
the Fermi surface for the o|. electrons is closed for V3
and multiply connected for V4.

As is usual in an energy-band calculation, the eigen-
values were computed at only a few points. However,
for many applications it is necessary to know the bands
throughout the Brillouin zone, so that some sort of
interpolation procedure is required. It has been shown'3
that a good fit to the band structure of transition
metals can be obtained if the one-electron wave func-
tions are assumed to be a linear combination of tight-
binding-approximation (TBA) functions and orthog-
onalized plane waves (OPW), and the interaction
integrals are treated as adjustable parameters. In this
scheme, the energy bands are the eigenvalues of a
matrix of the type

+OP%' HYB

+HYB +TBA

where XOPw is a 4&(4 matrix of the type derived by
Harrison, "KTBA is a 5&&5 matrix whose elements are
those for a d band in a fcc structure as given by Slater
and Koster" and XHva is a hybridization (HYB)
matrix derived by Hodges et ul."which approximates
the interaction between the 4 OP%'s and the 5 TBA
d functions.

The self-consistent energy bands Ve and V4 were
fitted to this scheme by a least-squares procedure until
the rms deviation of the interpolated values from the
calculated values was less than 0.005 Ry. The resultant
parameters are shown in Table III. These parameters
were then used to calculate the density of states, the
Fermi surfaces, and the effective masses for both
potentials in order to compare the results with the
experimental data.

B. Comparison with Previous Calculations

The literature of the past few years contains several
calculations of the energy-band structure of nickel. The

2~ L. Hodges, H. Ehrenreich, and ¹ D. Lang, Phys. Rev. 152,
505 (1966).

'4 W. A. Harrison, Phys. Rev. 118, 1182 (1960).
O' J. C. Slater and G. Koster, Phys. Rev. 94, 1498 (1954).

augmented-plane-wave method has been applied to the
paramagnetic case by (i) Hanus, ' who used a potential
generated from renormalized atomic orbitals of the
atomic configuration (3d)8(4s)', (ii) Mattheiss, ' who
used a superimposed-atom potential corresponding to
(3d)'(4s), and (iii) Snow, Waber, and Switendick, 6

who tried several different superimposed-atom poten-
tials with atomic co6gurations (3d)1™(4s)*,0(x&2.
These three calculations are qualitatively similar to
each other, differing only in the position and width of
the d bands. Calculation (iii) shows, as confirmed in
this work, that the d-band shift has a profound effect
on the topology of the Fermi surface, caused by the
altered ordering of the I.-point levels. Yamashita and
Wakoh" have also done several calculations for nickel,
both in the paramagnetic and ferromagnetic states,
using the Green's-function method. Since this method
is formally equivalent to the APW method, ' their
results are also very similar, showing the same sensi-
tivity of the d bands to changes in the potential.

In order to compare all of these results, we note that
each calculation can be fairly well described by only
two parameters: (i) the position of the d bands with
respect to the conduction band, a measure of which is
the energy difference between the states I'»' and I"&,

and (ii) the d-band width, characterized by the energy
dift'erence between X5 and Xi.

Using these two parameters as coordinates, each
calculation is plotted on the graph in Fig. 4. For com-
parison, a few calculations for other elements (Cu, Co,
Fe) with an fcc structure are included. ' "We note that
no matter what the potential, all the calculations tend
to lie on a straight line, which suggest that the energy-
band structure of an fcc transition metal could be
described by a single parameter, say, the position of the
d bands.

This diagram shows clearly the considerable variation
between the results of previous work. The principal
differences can be traced back to the atomic con-
figuration used. Those calculations which assumed a
smaller number of d electrons are found toward the
lower left-hand corner of the diagram. Although all of
the calculations listed here used the averaged free-
electron exchange potential V,", the e6ect of reducing
the exchange moves the results in the opposite direction.
In short, anything which makes the potential more
attractive for the d electrons narrows the d band and
lowers it with respect to the s-p band.

