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region of the Fermi surface, is Qat. The low value for
E(0)4 and the fact the Cr has a local moment in this
class of materials " imply that the hybridization is
probably s-p.

"R.H. Willens and E. Buehler, J. Appl. Phys. 38, 405 (1967).
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The behavior of ideal thin superconducting films in perpendicular magnetic fields is studied in detail
and related to that of bulk type-II superconductors. A macroscopic analysis based only on the demag-
netizing factors yields the dominant effects of sample geometry on the reversible magnetization curve. The
same features are also derived from Pearl's generalization of Abrikosov's microscopic model, which predicts
a long-range interaction between quantized Qux lines in a thin film. Comparison of the macroscopic and
microscopic arguments clarifies some inaccuracies in the work of Pearl and of Maki. The dependence of
soritical magnetic fields on film thickness is discussed for different values of the Ginzburg —Landau parameter
K. A hydrodynamic calculation demonstrates that a triangular vortex lattice is stable against small per-
turbations in the long-wavelength limit (qn '"«1); for n'"A.»1, the corresponding dispersion relation is
~=4(eB/mc) q'I'A. '12(n~) '", where n is the vortex density, A=—2X'/d is the "effective penetration depth, "
) is the actual penetration depth, and d(«X) is the film thickness. This conclusion disagrees with Pearl s
conjecture based on elasticity theory; the long-range interaction precludes the use of elasticity theory,
as is seen from the difference between the calculated dispersion relation (or~q"') and that predicted for
elastic modes (ca-q'). The dynamics of vortex systems is contrasted with the Newtonian dynamics of
point masses. In practice, thin films exhibit highly irreversible behavior, and no detailed comparison be-
tween theory and experiment is attempted.

I. INTRODUCTION

T was first pointed out by Tinkham'' that thin
„.superconducting films in perpendicular magnetic
fields would exhibit a mixed-state structure analogous
to the Abrikosov state, ' even if the ~ value of the film

was less than 1jv2. Subsequently, Peari4 ' and Matur

adapted the Abrikosov theory to this geometry in a
detailed and quantitative way. In an important but
only partially published study, Pearl' ' observed that
the distinctive properties of thin-film vortices arise
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from their long-range electromagnetic interactions:
vortices in a thin film interact primarily through the
free space adjacent to the film, where no screening
currents can Qow. As one consequence of this long-range
interaction, Pearl suggested that the vortex lattice, pre-
dicted by Abrikosov and experimentally verified in
bulk systems, '" would not occur in thin films, since
"the shear modulus vanishes. ""Pearl's work is based
entirely on a picture of individual vortices interacting
in pairs, which ceases to be valid as the applied mag-
netic field is increased and the vortices become dense.
In the limit II &II,2, near the upper critical field, the
free energy may be expanded directly' " in powers of
the order parameter, which allows a comparison of
various vortex configurations. This approach has
recently been extended by Lasher, " who showed that

'D. Cribier, B. Jacrot, L. M. Rao, and B. Farnoux, Phys.
Letters 9, 106 (1964).

"W. Fite, II, and A. G. Redfield, Phys. Rev. Letters 17, 381
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133, A1226 (1964).

» G. Lasher, Phys. Rev. 154, 345 (1967).
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for sufficiently thin films the triangular array had a
lower free energy than the other simple lattices (square
and honeycomb). Of course, this calculation does not
prove the stability of the triangular lattice with respect
to small perturbations (which is presumably what
Pearl had in mind) or at lower fields H((H, s.

In this paper, we study the stability of a vortex
lattice in thin films on the basis of a hydrodynamical
model that was used previously" to study the cor-
responding problem in bulk samples. A stability cri-
terion is formulated for the long-range interaction de-
rived by Pearl; the vibration frequencies are then
evaluated both in a continuum approximation, and
for a triangular lattice. In each case, the frequencies
are real in the long-wavelength limit, which indicates
microscopic stability. Hence, the long-range interaction
does not automaticalIy destroy the lattice order, in
contradiction to Pearl's conjecture. The long-range
forces do preclude the use of an elasticity theory, how-

ever, since the vibration frequencies here vary as q'~'

in contrast to the q' dependence of bulk samples.
In Sec. II, the reversible magnetization curve of

thin films is analyzed, using only the macroscopic
demagnetizing effects, leaving the coestilNHve relation

fB=B(H) $ unchanged. This analysis accounts for the
dominant modification of the Abrikosov magnetiza-
tion curve, namely, that of order R/d, ts which has not
been calculated consistently by previous authors. ''
In Sec. III we review the properties of individual vor-
tices in thin films and indicate how these lead to the
magnetization curves derived in Sec. II. A qualitative
discussion of the dependence of the critical fields on
film thickness is given in Sec. IV, along with a review
of detailed calculations by other authors. In Sec. V,
the hydrodynamic calculation for the vortex lattice
demonstrates that the triangular structure is stable
in the long-wavelength limit. The dependence of the
lattice structure on film thickness and magnetic field
is also discussed. Section. VI contains a study of the
effects arising from the long-range interaction, with
particular emphasis on the failure of elasticity theory.

