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Ionization of hydrogen by electrons is examined for the case of high-incident-electron energies. The
Born quantum cross section is found to approach the classica1 expression in the limit of large principal
quantum numbers. The energy dependence of the cross section at high energy is discussed; it is expected
that the cross sections go smoothly from (1nE/E) to 1/E behavior as rt becomes large.

L Dt'TRODUCTION

W WHERE have been a number of recent papers' '
.dealing with classical models for inelastic collisions;

most of these concern the Gryzinski' binary-encounter
model. Though it is often stated that the quantum
and classical cross sections differ in their high-energy
behavior, the nature of the relationship has not been
carefully explored. ~ That they should be intimately
rela, ted is suggested by the equality of the quantum and
classical elastic Coulomb cross section. Section II shows
that the classical differential cross section and the

uantulTl CI'oss section fol ionization ill the blnaI'y-
encounter approximation are related simply. Section
III illustrates the correspondence between the two
expressions in the limit of large principal quantum
numbers. Some consequences of this correspondence
are discussed.

H. HIGH-ENERGY CROSS SECTIONS

%e consider the ionizing collision of an electron with
a hydrogen atom. In a classical analysis of the problem,
the binary-encounter model of Gryzlnski proceeds by
ending first the cross section for energy exchange in the
laboratory frame between two moving charged particles.
%'e quote the result' for the differential cross section
for energy exchange dE and momentum transfer K,
averaged over an isotropic distribution of target electron
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principle for scalable quantities, though no speci6cs are given.
The second paper details the results of statistical classical calcu-
lations which are not hampered by the binary approximation;
this too yieids a 1/E dependence in the high-energy total ioniza-
tion cross section.

s See Eq. (1) of Ref. 3 or Eq. (66), page A332 of Ref. 1. This
latter equation becomes our Eq. (1) upon substitution: d(cos5I) =
XdX/rrssos~' if we recognize that vs' ——(2Es/sa)'"(1+DE/Zs)'"
and &g=-,'E'. In doing this we keep in mind that Gryzinski's
incident electron is labeled 2. Our expression (1) has'-'also been
veri6ed using the averaging procedures y'ven in Ref. 2.

directions, whose speed is v2,

do = (2srdK/EtK') (dhE/es) . (1)

(Atomic units are used throughout. ) This expression
is then integrated over all allowable momentum trans-
fers and all hE from the ionization energy up to the
incident energy E~. The model thus assumes that the
collision is such that only the interaction between the
two electrons is important in determining the cross
section. The resultant total cross section' ' is propor-
tional to 1/Et for large Et. The expression for the total
ionization cross section in this binary approximation'
can also be analytically integrated over the exact
electron velocity distribution t given by Eq. (7) below)
in terms of a power series in (I/Et), where I is the
ionization energy. The leading terms in this series are
(I in rydbergs)

sras' 5 I5 2 /I&st'
~ ~ ~ ~ ~ 0 ~

Is 3 Etj sr tErj

where as is the Bohr radius Lsee also Ref. 7j.
The corresponding quantum-mechanical result for

high-energy incident electrons can be obtained by con-
sidering the Born approximation. In this limit the
scattering amplitude for ionization iso

fs„—(4sr) ' U——(rts) exp(iK rts)dsrts

exp LK' I'2 p f2 gg
'f2 d f2& 2

where 1 is the scattered electron, 2 is the ejected
electron, K=kp —k' is the momentum-transfer vector,
kp the initial, k' the final incident electron momentum.
x is the ejected electron's momentum, whose initial and
6nal state are described by fs, f„re spetci vie.y This
amplitude, in the case of hydrogen where V=1/rrs, is
seen to be merely a free-particle Coulomb amplitude
multiplied by a "form factor" associated with the
bound-state description. In Eq. (2) it is presumed
(so as to correspond to the classical presumption)
that the electrons are distinguishable, i.e., the wave
function has not been antisymmetrized.

QN. F. Mott and H. S. %'. Massey, The Theory of Atotmc
Collisions (Cambridge University Press, Cg,rgggjdge, Kggland,
1965), pp. 335 and 489.
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The differential cross section is (assuming —as will

generally be the cas- that after integrating over d02,
the expression will not depend on azimuth of k' relative
to ks)

d~ = (4w/E, ) (dZ/Z') I «„(Z)I'"d'eau„(3)
where

[ eg(r)['=D/(2w)'][ f exp(ix r)p(r)p. "(r)re p.

