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The statistical mechanics of simple antiferromagnets is studied over the entire temperature range by
methods similar to those of Callen and Liu for ferromagnets. It is shown that the energy spectrum and the
sublattice magnetization as functions of temperature are the solutions of a set of coupled equations. The
equations are solved numerically for S=-„and the results compare very well with existing theories in
both high- and low-temperature limits. The Neel temperature is also calculated for general spin value.
Compared with other theoretical estimates, the Neel temperature obtained this way is appreciably higher
for S=—, but approaches agreement in the large-spin limit. The transverse correlation functions of two
spins and the correlation length for short-range order above the transition temperature are also calculated.
The longitudinal correlation functions of two spins are calculated by extending Liu s method for ferro-
magnetism to antiferromagnetism. A calculation is carried out for S=-, using the Callen decoupling scheme
for three-spin Green s functions. It is shown that the longitudinal correlation functions are related to the
first-order response of the system to a space- and time-varying field. Thus, to calculate the longitudinal
correlation functions, a perturbation calculation to first order is necessary and Callen's original decoupling
scheme for the three-spin Green's functions has to be extended for Green's functions with perturbation.
A satisfactory extension of the Callen decoupling scheme to the first-order equation of motion for Green's
functions is found. The extended decoupling scheme leads to a number of desirable results: Rotational
invariance of the correlation functions and susceptibilities at and above the Neel temperature and the
validity of the sum rule for spin operators over the same temperature range. The parallel susceptibility
is also calculated, as well as the internal energy and the specific heat above the Neel temperature. The ground-
state energy turns out to be slightly lower than the values predicted by other theories. Numerical calcula-
tions of parallel and perpendicular susceptibilities for S=-, are carried out and the results are presented.

INTRODUCTION

STATISTICAL theory for antiferromagnetism
.I usually starts from a specific molecular model,

and does not inquire very much into its justification.
One frequently used model is the Heisenberg model,
which consists of a regular array of localized spins that
are coupled together by exchange interaction. It is
generally hoped that the statistical theory of the
model will explain the observed behavior of antiferro-
magnetic substances, at least semiquantitatively.

The crudest approximation for the solution of the
model is provided by the so-called molecular-field
theory. ' This theory gives several successful qualita-
tive predictions, including the existence of the transi-
tion temperature, specific-heat anomaly, etc. , but it
has many weak points, such as the failure of the
analysis at very low temperatures and the lack of
short-range order above the transition temperature.
The more refined Bethe-Peierls-gneiss approximation
was first applied to antiferromagnetism by Li,' and
this method gives short-range order above the Neel
temperature but again fails at very low temperatures.
General experience with cooperative phenomena sug-
gests two ways of making better approximations: the
high-temperature approximation and the low-tempera-
ture approximation. The 1/T expansion method de-
veloped by Opechowski' is an analog of the Bethe-

* Work was performed in the Ames Laboratory of the U. S.
Atomic Energy Commission. Contribution No. 2044.' L. Noel, Ann. Phys. (Paris) 18, 5 (1932); F. Bitter,
Phys. Rev. 54, (1938); J. H. Van Vleck, J. Chem. Phys. 9, 85
(1941).

'Y. Y. Li, Phys. Rev. 84, 72 (1951).' W. Opechowski, Physica 4, 181 (1937).

Kirkwood expansion method for a regular assembly
and belongs to the erst category. The most important
method for low temperatures is the spin-wave theory. 4

Both approximations rely on series expansions and they
suffer from the drawback that their applicability is
limited to a certain range of temperature where a
small number of terms is sufficient. They have not
been able to discuss the existence of phase transitions
since it has not been possible to determine the general
term in any of these expansions.

Tyablikov' first employed the technique of double-
time temperature-dependent Green's functions to
Heisenberg ferromagnet with spin -', . Extension of the
theory to higher spin has been achieved by Tahir-Kheli
and ter Haar' and Callen. The application of the
theory to Heisenberg antiferromagnet has been studied
by Pu, ' Oguchi and Honma, ' Lines, " Anderson and
Callen, " and Lines and Jones. 'a The most important
feature of the Green's function theory is that it treats
the entire temperature range and agrees with the

4H. Bethe, Z. Physik 7l, 205 (1931); G. Heller and H. A.
Kramers, Proc. Roy. Acad. Amsterdam 37, 378 (1934); L.
Hulthen, Proc. Amsterdam Acad. Sci. 39, 190 (1.936); P. W.
{1952).
Anderson, Phys. Rev. 86, 694 (1952); R. Kubo, ibid. 87, 568' S. V. Tyablikov, Ukr. Mat. Zh. 11, 287 (1959).

'R. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 {1962).
7 H. B. Callen, Phys. Rev. 130, 890 (1963).' F.-C. Pu, Dokl. Akad. Nauk SSSR 130, 1244 (1960);

131, 546 (1960) t English transls. : Soviet Phys. —Doklady 5,
128 (1960);5, 321 (1960)j.' T. Oguchi and A. Honma, J. Appl. Phys. 34, 1153 (1963).