Unfortunately, the magnetization curves of available
films are highly irreversible, " so that we shall not at-
tempt any detailed comparison with experimental
data. We sha11 see, however, that the theoretical slope
of the (reversible) magnetization curve near H, s is
even smaller than that predicted by Maki, ' which was
already smaller than the experimental slope by a factor
of 10'—10'. No experimental evidence of lattice order
or indeed of vortex structure in thin films has yet been
presented. Nevertheless, we expect that the periodic
variation of the magnetic field should be observable,
if some method can be found to come close enough to

'4A. L. Petter, P. C. Hohenberg, and P. Pincus, Phys. Rev.
147, 140 (1966), referred to in what follows as I."d is the 61m thickness and E. is a typical transverse dimension.

~6 G. K. Chang, T. Kinsel, and B. Serin, Phys. Letters 5, 11
(1963);P. B.Miller, B.W. Kington, and D. J. Quinn, Rev. Mod.
Phys. 36, 70 (1964);cf. also Ref. 2.

where the demagnetizing factor'~ It depends on the ratio
R/d. Only the following limiting values are of interest
here:

n = 1—(rr/2) (d/R)

n = (R/d) ' ln(d/R)

for d/R(&1 (flat disk),

for R/d(&1 (long cylinder).

(2)

If Eq. (1) is inserted into the constitutive relation,
we obtain the implicit equation'8

8=8.L(Hp —n8)/(1 —n) j. (3)

Equation (3) requires that 8 vanish until IIp reaches
the value

Hcl (1 n) Klq

which behaves like d/R for the flat disk. Furthermore
when M goes to zero, the fields H, Bo, and 8 all become
equal, so that H g =H&2 ls lildependent of z. The mag-
netization curve of M versus Ho has the shape indicated
in Fig. 1(b) and depends sensitively on the ratio d/8,
in contrast to the Abrikosov curve 3I(H), represented
in Fig. 1(a).

The area under the magnetization curve is inde-
pendent of the shape of the sample, however, which
can be seen from the following derivation": Equation

"See, for example, L. D. Landau and E. M. Lifshitz, Elec-
trodynamics of Contineols Acedia (Pergamon Press, Ltd. , London,
1960).

"Cf. Ref. 8, p. 74. We warn the reader that there is an un-
fortunate misprint in Ref. 8; the correct equation is clearly our
Eq. (3).

» See also I.O. Kulik, JETP Pis'ma Redaktsiyu 3, 398 (1966)
)English transl. : Soviet Phys. —JETP Letters 3, 259 i1966l j.
See also J. A. Cape and J. M. Zimmerman, Phys. Rev. 153,
416 (1967).

the surface of a uniform film. The lattice vibrations
would probably be even more difficult to detect than
in bulk materials, where no modes with q perpen-
dicular to H have yet been reported.

II. MACROSCOPIC DESCRIPTION

In this section we shall show that the main difference
between the magnetization curves of thin films and
bulk type-II materials can be understood with simple
macroscopic arguments. The effects are large, of order
R/d, where rt is the thickness of the film and It a typical
dimension perpendicular to d. Consider the magnetiza-
tion curve of a spheroid of revolution of radius E. and
height d, in an external magnetic field Ho pointing along
the symmetry axis. The constitutive relation LB=B,(H) $
is assumed for the moment to be the one derived by
Abrikosov' for bulk type-II materials, and the mag-
nitude of the field H is related to the applied field Ho
by the equation

H =Hp —4~nM =Hp —n(8 —H) = (Hp —n8) /(1 —n),
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the prediction that near H,2, the reversible curve of
—4m.M versus H0 always lies below the straight line
with slope minus one, independent of the exact form
of M(H). It is shown below (Sec. III) that these
predictions cannot be derived immediately from the
microscopic theory and have been misstated in previous
treatments. 4 ~