Of the previous calculations on transition elements,
only two have been carried to self-consistency, viz. ,
that of Wakoh' on copper and ferromagnetic nickel,
and that of Snow and Waber27 on copper, both of which
used V ".We can see by looking at Fig. 4 that there is
a considerable difference between the two results for
Cu (Refs. 8 and 27). Wakoh's d bands are displaced

6 K. H. Johnson, Phys. Rev. 150, 429 (1966).
2' E. C. Snow and J. T. Waber, Phys. Rev. (to be published);"B.Segall, Phys. Rev. 125, 109 (1962).
2' G. A. Burdick, Phys. Rev. 129, 138 (1963}."F.J. Arlinghaus, Phys. Rev. 153, 743 (1967).
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upward from those of Snow and Waber by approxi-
mately 0,15 Ry. This is almost exactly the same as
the displacement between Wakoh's bands for ferro-
magnetic Ni and those of V~ (the self-consistent bands
for V,").The reason for this discrepancy lies in the
simplified version of self-consistency used by Wakoh.
The wave functions used to generate a new potential
after each iteration were not chosen uniformly over the
Srillouin zone. His procedure was to pick out 5 func-
tions representative of the d-like electrons (corre-
sponding to local maxima in the density of states
curve) and another function representing a conduction
electron, corresponding to energy E(1'g + (—,) Ey.
These functions were then weighted to give 5.0 dn
electrons, 4.4 dP electrons, and 0.3 conduction electrons

of both spins. For the copper calculation, the corre-
sponding weights were 10 d electrons and one ccn-
duction electron. Since the "conduction electron"
function chosen here is a mixture of s and d-like func-
tions, this procedure tends to fix the amount of d-like

functions, this procedure tends to 6x the amount of
d-like character at too high a value, thus displacing the
d-bands upward. His final result is very close to that
of V4 (the self-consistent bands for —', V,"), since the
effect of overestimating the exchange tends to balance
the effect of using too many d electrons.

C. Comparison with Experimental Data

Of the wealth of experimental data that has been
published on nickel, there are several firmly established
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polated energy bands corresponding to V4. The energy is measured
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facts which should be explained by an energy-band
calculation, if the model is to have any validity at all:
(1) the saturation value of the magnetization, (2) the
electronic specific heat at low temperatures, (3) the
Fermi surface topology as deduced from de Haas —van
Alphen measurements, (4) the saturation of the
magnetoresistance, and (5) the negative spin density
found from neutron diffraction and positron annihi-
lation data.

In order to interpret the hrst two of these properties,
we need to calculate from the energy bands, the density
of states, i.e., the number of allowed energy levels per
unit energy. Mathematically this is

0 d
N, (8) = ,— dk,

(2~) dg Es(k)(e

where E,(k) is the energy of an electron with spin s
and reduced wave vector k and is the volume of the
unit cell. Since E,(k) is not known analytically from
the computation, we approximate by

n, (g)=(ng)-' g w(k),
a&Z, (k)&a+bc

where the sum is over those k points at which E.(k)
is known, and w(k) is the weight for k. In this calcula-
tion E,(k) was calculated at only 20 nonequivalent
points, which is not enough to give an accurate 44, (E).
Using Hodge's interpolation scheme, it was found that
evaluating the energies at the 505 points of Grid No. 4
of Table I was sufficient to give a density-of-states

holes
X

FIG. 6. Cross section of the Fermi surfaces in the k, =0 plane
for V4. The P-spin surfaces are shown as solid lines and the n-spin
surface as a dashed line.

curve with the proper "peaky" nature, shown for V4
in Fig. 5.

The electronic specific heat c„at low temperatures is
related to the density of states at the Fermi energy by
the equation

C„=', ( r'ks') -Lrt (Er) +r4p(Er) j.
The measured value of c„corresponds to a total density
of 3.1 electrons/atom eV." The calculated values of
n(Es) are r4(VB) 4.3 e(V4) 2.7 electrons/atom eV.
The discrepancy in the value for Ve is a further indict-
ment of these bands, since the method of calculating
44(E) should be expected to give a density /ower than
the exact result.

Both calculations show the Fermi energy occuring at
a high peak of the density-of-states curve which agrees
with Slater's criterion" for ferromagnetism. The results
are also comfirmed by the recent measurements of the
magnetic susceptibility" x&, which satisfies a relation-
ship of the form

x. '~ L~-(Et) j '+L~e(Et) 1 '.

The measurements indicate a very small x&, which
would be obtained only if r4 (Er) is small. We note
that in both V3 and V4, since the n d bands are filled,
n. (E,) «ne(E, ) .