'0 M. E. Lines, Phys. Rev. 131, 540 (1963);135, A1336 (1964);
139, A1304 (1965)."F.B, Anderson and H. B. Callen, Phys. Rev. 136, A1068
(1964)."M. E. Lines and E. D. Jones, Phys. Rev. 139, A1313 (1965);
141, 525 (1966).
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spin-wave theory at very low temperatures and with
statistical theory at very high temperatures. Thus there
is hope that the result may not be too far from the
correct implication of the Heisenberg model over the
entire temperature range. The exact equation of motion
for the Green's function involves higher-order Green's
functions and must be linearized by some approximation
so that it can be solved for the Green's function. The
random-phase approximation is the simplest and most
popular decoupling scheme for this purpose, but it
results in a disagreement with the low-temperature
theory. ~ '0 Callen~ and Anderson and Callen" proposed
a more desirable decoupling scheme from heuristic
physical grounds.

Although much progress has been made in the
direction of Green's function theory, it has not been
possible to make a complete study of the Heisenberg
model in this way because an essential quantity, the
longitudinal or ss correlation function of two spins,
does not follow directly from the theory, s being the
direction of preferred antiferromagnetic spin alignment.
For the Heisenberg ferromagnet, this problem was
solved by Liu" for general spin values using the
random-phase approximation.

The present work treats the statistical mechanics of
cubic antiferromagnets with isotropic, nearest-neighbor,
Heisenberg interactions by use of Green's-function
technique. In the first part of the paper, the energy
spectrum, sublattice magnetization, and Xeel tempera-
ture are studied for the general spin value in close
analogy with Callen's work for ferromagnet. v In addi-
tion to these, the transverse correlation functions,
perpendicular susceptibility, and correlation length for
short-range order above the transition temperature are
also calculated. In the later part, Liu's work for
ferromagnet" is extended to antiferromagnet and an
explicit calculation is carried out for S=~. The longi-
tudinal correlation functions, parallel susceptibility,
internal energy, and specific heat are calculated and
discussed there.

THE GREEN'S-FUNCTION EQUATIONS

For a system with time-independent Hamiltonian H,
the temperature-dependent causal Green's function
involving two Bose operators A and 8, is defined by

G, (~) =((A(~) B(O) ))= —i(TA(~) a(O) ), (1)

where A(t) is the Heisenberg opera, tor at time t; T is
the time-ordering operator of Dyson, which is defined
in the usual way so that

TA (t)a(o) =0(t)A (t) a(o)+0( —
&)a(o) A (t), (2)

8(/) being unity for positive t and zero for negative 3;
and the single bracket denotes an average with respect

"S. H. Liu, Phys. Rev. 139, A1522 (1965).

to the canonical density matrix of the system. The
equation of motion for G~a(/) is derived easily from its
definition and the equation of motion for A (/) and it
reads'4

Z(d/d&) G~a(t) =b(t) (LA, B]) i(T—[A (/), H(&) ]B(O) ).

One can define the Green's function for imaginary
time argument r by an analytic continuation which is
equivalent to the replacement of t by ir and—Gz&(t)
by iG—~s(r) ."Then the equation of motion for G~a(7)
reads

(d/dr) Gza(r) =5(r) (LA, 8])+(TLH(7), A (r) ]8).(4)

The model of the present problem is taken as a cubic,
two-sublattice antiferromagnet with nearest-neighbor
interaction. The Hamiltonian has the form

H =JggS&,'Sg„+~+JQQS&J+b S»,

where j.i refers to the lattice site i in the sublattice 1;
and the index for the nearest neighbor of i is i+8 It is.
assumed that the spontaneous magnetization of the
sublattice 1 is in the +s direction and that of the sub-
lattice 2 in the —2: direction. Following Callen, ' the
Green's function to be used in this section is defined by

G, ,„,'( ) =&(S;+;S„, ( S„,')))
= (TS„;+( ) S„, exp(aS„,') ), (6)

where a in the exponent is a parameter and Sq~+(r) is
the imaginary time version of the Heisenberg operator
S&„+(t) and Xi and pj refer to lattice sites. The equation
of motion for the Green's function can be written as

(d/d )G;,»'(r) =8( )8g„5,A(a)

+27+/(TSq~+(r) S,,;+~'(r) S„, exp(aS„,') )

—(TS''( )S.,'+'( )S. p( S.'))], &~ (7)

where

0&(a) = (LS&~+, S&„exp(aSg,') ]),
and it is independent of i because of translational
invariance.

In order to solve Eq. (7) for Q;,»'(7) it must be
linearized. The simplest approximation is the random-
phase approximation (RPA), in which the fluctuations
of S& are ignored and the operator S~ is replaced by
its average value (Sq,*). To take into account the
Quctuations of Sq,' around its average, Callen~ sug-

' D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) t English
transl. : Soviet Phys. —Usp. 3, 320 (1960)g.