III. MICROSCOPIC DESCRIPTION

We shall first review Pearl's' solution of the Ginzburg-
Landau equations for a single vortex in a thin film.
The basic dimensionless parameter, which we tempo-
rarily assume to be small, is the ratio of the thickness
d to the penetration depth A, . The film lies in the x-y
plane with the vortex at the origin. In the narrow-core
approximation (whose validity will be discussed in
Sec. IV) the order parameter has the form

FIG. 1.(a) The Abrikosov magnetization curve —42rM versus
H. (b} The magnetization curve —AM versus Ho for a Bat disk
svith d/R«1. @(r, s) =0

J
s J&d/2,

@(r, s) =To exp(i8)
~

s ~(d/2

(»

(1) is an implicit relation for Ho as a function of H. If we
define

M (Hp(H) )—=M, (H) =$8,(H) H]/4m, —
then

where r is a two-dimensional vector in the x-y plane
with polar coordinates (r, 8) and the spatial variation
of +0 is neglected. If the external magnetic field Ho is
in the s direction, the vector potential satisfies the
equation

/s f(d/2

I l&d/2Vx VxA={j,Ke2

M(Hp) dHp
Since d/X is assumed small, j, and A are constant across
the film, and we can average Eqs. (10) over the thick-
ness d, obtaining

Ko2
M', (H) (1+4nn(dM, /dH) )dH

dHO dH(1+4irn(dM——,/dH) ). (6) 4m . 1 HqpVxVxA= —j,=— —A,
The area under the magnetization curve is given by 2' r

Ke2

M, (H) dH+2~n[M, '(H, i) —M.'(0)]
db(s) PqoVxVxA= —A.

X2 2m-r

Ko2

M, (H) dII,
0

which is therefore independent of the demagnetizing
coefFicient H.

The slope of the magnetization can be found by
differentiating Eq. (3) and using Eq. (S). An ele-

mentary calculation shows that

dM 4' (dM, /dH)

dH, 1+4~n(dM. /dH)
'

In a long thin cylinder where It=0 and H=HO, we re-
cover Abrikosov's result' which predicts that 4irdM/dH
is infinite for H just above H, &, and is a finite constant
at H,2. For any other geometry (n/0, HWHO) the
slope 4mdM/dHO is finite and equal to 1/n for Ho just
above H,i'. At H.i, the slope 4mdM/dHO is necessarily
less than 1/n. For a flat disk, where n is one [minus
corrections of order d/I', Eq. (2) ], this result leads to

The circular symmetry of the problem shows that

A(r, g, s) =1f(r, s), (12)

which leads to an equation for the scalar function f
B~f 8 8 2 go—+—~' —(rf) = f ~(s)--
Bs2 Br Br A Axr

= (4vr/c)j, (r, s), (13)

so " Ii(vr)
f(r, s) =— dy exp( —ys)

2m 0 1+Ay
s&0, (14)

where Ji is the Sessel function. ' The corresponding

» See, for example, Handbook of Mathematical Functions with
Pormllas, Graphs and Mathematical Tables, edited by M.
Abramowitz and I. A. Stegun (U.S. Government Printing MIce,
Washington, $964), Natl. Bur. Std. Appl. Math. Ser. 55.

where A=—2X'/d plays the role of an effective penetra-
tion depth. This equation. was solved with a Hankel
transform by Pearl, who found



supercurrent is given by

~ q'oc d
j,(r) d 8

4' 2X2r
for r&&X,

. (ppc d fsX'".
j,(r) d 8 ——

~

— exp( —r/X) for r&&X. (19)
8fr'Xs l, 2r

The microscopic magnetic field h in the film is just
tile cui'l of tile vcctoi" pofcilfial Eq. (14), but foi' s=o
the y integral is only conditionally convergent so that
the Bessel function may not be differentiated under the
integral sign. Instead, it is convenient to use the London
equation

h+ (4s.X'/c) curlj, =fppB(r) 0,

which is valid inside the superconductor in our narrow-
core approximation. We thus obtain from Eq. (15)

h, (r) (yp/2s) (A/rs) for r»A. (21)

Equation (21) shows that the magnetic 6eld falls off
sufBcicntly rapidly that the total magnetic Aux asso-
ciated with a single vortex remains finite and quantized. ,
as can be seen by integrating the London equation (20) .
The magrlet~c momemt, however, is defined by the
integral