Although the Fermi surface of nickel is not as com-
pletely mapped out as that of Cu and the noble metals,
at least one feature has been 6rmly established. The
de Haas —van Alphen measurements'4 indicate a small
cross-sectional area of the Fermi surface in the L111j

"W. H. Keesom and C. W. Clark, Physica 2, 513 (1935).» J. C. Slater, Phys. Rev. 49, 537 (1936)."A. J. Freeman, reported at the Sanibel Island Symposium in
Quantum Theory, January, 1966 (unpublished)."A. S. Joseph and A. C. Thorsen, Phys. Rev. Letters 1j., 554
(1963).
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Fro. 7. Cross section of the Fermi surfaces in the h =k„plane
for U4.

direction. This is interpreted as a "neck" in a Fermi
surface similar to that found in copper, i.e., roughly
spherical with protrusions that make contact with the
Brillouin zone at the L points. The neck area is about

that found in Cu, corresponding to an angle of
6.8'&0.2' subtended at the F point.

The Fermi surface derived from the energy bands for
V4 is shown in two cross sections in Figs. 6 and 7. It
consists in this case of four sheets for the down-spin (P)
bands and one in the up-spin (cr) bands. The P sheets
consist of small hole surfaces at the X points in the 3rd
and 4th bands, a closed surface with protrusions along
the Z directions in the 5th band, and closed surface
with protrusions along the A. directions in the 6th band.
The sole n sheet is a multiply connected surface with
necks at the 1. points, in qualitative agreement with
experiment. The calculated angle subtended at I' is
'?.5', slightly larger than the measured value.

Wakoh's conclusion' that the position of the I.s'P level
below Ef implies that the 6P Fermi surface be multiply
connected is erroneous, as can be seen from Fig. 3.

The Inodel of the a Fermi surface is consistent with
the magnetoresistance data of Fawcett and Reed."
These measurements also show that the magneto-
resistance saturates at high magnetic fields. This type of
behavior is usually associated with an uncompensated
material. Nickel, being an even-valenced metal, would
ordinarily be expected to behave like a compensated
material. This would be the case in the ordinary
energy-band model in which the two spins are degener-
ate. However, the unrestricted case can give rise to
the situation where a diferent number of bands are
occupied for either spin, the sum of the occupation
numbers being an odd number. Experimentally, " the
number of electrons per atom must satisfy the relation

N, (n) +rs, (P) res(n) —Ns(P) =-1.0,
3i' E. Fawcett and W. A. Reed, Phys. Rev. 131, 2463 (1963).

TABLE IV. Comparison of calculated and experimental quantities.

Measured quantity

Magneton number (Bohr magne-
tons)

Density of states at the Fermi
level (electrons/atom eV)

Neck of 6a Fermi surface,
Angle subtended at I'

Cross-sectional area (atomic
units)

Calculated Experi-
U3 U4 mental

0.65 0.62 0.606

4.3 2.7 3.1

~ . 7 5' 6.8'

~ 0.010 0.008

Effective masses (in units of m& ~ ~ ~ 0.2 0.26
the electron mass) ' tn~ s s ~ 0.5 0.65

4P hole surface around the
X point

Cross-sectional areas
(atomic units')

Negative spin density
(percentage of the magne-
ton number)

0.058 0.072 0.063
0.023 0.030 0.026

7 8'7o 9 4'7o 19'

~ mg and m~ are the transverse and longitudinal effective masses as de-
fined in Ref. 34.

"these are the cross-sectional areas parallel and perpendicular to the
I'XU' plane.

36 D. C. Tsui and R. W. Stark, Phys. Rev. Letters 17, 831
(1966).

»V. L. Sedov, Zh. Eksperim. i Teor. Fix 48, 1200 (1964)
LEnglish transl. : Soviet Phys. —JETP 21, 800 (1965)g.

38 H. Mook and C. G. Shull, J. Appl. Phys. 37, 1037 (1966).

where rs, (s) is the number of electrons/atom on the
electron Fermi surfaces, and rss(s) is that on the hole
Fermi surfaces. This equation is satisfied by both of the
energy bands V3 and V4., since in both cases 6ve of the
cr bands and four of the P bands are filled, so that only
one of the ten valence electrons is left to be distributed
over the Fermi surfaces.

Further de Haas —van Alphen measurements" appear
to have found the 4P section of the Fermi surface (the
light mass hole pocket at the X point). No evidence
was found for the 3P surface, perhaps because of its
larger effective mass. However, it should be noted that
this feature of the calculated Fermi surfaces is the most
doubtful, since a shift upwards of E~ of about 0.005 Ry
with respect to the d bands would cause this hole pocket
to disappear.