"See for, example, L. P. KadanoG and G. Baym, Quantum
Statistical 3fechanics (ltd'. A. Benjamin, Inc. , New York, 1962),
Chap. 1.



gested a decoupling scheme for ferromagnet of the form leads to

«s;*s,+;a»;,, (s,*)(&s,+;a)&

-f&S;-S, &«S,»&, (9)

and he chose b to be (S,')/2S' from physical grounds.
If one tri.es to extend this decoupling scheme to an
antiferromagnet, an ambiguity arises from the fact that
there are two sublattices. If one w'rites ji for i and 2j
for j in Eq. (9), then there are two possible choices of b:
(Si )/2S' and —(S»')/2S' Anderson and Callen"
claim that the first choice results in an internal incon-

sistency. But without an external field, which is the
case treated by the present work, . there seems to be no
internal inconsistency. %e carried out calculations
based on both, but only the latter is reported here. It
turns out that the latter gives not only simpler algebra
in perturbation calculation, but also the following

a Posteriori advantages over the first: continuity of a
number of physical quantities at the Neel temperature,
rotational invariance of correlation functions and sus-

ceptibilities at and above the Neel temperature, and
the validity of the sum rule for spin operators over the
same temperature range. After decoupling, Eq. P)

(d/dr) Q„,„; (i) =b(i) 8),„8;,Oi, (~)

—2JK{m~[1—4.('+i).~*(0)/2S'3G ('+i),.i'(~)

—m.L1—6',.i'+»(0)/2S'X ',.~ (~) }

6*,, (a) = &Si' [exp(~S~*') 3S.'& (11)

and mi is written for (Si,;*&.

Green's functions can be Fourier analyzed:

G„,„;(.) = (2/XP) PQG,„.(k, m)

X exp[ik (R„;—R ) —~„~l,

A*,.i(~) = (2/&) ZA. (» &) expL —ik (R~' —R.i) j
(12)

where —,'Ã is the number of magnetic ions in each

sublattice, the sum over k runs over —,'S points of the
first zone in k space, m is an integer, co =2irm/P, and

P = (ksT) '. The equation for Gi,„'(k,m) is easily

found to be

i(o„G—„„(k,m) =8),„8),(a)+2m J(0) [1—(Xs')-'Qy(k') P)„(k' 0)7',„(k m)

—2m'(k) [1—(Xs') 'gy(k') f,i, (k', 0)$G,„(k,m), vWX (13)

J(k) =st(k) =JQ exp(ik 5),

s being the number of nearest neighbors and 6 being a nearest-neighbor vector. If one defines Ai, (k) by

A (k) =2m'(k) [1—(SS') 'Qy(k') f i, (k' 0) $ i WX

then from the symmetry of two sublattices one can show that

The solution of:,Eq. (13) is

A (k) =Hi(k) =y(k) A (0) = —Ai(k).

with

Gii (k, m) =-', [8i(a) j{[1+A(0)/(vi)(o&i,—iru„) '+[1—A(0)/ai j(—rai, —is) )-'},

G»'(k, m) =[0 (a)~(k)/2~~3[(~~ —~-) ' —(—~.—i~-) '1,

Gii'(k, m) = [8 (—a)2i(k)/2(0i, f[(a)i, iso —) ' (-——a)i, —i(o )-'],

Gii (k, m) =-', [Oi(a) /{[1—2 (0)/(ok](cog —ice„) '+[1+3 (0)/ca)]( —
cubi,

—ice„) '},

Mi,
——[A'(0) —A'(k) $'I'=A {0)[1—y'(k) ]"'.

If one uses the standard relationship

P 'Q exp{—io) r)/(Wa)j, —is& ) = exp(W(ajar)/[1 —exp(WPcog)] (19)
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Eq. (17) leads to

G.(k, )=-:(0(» 1+""
1—exp( —P~k)

A (0) exp (oikr)

oak 1—exp(pcok)

82(u) A (k)
2Q)g

exp( o)kr—) exp(o1kr)

1—exp (—po1k) 1—exp (po1k)

fl, (a) A(k) exp( —~kr)
G21'k, r =—

2o&k 1—exp( —Pook)

exp (o1kr)

1—exp(Po1k)

1—exp( —p1ok)

(0) exp(o1kr)

1—exp (Pook)
(20)

It is evident that one can write

A.(» o) =G.1'(» r=0 ) =~1(o)4».(k) (21)

with

~.= &~.(k) ).=(»~) Z~.(k). (2ti)

where

411(k) =yL —1+A (0)oak ' COth, I3Mk7,

From Eq. (22) one observes that

$11+$22
421(k) =—412(k) =-,'A (k) o1k-' coth-', pook,

&22(k) =22[—1—A(0) iok ' cothxopiok7.

One also observes that

(G"(» =0+)) =(2P')ZG, (k, =0+)

=s(s+1) —((s '*)')+
=—,'Wmq for 5=—',.

and substituting this into Eq. (25) one 6nds m2= —mi
as expected from symmetry of two sublattices.

For 5=-', it is not necessary to go through the above
procedure with parameter a since Eq. (21) and the
relation

(27)tti(0) =2mi ———2m2 ———02(0)

Thus, for 5=-'„
(21%) (G»o(k 0-) )„and (21K) &G22o(» 0+) )„

can be interpreted as the total number of spin reversals
in each sublattice. Then Gii (k, 0 ) and G22 (k, 0+)
are the occupation numbers of elementary excitation
of wave vector k in each sublattice. For higher spin
this interpretation is not so evident because of the term
&(S1;*)2). From symmetry one expects occupation
numbers to be equal in pairs corresponding to the two
sublattices, and in fact this is the case as one can
easily see from Eq. (20) .