In a thin film, M depends linearly on the diameter of
the plate R (assuming it to be circular for simplicity),
wliilc iii a bulk saiiiplc tile iiltcgi'al ill Eq. (22) is cut
off at X. Similarly, the interaction energy between two
vortices is obtained by integrating the current j„

which falls off as r ' at large distances. These long-range
magnetic interactions are just the microscopic expres-
sion of the demagnetizing cGects considered in Sec. II.
From the properties of single vortices, the macroscopic

where Hi is the Struve function and Yi the Neumann
function of order unity. " The limiting behavior is
given by

j,(r) 08(s) (fppc/4s') (1/hr) for r«A, (16)

j,(r) M(s) (9 pc/4s') (1/r') for r»A. (17)

This behavior is to be contrasted with the current
due to a vortex in a bulk sample, which has the form

j,(r) d = (Hpppcd/8s. 9P)Ei(r/X), (18)

for a vortex of length d. The limiting behavior of Eq.
(18) is given by

behavior can be derived directly pf by a calculation
analogous to Abrikosov's. ' Since each vortex carries
one quantum of Rux, the induction 3, which is just the
average of the microscopic field h(r), is given by
8=mqo, where e is the vortex density. "

The field H,I, which is determined from the self-
energy of a vortex, depends on the current near the
core; in the present approximation of vanishing core
radius, H, ~ is unchanged from its value in a bulk
sample. In contrast, the exIereal critical field B.~' is
determined from the interaction of Bo with the mag-
netic moment of a vortex, 4'~ which is proportional
to the radius R Lcf. Eq. (22) $, and we may thus re-
derive Eq. (4). The magnetization just above H, is

depends on the interaction energy between vortices
given in Eq. (23) . Pearl (Ref. 6, p, 95) has shown that
the relevant expression is the integral of Eq. (23) over
all space, which is proportional to R. This behavior
imphes a finite slope 4sdM/dHp for Hpjust ab'ove
Ir,i . However, the proof that the slope is exactly unity
Las shown in Eq. (8) j, and not some number of order
R/d, which would still be essentially infinite, was not
given by Pearl, 46 and appears to be more dificult to
obtain from the microscopic point of view.

The value of 4sdM/dH at H,s was calculated by
Makl) as a function of 61m thickness. This dcpcndcIlcc
is really a modification of the constitutive equation
which will be discussed in Sec. IU, On the other hand,
the slope 4sdM/dHp depends on R/d even at H, s, as
iilcii'tloiied ill Scc. II; lf. is always less tllail 1+O(if/R) q

in contrast to 4sdM/dH which can become arbitrarily
large. 22 The disagreement between theoretical pre-
dictions and the experimentally observed magnetiza-
tion curves'6 is even more pronounced than was be-
lieved by Maki. ~ This discrepancy may be understood'
by remarking that present experiments on films measure
an extremely irreversible curve, which bears no rela-
tion to the reversible curves discussed here. The area
under the reversible curves must be H,s/8~ (as shown
ln Sec. II), whereas the experimental areas are many
orders of magnitude larger.

As pointed out by Pearly ' thc cGccts dcscI'lbcd
above in the case of thin films also occur at any surface
of a bulk (d»X) type-II superconductor which is per-
pendicular to the applied field, In a surface layer of
thickness X, the vortices behave as in a Qm, and inter-
act over long distances. Such a modi6ed interaction
leads to a finite value for 4vrdM/dHp, whenever there
is a substantial fraction of surface perpendicular to
Ho. This long-range electromagnetic effect is just that
calculated macroscopically in Sec. II; the value of
4~dM/dHp is 1+O(d/R) when d&R, not 1+O(R/d),
as stated by Pearl. "

» This expression for 8 differs from Maki's (Ref. 7} by a factor
2E/d because of an apparent confusion on his part between
II and, Ho.

»This distinction was not made in Sec. II of Maki's paper
t'Ref. 7).» J. Pearl, J. Appl. Phys. 3'r, 4139 (1966).
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IV. DEPENDENCE OF CRITICAL FIELDS ON
THICKNESS

In this section, we discuss the effect of varying 6lm
thickness'4 on the critical 6elds, or more precisely,
on the constitutive relation. The basic parameter here
is not d/E as in Sec. II, or d/X as in Sec. III, but-d/$.