It is now easy to see that the classical value is identical
to (3) in the limit that

I «.%) I'= (I/4wus') &(I K—~ I
—»)

= (1/4wuss) 8((E'+x' —2Ex cosP) '"—vs). (5)

Here p is the angle between K and st. Equation (5)
used in (3) and integrated over dQs ——2s sinPdP, together
with energy conservation

hE =gkss —-'k" = —Es+-,'ss,
Ol

(lnE)/E behavior in the limit of small momentum
transfer or high energy, where exp(iK r) 1+iK r.

For the ground state this approximation gives:

I «g(E) I'~(8/7r') I (K—sr)'+1] s.

For excited states we would have additional compli-
cations because of the diGerent angular momentum
states. However, the normalized momentum-space wave
functions for a given principal quantum number aver-

aged over all angular momenta have been shown by
Fock" to be

Equation (7) is the correct expression to use for ob-
taining a classical correspondence. This function be-
comes sharply peaked as n increases, in fact acquires
delta-function behavior":

lim (1/rP) (x'+1/e') 4=0 x/0,
n~co

gives

d~ = KdKq

do = (2s./Ei) (dE/E4) (BEE/vs),
4sx'dxL(8/ws) (1/I') (x'+1/I')-4j =1 for all N.

0

which is identical with (1). Gryzinski s classical ap-
proach requires full conservation of momentum and

energy between the two electrons, whereas the quantum-
mechanical approximation, insists only on energy con-
servation because the nucleus can take up momentum.
However, in the limit when (5) is true, an averaged
momentum conservation follows. That only the magni-
tude I K—x I is involved in the conservation of mo-

mentum is a consequence of the averaging over the
atomic electron's angular distribution.

The high-energy behavior is obtainable from (3) by
noting that for very large E~, E must be small; thus
exp(zK r) 1+iK r can be used in. (4), yielding

I «„(E)I' E' I(0 I
Z

I s) I' This when used in (3) can
be readily seen to lead to (lnE)/E behavior for the
integrated ionization cross section. '

III. CORRESPONDENCE LIMIT

The genesis of Eq. (5) can be most easily seen in the
approximation that the ejected electron be describable

by a plane wave rather than a Coulomb wave function:
P„~exp(itc r) . In this approximation

I «.(&)I'=
I 4o(K —~) I' (6)

is just the square of the Fourier transform of the
bound-state wave function, evaluated at q=K —x. It
can be seen that, aside from a constant term" which
now arises because of the nonorthogonality of the
bound and free wave functions, (6) also leads to a

~o This constant term can be said to be due to the fact that this
ejected electron wave function lacks knowledge of the nucleus.
It vanishes if we orthogonalize the wave functions or even more
simply by using the full interaction potential V=1/r~s —1/r&

instead oi the simple 1/ru which is correct for orthogonal functions.

Thus in the approximation implied by (6), the use of
a delta function as in (5) is correct for large N.

Actually for any state no approximations need be
made to obtain the exact «„(E) in closed form. ' The
expression is not very transparent, but it can be argued
that its behavior is at least qualitatively the same as
that given by (7) .For example, if we look at the ground
state «„(E) for nuclear charge ZWI, this function also
becomes sharply peaked as ii=Z/as decreases. » The
expression for e„„(E)should go smoothly from its bound
state form to the continuum form as e increases. Here
by continuum form we mean that the nucleus is very
far away so the collision will be ordinary elastic elec-
tron-electron scattering, for which the quantum-me-
chanical (exact), Born, and classical cross sections are
equal.

If we accept the validity of the Born approximation
at suKciently high energy, the above remarks imply
that the cross section, at a given energy which is large
compared to the binding energy, should go smoothly
from lnE/E behavior to 1/E behavior as I increases.
This follows since (1) produces a 1/E behavior, and
also represents the limiting (fixed-energy) behavior of
(3) as n increases, whereas for Iow n and large enough

"V.Pock, Z. Physik. 98, 145 (1935}.
's The function 4sp'

~ p (p) ~s given by (7) peaks at p=1/Ra,
which differs slightly from the classical correspondence value for a
circular orbit vs=1/a (atomic units}. This momentum distribu-
tion is very sharply peaked for large n. This distribution is also
the exact classical distribution, as can be obtained by considering
a microcanonical ensemble. See Ref. 7.