Equations (8), (15), (18), (21), and (22) are the
basic set of coupled equations for the theory. If one
introduces a quantity

Qk(a) = &exp(as)„*) ), (24)
and exploits the functional dependence of Qi(a), Hk(a),
and Q&k(k, a) )k on the parameter a, then one finds
that the formal relationship between these three quan-
tities is exactly the same as that of ferromagnetic case
as worked out by Callen. ~ For example, the sublattice
magnetization mq is given by

mi ——
t (d/da) Qk(a) 7.=o

(S—yk), ) (1+yak) ' +'+ (S+1+y1,k) (tt kk)
' +'

(1+y )2S+1 (y ) 2S+1

ENERGY SPECTRUM) SUBLATTICE MAGNETIZA-
TION) TRANSVERSE CORRELATION FUNC-

TIONS, AND NEEL TEMPERATURE

If one introduces the Fourier transform of spin
operator de6ned by

81,k= QS)„exp(—ik Rk;), (28)

then from Eq. (22) and the definitions for the involved
quantities one easily gets

(s. .+s..-)= &s, .-s,.+)

=-2, mlVLA (0) (ok ' cothopo1k —17,

(s, ,+s, ,;)= (s, ,+s, ,;)
(Sl,—k S2 k ) (S2,—k S1 k )

= —-,'mXA (k) o1k ' coth-', p&ok,

(S1,—k S1,k ) (S2,—k S2,k )
= 22mlV)A (0)oik ' cothipo1k+17, (29)

with m written for m~. Then the transverse correlation
function of two spins or &Sk; S»+) is given by the

(25) inverse Fourier transform of Eq. (29). The energy

(23) determine /1k(k, 0) as a function of mk and Eq. (23)
provides a requirement of self-consistency which de-
termines mq.
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04—

interacting spin-wave theory"'7 appears in T' terms
and becomes very small as S increases. Thus, it turns
out that the agreement between two theories becomes
better with increasing S.

PERPENDICULAR SUSCEPTIBILITY

Using the Kubo method for the linear-response
function, " one can write the perpendicular suscepti-
bility of the system in terms of spin-correlation func-
tions as

x =(gps)' ( QSg,*(r)QS„;*(0))dr, (34)

0.5
TEMPERATURE 0'/TQ

I.O

where g is the Lande g factor and p~ is the Bohr mag-
neton. If one uses Eq. (29), Eq. (34) leads to

FIG. 1. Sublattice magnetization per spin for a simple cubic
antiferromagnet (5=-,') .

spectrum in Eq. (18) turns out to be

a)g
——2SsJR[1—y'(k) ]'~'

where
(30)

(31)

is the renormalization factor for energy spectrum.
R =m/S is the result of decoupling by RPA while R= 1
corresponds to noninteracting spin-wave theory.

Thus, for arbitrary spin S, temperature T, and
nearest-neighbor interaction J, one may determine the
energy spectrum &ok, the sublattice magnetization per
spin m, and the transverse correlation function of two
spins completely via a set of coupled equations: Kqs.
(25), (29), (30), and (31). For S=~i, numerical cal-
culations of m and E. have been carried out and the
results for simple cubic (sc) structure are shown in
Figs. 1 and 2. The results for bcc are very similar.

By a procedure similar to that for the ferromagnet, 7

the transition temperature can be determined and the
discussion of properties at the transition temperature
and very low temperatures is possible. "For example,
the Neel temperature at which m vanishes is deter-
mined by

(kg T~/2s IS)
= [(S+1)/3I03[1+ (S+1)(Io—1)/3SI03~ (32)

with
Io=2N '2[1—y'(k)] '

x~ = mN (gyre) '/(4sJSR), (35)

which decreases slightly as the temperature rises from
0 to T~ because of the factor m/R. This is also the
case in the interacting spin-wave theory, '~ while a
constant value is predicted by the molecular-6eld
theory, the noninteracting spin-wave theory, and the
Green's-function theory with RPA." If the above
susceptibility is expanded in powers of T at very low
temperatures, the temperature-independent term turns
out to be the same as that of interacting spin-wave
theory while the T' term gives small deviation propor-
tional to the 1/S. A numerical calculation result for
(35) is presented in Fig. 3.

ANALYSIS ABOVE THE HEEL TEMPERATURE

In a real antiferromagnet, there still exists short-
range order even above the Neel temperature. In the
absence of an external 6eld, a proper way of treating the

I.O—

K'

lK
OI-

X
O

hl
~ 0.5—
X
O
la)

CQ
Ct

Lal

~1.516 for sc; 1.393 for bcc. (33)
I

0.5
TEMP ERAT UR E 't Tl Tg )

I,O

For the right-hand side of Eq. (32) the molecular-field

theory gives (5+1)/3 while the RPA result" is

(S+1)/3Io. At very low temperatures it is possible to
expand m and E. in powers of T, and one 6nds that
the deviation between the present theory and the

FIG. 2. Energy-spectrum renormalization factor for a simple
cubic antiferromagnet (S=&2).