Consider first the case «)1/v2. The upper, critical
6eld H, ~ ——M2H, is then larger than H, and the 61m is
in the Abrikosov state for 6elds less than H,& for any
value of the ratio d/$. When «(1/v2, on. the other
hand, H,2 is less than H, and the magnetic properties
depend critically on the parameter d/$. When the
thickness is much larger than $, the film is in the inter-
mediate state with a critical field B,. This state is
characterized by a first-order transition with super-
conducting domains whose size at the critical field is
of order d or greater. As the thickness decreases, this
domain size also decreases, but when d becomes less
than ], the domains cannot shrink any further and the
critical field" HD becomes less than B,. Ili the limit
d/$«1, we have"" H~'~H'd/$ This value of the
critical field HD may be understood by noting that the
field at the edge of a domain of height d and diameter
f is roughly H„when the external field is Hn. At some
point the field H~ becomes less than H, 2 ——&2~H. ; this
latter field then ceases to be a supercooling field and
becomes the true critical field of the material. Thus,
when B~(H,2 the transition is of second order and
the state below H, 2 is the mixed (Tinkham') state we
have been studying. It is interesting to note that in
the somewhat unrealistic case that ««1 and d«$,
superconductivity would be completely destroyed at
a field H, 2 which is much less than H, . The magnetic
energy of this field H, /822i2srmuch less than. the con-
densation energy H,2/82r, but there is no mechanism
for superconductivity in 6elds larger than H,~, since
the superconducting domains would have to be smaller
than f The crit.ical thickness is found by equating
Hi& and H,2, which yields d,~f«2 in the limit d&&$.

This has been calculated more accurately for arbitrary
ratio d/$ by Guyon, Caroli and Martinet, "by Maki, '
and by Lasher. "The last two authors computed the
limit of stability of the mixed state by 6nding the
thickness d, for which the slope of the magnetization
curve dM/dH at H, 2 vanished.

We turn now to the question of the core structure.
Unless the value of z is very large, the core size will not
be small and the narrow core approximation made

24 Clearly when d varies, the mean free path l also varies, and
this causes changes in ), & and a. We are not concerned here with
this dependence; we shall merely assume that for any 61m, the
lengths ) and P have given values, which may be larger or smaller
than the thickness d. The parameter z is dered to be X/g, and
we consider it to be a free parameter, independent of d, although
for a given material, ~ will depend on d through the mean free path."E.A. Davies, Proc. Roy. Soc. (London) A255, 407 (1960)."E. Quyon, C. Caroli, and A. Martinet, J. Phys. 25, 683
(1964).

above will not be valid. The core structure is dificult
to calculate even in bulk materials, so that only rough
qualitative estimates can be made in 6lms. According
to Pearl's calculations' the field H, & is given by B,&
« 'H, (X2/dP) 2i2 and the core radius is approximately
r,~(24X2/d) "2P2. The core radius only increases as
d '~' with decreasing d, whereas the effective penetra-
tion depth h. =2A2/d varies as d '. This difference means
that very thin films have a large "effective ~,

" defined
by «,«=A/r, . It is also interesting to note that all
quantities have stronger temperature dependences than
in bulk materials. The "effective «" [«,ii (X'/d$)'12]
diverges at the critical temperature, as does the sl.ope
of the magnetization 42rd3f/dH. 22

V. LATTICE STABILITY IN THIN FILMS

where

n= (42r) '«Q'[1 —exp(iq R;)][—2X;I';/R;]f'(E, ),

(26)

5= (4~) '«Z'(1 —exp(iq») )(X'—I")~2 'f'(~2)

g = —(42r) '«Q' (1—exp(iq R ) )
(27)

&(Ir '(d/dr)[r2f(r)]}
~

22, (28)

Here the sums run over the lattice points IR;I exclud-
ing the origin, and «=h/2222

The exact evaluation of these lattice sums is very
dif6cult and is given in detail in Appendix B. For a
preliminary treatment, we shall instead consider the
continuum model, which was shown in I to make
qualitatively correct predictions. In the continuum
approximation, the sums in Eqs. (26)—(28) are re-

'7 This was noted by Maki (Ref. 7).However, the quantity 4m
deaf/dIIO is still less than 1, as we point out in Sec. II."G. N. Watson, A Treatise on the Theory of Bessel Functions
(Cambridge University Pzess, Cambridge, England, 1962), pp.
329, 436.