Recently, it has been discovered through measure-
ments of positron annihilation'" and neutron diffrac-
tion" in ferromagnetic Ni, that the electron spin
density is negative in the outer regions of the unit cell.
It is found that for both V3 and V4, the conduction
electrons are polarized opposite to the d electrons, so
there is a theoretical negative spin density outside the
spheres, and just inside the spheres. The measured'
value of 19% of the magneton number (0.606) is larger
than the theoretical ones for both calculations, perhaps
because of the neglect of the nonspherical terms of the
potential.
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A summary of the experimental and calculated data
is shown in Table IV. It can be seen that the V4 self-
consistent bands (V,=as',") are in much better
agreement than those for Vs(V, =V+).

IV. CONCLUSIONS

The purpose of this work has been to solve as accu-
rately as possible within the limits of present com-
putational techniques, the unrestricted Hartree-Fock
(UHF) equations in a ferromagnetic solid.

In attempting to solve the UHF equations, we have
used the one-electron approximation. This has had con-
siderable success for atomic systems, and it can be
shown" that it can give a solution that is very nearly
as good as the exact Hartree-Fock value. There is no
reason to believe that the same should not be true for a
solid. The problem here is to 6nd the "best" one-electron
approximation, i.e., to 6nd an effective local exchange
potential that can accurately reproduce the exact
Hartree-Fock solution. One way to do this would be to
calculate the total energy of the solid in the correct
way, viz. , E& (4

~
R

~

——%'), where % is a determinant
made up of the approximate self-consistent one-electron
functions and K is the exact Hamiltonian, and then to
minimize E& with respect to the exchange approxima-
tion. Lindgren" has found that this method works very
well for atoms, giving better agreement with the experi-
mental binding energies than the exact Hartree-Fock
method. Such a scheme is of course much more dificult
in a solid, but de Cicco" has recently shown that it is
feasible to compute the total energy of a solid, so that
an investigation of this type might be possible in the
future.

This has not been done in this work, but it has been
shown that slightly changing the one-electron
Hamiltonian critically changes the resulting energy-
band structure. In particular, it turns out that using
the averaged free-electron exchange approximation
V,"=—6(6p,/Sm) 'I' gives qualitative disagreement
with experiment, whereas reducing the exchange to
(-,') V" gives agreement for most of the experimental
data. The strongest argument for this conclusion is the
Fermi surface structure deduced from the calculated
energy bands. The existence of a copper-like Fermi
surface with a small "neck" in the AL1117 direction,
which has been 6rmly established"" by de Haas —van
Alphen and magnetoresistance experiments, is rot
predicted by the V "bands, but does occur when the
exchange is reduced. This tends to confirm the con-
clusion that others have reached for atomic systems,
i.e., that V,"overestimates the exchange effects.

This sensitivity of energy bands to changes in the
one-electron approximation was not pointed out in
previous calculations of this type, mainly because they
were not carried out to self-consistency, and therefore
no conclusions could be made about the adequacy of
"I.Lindgren, Phys. Letters 19, 382 (1965)."LLindgren, Arkiv Fysik 31, 59 (1965).

the Hamiltonian. There A,us been one other calculation
for a metal (that of Snow and Wabersr on Cu) that
was self-consistent using the V," exchange. The dis-
crepancy of the Fermi surface did not occur in this
case, since the position of the Fermi level with respect
to the position of the d bands is different for Cu than
for Ni. In Cu, there are 11 valence electrons per atom,
10 of which are "d like, " so that the d bands are full.
The Fermi level therefore lies above the d bands in Cu,
whereas in Ni, having one less valence electron, has its
Fermi level slightly below the top of the d bands. In
both cases (this work and Ref. 27), going to self-
consistency lowers the d bands with respect to the
conduction bands. For Cu, the position of E~ with
respect to the conduction bands remains essentially the
same, but for Ni, E~ is lowered with respect to the
conduction bands. The position of Ey with respect to
the conduction bands is what determines the shape of
the Fermi surfaces. Therefore, going to self-consistency
in Cu showed no qualitative change in the Fermi sur-
face, as is the case for Ni.

Actually, before we can definitely say whether the
discrepancy is due to the inaccuracy of V ", we should
examine the approximations made in this computation,
in order to see if there couM possibly be some eBect
which would shift the bands enough to bring the V"
bands into agreement with experiment. From Fig. 32,
it can be seen that this shift would have to be approxi-
mately 0.1 Ry in order to bring the d bands up far
enough to give the experimentally observed Fermi
surface.