16 T. Oguchi, Phys. Rev. 117, 117 (1960).
17 S. H. Liu, Phys. Rev. 142, 267 (1966).
' R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
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problem is to introduce a fictitious field Bf pointing in
the +s direction at the sites of sublattice 1 and in the—s direction at those of sublattice 2 and to take the
vanishing Hf limit at the end of calculation. ' To this
end the Hamiltonian

II=JQQSg; Smgpg+JQQSg, ,+y S2,

h+S, ,z+h+S, .z (36)

with h=gp~P~, is used, and the vanishing h limit is
taken after the calculation is carried out. The symmetry
between two sublattices still exists and hence the rela-
tion (16) holds. The results of explicit calculation are
the same as those of the Hamiltonian (5) except for
the replacements: A (0)—+h+A (0) and

Q
X

IK
LI
CO
lal

E
CO

I.O
TEMPERATURE {T/T~)

2.0

LA2(0) A2(k)]1/2~& It h+A (0)]2 A2(k) Il/2

To investigate the properties above the Neel point,
it is convenient to introduce an order parameter x and
the quantity A defined by

x= lim(m/h) and A = limLA (0)/m], (37)
h~O

since m—+0 in the limit of h—+0 above the Neel point.
The quantity x is related with the correlation length
between two spins and approaches infinity as the tem-
perature is lowered to T~ as shown in the following.
Above T~ one obtains

2x'A kgb'(k)
SS' g (1 xA)' —LxAy(k)]'

2 k~T(1+xA)
h1l/ /, (1+xA)' —t xAy(k)]''

so P diverges as h—&0. In the same limit m can be
expanded in powers of p ', and from the 6rst term of
this expansion and Eq. (39) one obtains the equation
for x

FiG. 3. Susceptibilities for a simple cubic antiferromagnet
(~=5).

—EkgTx'Ay(k)

and the perpendicular susceptibility is given by

(43)

xi =xX(gpa) '/(1+2xA) . (44)

By putting x~~ one easily sees that the above correla-
tion functions and susceptibility are continuous at the
Neel point with the lower-temperature values given in
Eqs. (29) and (35).

When x is large and k is small, it follows from Kq.
(43) that

THE CORRELATION LENGTH

Above T~ the transverse correlation functions are
found to be

1VkaTx(1+xA)

(Sj,, g S/, ,/,+)~~leak//T/A-r/'(k'+~')

51—y'(k) ]'/' =gk+0 (k'),

(45)S(S+1)
3x

2k//T (1+xA)
~ ~ (»A)2-LxAv(k)]2

(46)

(47)
Putting x—+zo in Eqs. (38) and (40) and solving them,
one finds the temperature at which x diverges:

E'= 2/xAr/2,

(kaT /2sJS)
g being a constant depending on the lattice structure.
Hence, for large

~
R» —R»

~
one 6nds that

=p(S+1) /3IO]L1+ (S+1)(Io—1)/3SIO], (41) (S.' S»+&= (2/II) 'Z(S/, -~ S/, ~'&
k

the right-hand side of which is nothing but that of
Eq. (32) . Thus the temperature at which x diverges is
the Neel temperature. At very high temperatures, it is
possible to write

x =S(S+1)/3k~T+O(T ') .

X exp[ —ik (R/„—R»)]
(k~T/27''A)

X «pL —&(I »' —R» I)]/~ R/„—RM j.

(48)

Van Kranendonl, and J. H. Van Vlecl, , Rev. Mod. ph s. Thus the quantity E ' c:an be interPreted as a correla-
30, ]. (&958).

'
tion length between two spins, and the square root of
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the order parameter x is proportional to the correlation
length in the long-wavelength limit. As the tempera-
ture is lowered to T~ the correlation length becomes
infinite, i.e., long-range ordering commences at T~. At
very high temperatures the correlation length decreases
as T "'. Equation (48) is very similar to the ferro-
magnetic result. "

defines a new quantity SP(q, m) by
P

S„"(q,I) = (Tsi, ,'(r) S„,,'(0) ) exp(i(o„r) dr, (55)

it is easy to show that"

Z„"(q, (a) =S„"(q, m =iM e)—,

LONGITUDINAL CORRELATION FUNCTIONS ~) i *(q) M) = I&/Lexp( J3&)

In this section I.iu's work for ferromagnet" is
extended to antiferromagnet. For this purpose the
following perturbed Hamiltonian is used:

H, '=H fS, ,*—exp( mt+@—), (49)

where H is the unperturbed Hamiltonian (5); f is a
small parameter proportional to the amplitude of a
hctitious ac field which is applied to the sublattice o.,
5,, ~' is a Fourier transform of S„';and &=0+. It is to
be noted that there are four longitudinal two-spin
correlation functions for an antiferromagnet in contrast
with one for a ferromagnet, and to calculate those four
it is necessary to use two different perturbation terms
in the Hamiltonian so that each choice gives two
correlation functions, By definition,

(s„,*) = T.(,.s„,'), (50)

where 0 is the perturbation index and p.
' is the density

operator under perturbation. It can be shown that"

(S ')"=m„+f2»~(M) exp( —&at+et) +0(f') (5l)

with

xLS„&(q, —i +.) —Sp(q, —~—)). (57)

Putting this result into Eq. (53), one obtains the
dynamical ss correlation function.

In the following, the calculation is carried out for
5=-', . The general 8 problem is in principle the same
as the spin--, case except for much more complex
algebra. Since H' is time-dependent, one must be more
careful in defining Green's functions. The system is
unperturbed at t= —~, and the subsequent motion is
described by the time-development operator U(t, —m ) .
The Green's function under perturbation can be defined
in terms of U s, and its analytic continuation to imagi-
nary-time domain is possible. " As already mentioned,
for the spin--', case it suKces to use a Green's function
with a=0. In the imaginary-time formalism, the Green s
function to be used in this section is

G~;, "(r) =(Tsi'+(r) S (0) )"
where the average is taken with the perturbed density
matrix p, '. The equation of motion for G' is found to be

Z» ((o) = i ([s,, ,'(t'), —S„;*(0)j)
X exp( —iiot'+et') dt'. (52)

It will be convenient to define the Fourier component
of Zpf (M):

Z„(q, o&) =Z,Z» ((o) exp( —iq R„;).
The quantity Z„'(q, cv) has the same expression as
Z»'(&o) except for the replacement of S»'(0) by
s, , (o).