We shall now consider the stability of vortex lattices
in thin films. The calculations described below are
valid for H, & &B&&B,2, where the hydrodynamic modeP4
is applicable. Near H,2, a different approximation is
necessary; for completness, the behavior in the region
of H, 2 is briefly discussed at the end of this section.
In the limit of very thin films (d«X), the formulas of
I, Sec. III must be evaluated for the current (15),
which corresponds to the interaction function [compare
Eq. (I.21)]

y(r) =-2,~(r~)- [H, (r/A) —I', (r/A) —2~-]. (24)

Here Hi(x) is again a Struve function. "The vibration
frequencies are given by Eqs. (I.26) —(I.28):
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placed by integrals

@F7

4m
r dr de

&&[1—exp(iq r)]r ' —[r'f(r)], (29)
dr

sk
in-=

4m
r dr de

X[1—exp(iq r)]rf'(r) exp(2ie), (30)

where ri=B/qs is the vortex density. The integrals
extend over the whole lattice, excluding the area as-
sociated with the single vortex at the origin, which
fixes the lower cutoff as b=(m. ) '~'. In Appendix A,
it is shown that

ti=-', tir(Ibsf(b) [1—Jp(qb)]+qAII, (31)

~ ~
—in

~

=-',~ZI bf(b) J( qb) +q AI I; (32)

I is a definite integral discussed below. These equations
are valid for any vortex lattice with an arbitrary current
distribution f. The problem is thus reduced to the
evaluation of a single integral

r' drJi(qr) f(r)

=(1+qA) '—A ' r'drJi(qr)f(r)

', (eB/mc) qs I'A (isa-) 'I', . —(b»A) (35)

while in an intermediate-density lattice (H.t«H«H. s),
the vibration frequency is

cv = ', (cB/mc) q'"JV ~'(nir) '"-

', (eB/mc) q-(nor) t~'- (qb«qA«1) (36a)

(qb«1«qA) . (36b)

These results are only valid if qE))1, because other-
wise the assumption of translational invariance fails.
For larger values of q than those considered in Eqs. (35)
and (36), one can expand Eqs. (25) and (31)—(33)
to find z' as an analytic power series in qb, since the

=1+0(qA) +0(qb), (qA«1, qb«1) (33)

where the explicit form of the function f [Eq. (24)]
has now been used. In the long-wavelength limit
(qb«1), Eq. (25) then yields

oi' = (t4nk) 'qsbs(1+ qA) '-', ir[Ht(b/A) —Yt(b/A) —2ir '].
(34)

Two limiting cases are especially simple: In a low-
density lattice (H,i&H), the vibration frequency is
given by

Bessel functions in Eqs. (31)—(33) are analytic func-
tions with no singularities in the finite complex plane.

Instead of Eq. (24), it is also interesting to consider
an approximate form of the supercurrent

f(r) =itr '(r+A) ', (37)

suggested by Pearl. ' In this case, the calculated vibra-
tion frequency agrees with Eqs. (35) and (36a) in
lowest order, but the corrections are of order qh in(qh)
if b«A; a comparison with the exact result [Eqs.
(31)—(33)] shows the logarithmic corrections to be
spurious.

The continuum approximation predicts real vibration
frequencies in the long-wavelength limit, which sug-
gests that a periodic array of vortices in a thin film
represents a stable configuration. Naturally, this model
is unable to predict the precise form of the equilibrium
lattice, which requires an evaluation of the lattice
sums (26)—(28). For simplicity, we have considered
only a triangular lattice, which is the stable structure
in a bulk type-II superconductor for all applied fields. '4

The calculations are very long and are described in
Appendix B. In the long-wavelength limit (qa«1,
qA«1, but qR))1) the vibration frequency is

tu = 4t (eB/mc) q"A(rim. ) 't4C'I' (ti))A)

tu = '(eB/-mc) q'i'cV I'(nir) 'I' (a«A) (38)

where C 1.10611. Here u is the lattice spacing and
ii=2/v3a'. These expressions agree almost exactly with
Eqs. (35) and (36a) derived in the continuum approxi-
mation; they show that a triangular lattice structure
is stable for both limiting densities a))A and a«A,
assuming only that r,«a, so that the vortex cores are
well separated. Unfortunately, the methods of Appendix
8 cannot treat the limit qa«1«qh. for the triangular
lattice, but the behavior is probably similar to the
continuum model [Eq. (36b) ]."

In principle, it is also possible to evaluate the lattice
sums for a square array; the resulting vibration fre-
quencies would then depend on the angle between the
propagation vector q and the symmetry direction of
the lattice [compare the corresponding expression
for a bulk sample in Eq. (I. 36)]. These calculations
have not been attempted, since they would be con-
siderably more dificult than those in Appendix B.
Nevertheless, we conjecture that the square lattice is
unstable with respect to waves: propagating in certain
directions, in analogy with the situation in bulk samples.