"That is, in expression XVI(97) of Rei. 9, we can simulate
the s' behavior by letting Z/os-+Z/nas. Then the limit N~~
corresponds to p—4.
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Zt (therefore small E) the cross section has lnEt/Et
dependence. This can be seen to be verified by numerical
calculations of Omidvar. " He plots both the Born
approximation and Gryzinski ionization cross sections
for a=i—5, and finds that for the higher e, the Born
and classical agree at the higher energies calculated.
Of course, since momentum transfer decreases with
increasing energy, we can find an incident energy such
that the logarithmic behavior of the Born approxi-
mation is valid for any given e. However, this energy
will become increasingly larger, " and in the limit the
logarithmic behavior no longer obtains.

These results also give some insight into the problem
of averaging over velocity distributions which have

'4 K. Omidvar, Phys. Rev. 140, A26 (1965).
"A rough estimate of the required incident energy E~* can be

made by considering the expansion of (7) for sma]l E. The
lnE/E behavior then 'holds for E'&1/n~. If we now estimate
E' by E'=4m/E&*ln(E~*/2I} (see Ref. 9, page 514) we obtain
E&* 200mn's eV, where s is a number of order of unity. Thus
E~*/E, 16xn's. Relativistic eGects will begin to be important
at these energies even for n~5.

been used' ' in connection with the Gryzfnski model.
In fact what is appropriate is a weighting of the di6er-
ential cross section by

~
e„„(E)~'. That is, the fact that

the bound-state momentum is uncertain requires a
weighting of the probability of energy exchange at a
given momentum transfer; the logarithmic dependence
follows from this uncertainty. For highly excited states,
however, the bound-state momentum becomes sharply
peaked, giving validity to the use of a delta-function
approximation for an averaged momentum conservation
between the two electrons, as in the Gryzinski model.
Restating this argument, the effect of the nucleus
becomes unimportant for large I (the parameter, it
should be kept in mind, is Z/I), and free-particle
descriptions become approximately valid.

Extension of these arguments to consideration of
excitation cross sections is less straightforward.
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Numerical solutions of the Schrodinger equation with the complete screened Coulomb potential (CSCP)
are given for 1s, 2s, 2p, 3s, 3p, and 3d states. The CSCP used is given by

V (r) = V; (r) =——Ze'$r ' —(D+A) 'g 0&r &A

= Vs(r) —= Ze'LD/(D+A) ){exp—g(A r)/Dj/rI, — r&A

where D is the screening radius and A is the mean minimum radius of the ion atomosphere. The standard
transiormations a=2Zr/Xao and Eq= — 'Zt4sc2 /%tiswhere X is the CSCP quantum number, yield the
well-known form of the Schrodinger equation with X in place of n. The numerical solutions are obtained
with a nonlinear method that is both accurate and stable. The resulting quantum numbers can be accurately
described by simple analytic fits for a wide range of interesting values of D. The problem of the number
of screened Coulomb states is resolved: the CSCP yields as many states as the Coulomb potential. How-
ever, with the CSCP, for states with (3aon'/2Z) &D, the separations of the levels are less than the correspond-
ing Coulomb levels, i.e., the density of states near the continuum increases. Removal of l-degeneracy, the
question of a maximum-bound principal quantum number, and integer quantization of the ground-state
quantum numbers are also discussed.

I. INTRODUCTION

t ADHERE has been considerable interest in the solu-. . tions of the Schrodinger equation (SE) with the
Yukawa, or screened Coulomb, potential. ' ' Since the
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SE with the screened Coulomb potential is not analytic,
various approximate methods have been used to obtain
limited solutions. One of the main quantities sought in
previous solutions was a maximum-bound principal
number, commonly called g*. Since the expressions for
g* varied with the approximations used, it was thought
of interest to consider accurate numerical solutions of
the SE with the complete screened Coulomb potential5
in order to determine which approximate analytic
solution —and method —is the most accurate. However,
as it turned out, none of the approximate solutions
yielded the correct answer; the numerical solutions yield