The two-spin correlation functions in Eq. (52) have
the spectral representations

~ dM
(S)„,'(t) S„,,*(0))= —Ji„'(q, (o) exp( —icot), (53)

where

J),„*(q,co) =2a+p„(m
~
S)„,'~ ri)

mp rt'

x(~
~
s„,,*

~
m)~(z„—z.+~), (54)

and the sum is taken over the complete set of eigen-
states of the unperturbed Hamiltonian H. If one

"L.Van Hove, Phys. Rev. 95, 1382 (1954).

+(rLH, '( ), s„;+( )~s„,-(0)), (59)

where the first term of the right-hand side originated
fromtherelationship8i' (0) = ([Si;+,Si; ])"=2(si )".
This is the essential simplification of the algebra for
the spin-ia case, and for general S the quantity 8&' (a)
should be carried through the rest of the calculation.

To calculate the longitudinal correlation function,
one needs to calculate the first-order quantity S„i(q, I)
in the presence of perturbation. Callen's decoupling
scheme for the unperturbed three-spin Green's function
must accordingly be extended for the perturbed Green's
function. That is, if one makes expansions

G.'»»" (r) =Gi*,., i( )+frG ',w'"'(r)+o(f')

(Si;(r) )' =mq+fsq (n) exp( —i&v r)+0(f'), (60)

where Si„'(e) is the imaginary-time representation of
Zi„(~), and tries to solve the equations for the first-
order quantities, there arises the problem of how to
take the first-order quantity in small parameter f from
the last term of Eq. (9) . Since the introduction of this
term contains a high degree of arbitrariness, one may
have some freedom in choosing the best way to approxi-
mate its 6rst-order response. The choice made in this
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work is

[(s„;)(s„-s„,+)((s„+;a))]&)

=[(s„,') ((s„+ a))+ (s„; )((s„+ s)) ](s„-s„;+).
(61)

The ultimate justi6cation of this choice lies in the fact

that the resulting ss correlation functions satisfy a
number of physical properties a correct theory re-
quires.

The equations for zeroth-order quantities have al-

ready been solved in the preceding sections. After
decoupling by the extended Callen scheme, the 6rst-
order equation for G turns out to be

(d/dr) G),;,»I'(r) =28(r) 8&,„8;;S)p(n) exp( kv—,r) —
. g.G),;,»(r) exp( —iq R),;—i&a„r)

—2J'Q {S)„'(n)[1—2P„(,+g),),;]G,(;+(),» (r) —S,(;+))'(n) [1—2))t g;, „(;+))]G),;,» (r) } exp ( ice„—r)

—»K {m~[1—24.(*+~)h~]G. +~),»"'(r) —m.[1—24~;,.('+~)]G ',»"'(r) }, (62)

The erst-order quantities can be Fourier analyzed:

S)„'(n) = (2/1V) Qs),'(k, n) exp(ik R),;)

G), o)'(r) =(2/1V)2p ' Q Gg &')'(k), kg, m) exp(ik) R)„—i' R„;—i(o„r).
k1,kg, m

After the Fourier transform, Eq. (62) can be written as
—[A„(0)+i~„]Gq„&' ()k&, k& —q, m)+A), (k&)G„„&')'(k&, k),—q, m) =28),„sq (q, n) —(1V/2)8)„G),„(k~—q, m —n)

+8;(0)G),„(k)—q, m n) ——8),'(k)) G„„(k)—q, m —n), ) AX (64)

(63)

where

(67)

8),'(k) =S),'(q, n) A), (k —q)/m)„ (65)
and the linear response to the perturbation expressed by S),'(k, n) =8), ,~s&~(q, n) was taken into account. It is
straightforward to write down the solution of the above equation in terms of the zeroth-order Green s functions
and S),'(q, n) 's.

To calculate S),'(q, n) one uses the self-consistency condition for Green s functions which is a relation connecting
S),'(q, n) and G)z"'(k&, k& —q, r =0 ) . From the definition (58) it follows that

G),;,);"(0 ) = ,' m, f-S—„'(n)—+O(f') (66)

Equating the first-order terms of Eqs. (60) and (66) and making Fourier summation, one gets

—S),'(q, n) = (2/1V) QG), ),o) (k, k —q, 0-) .