"It is also interesting to compare these results with the
(similar) situation in bulk type-II superconductors (Ref. 14).
The cutoff parameter d (Eq. (I.A2) $ introduced in the continuum
approximation must be taken as (nx) 'I'; the corresponding
vibration frequencies both for the continuum model LEq. ll.3tl]
and for the triangular lattice LEq. (I.38)j then reduce to or=
4 (eB/g~) q X(g~) / for q~ i'2&&q)«&1. In the other limit pg
1«q), Eq. (I.31) reduces to or = 4 (eB/mc) q(n7l. ) ~2 which is
identical with Kq; (3$b). As &n the thin 61m, this last limiting
case cannot be evalu@tqg qggept jn the continuum approximation.
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The above stability calculations assume that the
vortex cores are far apart (8'«H, 2) and apply to a
material with arbitrary « in the limit of a thin film (in
fact we need «d/$&(1). As we in.crease the thickness,
however, the behavior of the system depends on the
value of «. If «)1/K2, then the interaction (24) pre-
sumably merges continuously with the bulk interaction,
which was shown in I to predict a stable triangular
lattice. In contrast, when «(1/K2, the "effective «"
decreases as the thickness increases, and the region
in which the vortices are well separated (H.i(&B«Ki)
shrinks to zero. Exact calculations are then possible
only near the upper critical field, where the stability
may be tested for arbitrary ~ by evaluating the free
energy to lowest order in ~%'~'. This computation has
been performed numerically by Kleiner, Roth, and
Autler" for bulk materials, and by Lasher'3 for films.
In bulk samples, the triangular lattice has the lowest
Gibbs free energy near H, 2 for all «) 1/K2. In a film

for which d&&$, the triangular lattice also has the lowest
Gibbs free energy near H, 2 for all ~. Ke expect, although
it has not been proved, that the triangular array repre-
sents the equilibrium state of a type-II superconductor
(«) 1/K2) for all values of the thickness. On the other
hand, if «(1/K2, then the bulk sample must be in the
intermediate state."Lasher" showed that as the thick-
ness increases, the transition from the triangular array
in the mixed state (d&($) to the intermediate state"
occurs through a complicated sequence of hexagonal
lattices, each Aux line containing more than one

quantum.
In a bulk sample near II,2, it has also been proved msa-

lyA'ca/ly that the triangular lattice has the lowest Gibbs
free energy. "It is first shown that each vortex carries
one quantum of Aux, and the proof then depends only
on the properties of the theta functions. Since the form
of the free energy for a thin film (d(($) near II,2 is iden-

tical with that in bulk material, ~" the proof remains
valid and confirms Lasher's detailed calculations that
the triangular lattice is the stable state in very thin
6lms. As the thickness increases, the quantum number
of Aux carried by each vortex also increases, and a
similar (but more complicated) analytic proof could

presumably reproduce Lasher's other conclusions.

VI. CRITIQUE OF LATTICE DYNAMICS

In the previous section, the stability of a vortex
lattice was treated in purely hydrodynamic terms. The
basic assumption of this approach is that the motion
of a given vortex arises solely from the induced velocity
at the position of its core due to all the other vortices
in the system. If the vortices are placed at the positions

Ir, I, then the translational velocity r', of the ith vortex

G. Kilenberger, Z. . Physik 180, 32 (1964}; D. St. James,
G. Sarma, and E. J. Thomas, Type-II Sepercondlct~vity (perga-.
mon Press, Ltd. , London, 1967}.

is given by'4

r', =v(r, ) =Q' vo(r; —r,), (39)

where vo(r) is the velocity field of a vortex at the origin

vo (r) = (2') '«s x rf (r) . (40)

The hydrodynamic point of view differs from the
usual theory of lattice dynamics, where the interaction
energy V is considered the fundamental quantity. It
is therefore interesting to recast Eq. (40) in the con-
ventional dynamical form. Let V»= V(r») be the
interaction energy per unit length between two vortices
situated at r& and r2. The total interaction energy per
unit length of lattice is

(41)

where the primed sum is over j and k separately, omit-

ting the terms j=k. The force F; acting on the ith vortex
is

F;=—v;V

= —Q' (r;—r, )r;; 'V, ,

where V,,
' means V'(r, ,). Since the interaction energy

V~2 can be interpreted as the work done in bringing
the two vortices together from infinity, '" it can be
shown that