There are four important approximations which have
been used in this computation:

A. Neglect of Relativistic Effects

They can be handled within the framework of the
energy-band model, and are certainly important for
heavy atoms. Calculations which have been made
(e.g. , Ref. 41) show that these effects are on the same
order of magnitude in a solid as in a free atom. For the
Ni atom, the relativistic splittings of the one-electron
energy values are" ~0.01 Ry, so that it does not appear
that they could qualitatively change the Fermi surface
structure.

B. Neglect of the Nonspherical Component of the
Potential

In deriving the potential of Eq. (9) from a muon-tin
charge density we used the spherical average instead of
the actual Ewald potential. In Ref. 15, it is shown how
these e8ects can be taken into account, by expanding
the non-mu6in-tin part of the potential in terms of a
Fourier series. For example, it turns out that the L2'
level can be well approximated by a single symmetrized
plane wave corresponding to k=(s/a) [111j.The

4' J. B. Conklin, L. E. Johnson, and G. W. Pratt, Phys. Rev.
1Ã, A1282 (1965).
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Fourier component of the Ewald potential correspond-
ing to K= (2~/u) [111$is" equal to —(Q/a) (0.0096) .
Substituting in values of Q=0.26 and a=6.6S shows
that the energy shift of the 1.2' level would be on the
order of only 0.001 Ry. Since this level is the one
which determines the neck of the Fermi surface, it
appears that the inclusion of these non-muon-tin terms
would change the resultant Fermi surface only by a
negligible amount.

C. Neglect of the Nonsyherical Components of the
Charge Density

The Ewald potential was derived on the assumption
of a muffin-tin charge density. However, the departures
of the actual density from this approximation are
certainly significant, as can be seen from the neutron-
diffraction data. These effects are much harder to
estimate, "especially the nonspherical parts within the
spheres. It can be done by an expansion in terms of
spherical harmonics, but if more than a few / values
are important, the number of integrals to be calculated
becomes prohibitively large. They should, of course,
be investigated if the data are to be accurately inter-
preted, but it is unlikely that they will seriously affect
the energy-band structure as presented here.

D. Neglect of the Distortion of the Core States

In this calculation, the core-state wave functions

(1s, 2s, 2p, 3s, and 3p) were assumed to remain un-

changed from the values found for the Ni atom. Snow
and%aber" in their calculation on Cu tried to estimate
the error involved in this assumption. They used two
values of the core density, one obtained from an
ordinary self-consistent atomic calculation, and the
other, from an atomic calculation in which all of the
wave functions were constrained to be in the %igner-
Seitz sphere (i.e., that sphere with volume equal to a
unit cell) . It was found that constraining the core states
had the effect of pushing the d states Np with respect to
the conduction band by approximately 0.03 Ry. During
the course of this work, the bands corresponding to the
3s and 3p levels were computed using the actual crys-
talline potential, and a new potential derived from the
resultant wave functions. The changed potential

shifted the d bands up by an amount less than 0.01 Ry.
Neither estimate is enough to qualitatively change the
Fermi surfaces, although a more accurate calculation
should certainly take the distortion of the core states
into account.

The arguments presented here, although not con-

clusive, tend to suggest that any discrepancy found can
be attributed to the approximation made in the
Hamiltonian, rather than in the approximations made
to And the eigenvalues of this Hamiltonian.

To this list of approximations another could possibly
be added, i.e., the neglect of any correlation effects.
These are of course not included in the Hartree-Fock
model, but they may be important in ferromagnetic
nickel. However, the importance of correlation cannot
be determined if the exchange is not known accurately.
Indeed, it may be that the averaged free-electron
approximation is a better estimate of the Hartree-Fock
exchange effects than it appears here, and that reducing
the magnitude of the exchange merely introduces some
effective correlation. More study is needed on these
effects, if the energy-band model is to be successful in
the explanation of ferromagnetic effects.

In conclusion, the main result of this work is that the
unrestricted Hartree-Fock equations can be solved in
a solid, at least in one-electron model, and that this
scheme forms a reasonable model for a ferromagnetic
solid. The accuracy obtained is su%.cient to give at
least qualitative agreement with experiment, and couM

probably be improved if better approximations to the
Hamiltonian were used.
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