By use of the solution of Eq. (64), Eq. (67) can be written explicitly as follows:

—S)'(q, n) = (2/1V) S)'(q, n) +[A) (0)&o),
' coth~ pa&), —1]+Co +C)s) (q, n) +C252'(q, n),

—S2 (q, n) = (2/1V) S2'(q, n) g[A2(0) a» ' coth-', pre), —1]+Do'+D&s&'(q, n) +D2S&'(q, n), (68)

where

Co'= —mph'(2~)~), ,) '+1V),„{&.)[A)(0) +~),"][A)(0)+(a), ,)']+8,2Ag(k) Am(k —q) },
k

Cg ——1V-'Q(&o)a&), ,) '+1V),„{Ag(k)A2(k —q) A) (q) —[A) (0) +&a),"]As(k—q) Ax(k —q) },

C2 ——1V 'Q(~)~)~) '+1V),„{—[A)(0)+~),"][A)(0)+~), ~&]As(q)+A)(k) [A)(0)+s)), ~&]A2(k —q) })
k hp

Do = —m2+(2(o), M), ) '+1Vp„{a&A2(k)A&(k —q) +8~[Am(0) +a&),"][A2(0)+(o), ,"]},

D, =1V—Q(~)~)~)—+1V„„{ [Ag(0)+a)„][A,(0)+~), ~~]A„(q)+Ay(k) [A,(0)+&a„~~]A,(k q) })
k hp

D2=1V 'Q(o)),(o),~) '+1V),„{A2(k)A)(k —q) Ap(q) —[A2(0) +a)),"]Ay(k —q) Ag(k —q) }, (69)

1Vn ——1V22*——[1V(k) —1V(k—q) ]/( —
a&),+(u),~—ice„),

1V» ——1V»*——[1V(k) +1V(k—q) +I]/(~&+~, ,—m„),
1V(k) =[exp(P+),) —1] ',

(70)

(71)
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and it is to be understood that coi,~ means coi, for ) =1
and —~z for X =2. By use of the relation

(2m') '=2lV 'QAq(0)co~ ' cothx2P~q (72)

version of the relation (72)

4 ~ x(1+xA)
Sp „(1+xA)'—[xAy(k)]' ' (78)

which follows from Eq. (25) for 5= 2, Eq. (68) can be
solved for S&'(q, e) and S, (q, rI):

S~'(q, e) = —2m' '[Co' —2m(Co'Do —Do'C2) ],
S2 (q, I) =2mb '[D;+2m(Do'6 —Co'A) ], (73)

with

& = 1+2m(C~ —D2) —(2m) '(C~D~ —C~D&) . (74)

Putting these results into Eqs. (53) and (57), one
achieves the task of calculating the dynamical ss
correlation function of two spins.

To get the longitudinal correlation functions for the
temperature above the Neel point, one uses the same
procedure as that of the fifth section and the result
turns out to be

the left-hand side of Eq. (77) becomes equal to 2X(4)
and thus the sum rule checks above T~. But below T~
there seems to be no easy way of checking the sum

rule because of complicated algebra. Even in the spin-

wave region, the 2s correlation functions are so compli-
cated that it is not feasible to try to check the sum rule.
Perhaps one should not even expect to do so because
the expressions for the correlation functions are only
approximate.

PARALLEL SUSCEPTIBILITY

The parallel susceptibility can be calculated as the
ratio of the total magnetization to the applied field

which is parallel to the spin alignment direction. The
Hamiltonian to be used for this purpose is, in imagi-
nary-time formalism,

x(1+xA)
S&'(q, m) =Sf(q, e) =-',1V, , b„o,

&' =&—f(R,o*+S2,o*) (79)

—x'Ay(q)
SP(q, e) = SP(q, e) =-',S, 8„o.

(75)

When continued to the real-frequency domain, the
Kronecker 8 becomes p '8(~). Hence, one gets the
dynamical ss correlation functions of two spins

(S, ,'(t) S,,'(0) )= (S, ,*(t)S,,*(0))

1V x(1+xA)
2P (1+xA)' —[xAy(q)]''

&S, , (t) S, , (O) )= (S, , (t) S, , (O) )

(76)
JV —x'Ay(q)

2P (1+xA)' —[xAy(q)]''

These results together with Eq. (43) show that xx, yy,
and ss correlation functions are all equal above the Keel
point as expected from the fact that all spin directions
must be equivalent when A,—+0 in the paramagnetic
region.

One expects the correlation functions to be continu-
ous at the Neel temperature. By putting x—+~ in the
expressions for correlation functions of the paramag-
netic phase and comparing the result with the lower-

temperature phase result, one easily sees that they are
continuous at T~.

There is a sum rule for the static correlation functions
of spins, namely

(2/E) Z&S~, I S~,~)=-,'XS(S+1). (77)

If one uses Eqs. (43) and (76) and the paramagnetic

Then the parallel susceptibility is given by

xii = (gt o) 'Z&S~'*)'/f
Xi

=(g") (&S..')+&S.') )/f, (80)

1+8&V pmA(0) g-, . (82)
exp P(ug —1 '

If one uses the RPA which is equivalent to putting
2msJ for A (0), the modified result agrees with that of
Lines." It is to be noted that the second term of the
denominator is absent in the nonlinear spin-wave

theory, '~ and the spin-wave theory does not give the
factor (2m)' in the numerator. The extra term inthe
denominator vanishes at T=0 and is equal to unity at
T~, while (2m)' varies from (2mo)' to zero so that the
effect of these two terms compensate to some extent.
At very low temperatures m varies slightly with tem-

perature and the new term in the denominator is

the primes meaning averages under the perturbation.
Similar calculation as that of deriving Eq. (51) gives

&Si,o')'=o&mi+fSi'(0 o)+fS~'(0 o)+o(f')
&S2,o')'=-,'Emm+fS2'(0, 0) +fS,'(0, 0) +0(f'). (81)

Then, taking into account the relationships

S2'( —q, —e) =S&'(q, e) and S&'( —q, —e) =SP (q, e)

which can be proved by direct substitution in Eq. (73),
one gets the parallel susceptibility

x~ ~

——2 (gp&)
' lim[S&'(q, 0) +SP(q, 0)]

q-+0

=2P (2mgpo) ' exp (p~q)

exp PG)g —1
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vanishingly small, so one expects very good agreement
of the above result with that of the spin-wave theory.

It is easy to show that the parallel susceptibility in
Eq. (82) vanishes as T +0+—and becomes equal to the
value of perpendicular susceptibility at T&, which is
given in Eq. (35), as T +T~ —. One can also show that
the paramagnetic temperature version of Eq. (82) leads
to Eq. (44). Numerical calculations of parallel and
perpendicular susceptibilities for S=-', have been
carried out and the results are shown in Fig. 3.

ENERGY AND SPECIFIC HEAT

For the Heisenberg antiferromagnet with nearest-
neighbor interactions described by the Hamiltonian (5),
the internal energy is given by

E=(H)=41V 'sJ+p(q) (S&, , S&,,), (83)
q

so the internal energy can be computed if the static
correlation functions of spins are known, and differ-
entiating the result with respect to temperature one
obtains the specihc heat due to spin disorder. Although
expressions for all the correlation functions have al-
ready been obtained for 5=—'„ the study of the problem
for general temperature is rather hard because of the
complex algebra involved. In the following, the problem
only in paramagnetic region and ground state is studied.

In the paramagnetic temperature region when h—+0,
it can be verified that

6sJ [xAy(q) ]'
Ae ~ (1+»)'—[xA~(q)]'

putting x~oo in Eq. (84) and using Eq. (78) in the
same limit, one obtains the internal energy at TN

state energy consists of three parts: the contributions
from q=0, from the transverse correlation function
(q/0), and from the longitudinal correlation function
(q/0); so one can write

Ep —EP+E&+E&

Then from Eqs. (83) and (29) it follows that

(89)

where

E = —-'«1VsJ(2mp)',

E' = —«1VsJ(2mp) [2(c+c')],
c=21V '+{1—[1—y'(lr) ]"'}

(90)

(91)

(92)

~0.097 for sc, 0.073 for bcc,

c'=21V-'g{[1—~'(k) ]-»'—1}
k

(93)
One needs the explicit expression for (S~,~*Sp,~'), and
it is given by the inverse transform of Eq. (55)

(S&, ,*S&,,*)=P 'QSp'(q, e) exp( —ipp„p), (94)

0.156 for sc, 0.j.50 for bcc.

with SP(q, I) given by (73). If one keeps only the
6rst term D~~ in the numerator of (73) and approxi-
mates 6 by unity, one gets

4sJmpP + y(q)
n, q, k ~k&t—p

X+1V&„[A(I{r)A (1t—q) ]exp( —iM p). (95)
Xy

If one sums over m and takes the limit of T-+0+, Eq.
(95) leads to

E~———-',1VsJ[3(Ip—1)/Ip] E'~ ——«'1VsJ(2mp) '(c+c') '. (96)
~~—«'1VsJ(1.021) for sc, —-'«1VsJ(0.846) for bcc. (85)

The specific heat is given by

C =dE/dT = pP1V {[P(1+xA) +4x]Ig —8x(1+xA) 'Ip}

X {8P 'x'A[Ig —2(1+xA)'Ip]Ip —A-'

X[(2+xA)Ig —2(1+xA)'Ip]} ' (86)
where

I~=21V—~g{(1+xA)&—[xA~(q) ]P}-&
q

I,=21V-'g {(1+xA) ' —[xAq(q) ]'}-'
q

Ip=»-'Zv'(q) j(1+»)'—} xAv(q)]P}-', (87)
q

and the Boltzmann constant k& is set equal to unity
for convenience. At very high temperatures one gets

C= «(sJIT)'Zv'(q)+0(T ') (88)
q

At this point, it is to be noticed that all the correla-
tion functions are calculated for q&0, and the ground-

Since Eq. (72) leads to

mp ——[2(1+c')] ' (97)

» P. W. Anderson, Ref. 4; R. Kubo, Ref. 4; W. Marshall, Proc.
Roy. Soc. (London) A232, 48 (1955); J. C. Fisher, J. Phys.
Chem. Solids 10, 44 (1959); H. L. Davis, Phys. Rev. 120, 789
(1960);M. H. Boon, Nuovo Cimento 21, 885 (1961);T. Oguchi,J. Phys. Chem. Solids 24, 1049 (1963); S. H. Liu, Ref, 17; 'f.
Arai and B. Goodman, Phys. Rev. 155, 514 (1967).

as T—+0+, one obtains the ground-state energy of an
antiferromagnet to the above-mentioned approximation

—-'«NsJ(1. 234) for sc, —«1VsJ(1.173) for bcc. (98)

The value for sc agrees with the result obtained by
Boon, but the present result is a few percent lower
than the values given by other theories. " If one in-
cludes the next terms in the numerator and denominator
of (73), the resulting correction for the ground-state
energy is estimated to be less than 1%. It seems that
a calculation using the entire expression of Eq. (73)
would be very difFicult.