V'(r) = —(2ir)
—'p«'rf (r), (43)

pFcz x 1;, (45)

which shows that a vortex moves perpendicular to an

applied force.
Equation (45) is fundamentally different from the

usual equations of motion in crystal lattices, which obey
Newtonian dynamics. In order to emphasize this dis-

tinction, we shall consider a hypothetical system of

parallel rods interacting through the same potential

Vg2. The corresponding Newtonian equations of motion

are
3fi', =F;=—V;V, (46)

where- M is the mass per unit length of rod. In equilib-

rium, the system is assumed to form a regular lattice

~~' See Ref. 8, pp. 64—6.

where f is defined in Eq. (40), and p
=—Nm is the mass

density of superelectrons. Thus the Quid velocity at
the position of the ith vortex may be rewritten as

v(r, ) =(p«) 'r". xF;,

which proves an assertion made in I, Sec. V. This
represents a general result valid for all vortex systems,
independent of the details of the velocity pattern f(r).
A combination of Eqs. (44) and (39) yields the basic

equation of vortex dynamics



159 THIN SUPERCONDUCTING FILMS IN PERPENDICULAR FIELD S 337

specified by the set of points {R,I. If the rods are dis-
placed to new positions R,+u;, the corresponding
Newtonian equations are

Md'u~/dt'

{(ue ui)fei+ReiLR~ i' ('u~ ui) ]~acafes' '))

(4&)

where Eq. (43) has been used to replace V' by f For.
a large lattice (qE))1), plane waves may be used to de-
couple these equations of motion, so that we may as-
sume a solution of the form

u;=s exp(iq R, i(ui—) (48)

(vortex dynamics),

(Newtonian dynamics),

(51)

(52)

This equation leads to an eigenvalue condition of the
form

(M(a'/plr) s, = (ri —$) s+ sr',

(Mce'/pa) s„=ns,+(ri+() s„, (49)

where cr, ri, and g are defined in Eqs. (26)—(28). The
frequencies of small oscillations in the hypothetical
Newtonian dynamical system are easily found to be

ai = (pn/M) L'i~ (er +8) j (50)

which should be compared with Eq. (25), based on
vortex dynamics.

It is interesting that the same combination of lattice
sums appears in both dynamical models. If the inter-
action potential V;; is such that the system is stable
with Newtonian dynamics, it immediately follows that
the system is also stable with vortex dynamics. The
converse is clearly untrue. Stability in vortex dy-
namics is independent of the sign of the interaction
potential, since only the squares of the lattice sums
appear in Eq. (25). In contrast, ri changes sign with
V;;, so that a stable system in Newtonian dynamics
is rendered unstable merely by changing the sign of
the potential. This demonstrates that vortex systems
are inherently more stable than Newtonian systems,
and intuitive ideas based on the behavior of crystalline
solids may not be applicable to vortex lattices. "

The above discussion is valid for all wavelengths
q, subject only to the restriction that qR»1. Thus
these considerations are more general than elasticity
theory, which assumes that the wavelength is long
compared with the interparticle spacing (qu«1). If
the interaction potential V;; has a suKciently short
range, then it is permissible to expand the exponentials
appearing in Eqs. (26)—(28) under the summation
signs; in this case, the coefficients n, $, and ri are ob-
viously of order q for a lattice with inversion sym-
metry. It is then easy to estimate the form of the dis-
persion relation for lattice vibrations from Eqs. (25)
and (50)

which agrees with the vibrations of an elastic con-
tinuum. ""The fundamental difference between Eq.
(51) and Eq. (52) arises from the appearance of ve-
locities in the equations of vortex dynamics Eq. (45),
instead of accelerations as in the conventional New-
tonian equations Eq. (46) .

For many systems of physical interest the potential
V;s is long range, and direct expansion of Eqs. (26)—(28)
in powers of g is impossible. This means that the dis-
persion relation will not take the form (51) or (52)
at long wavelengths, and it also indicates a failure of
elasticity theory. In particular, the interaction between
two Aux lines in a thin film has been shown to give a
dispersion relation of the form co~ q"'. Thus there can
be no elastic theory in this case and related concepts,
such as the shear modulus, are therefore inapplicable. "

It is generally true that a long-range potential
implies a decreased exponent of q in the dispersion
relation. A well-known example of this behavior is the
collective mode in an interacting Fermi gas, which
appears as a compressional wave in a neutral system
(coeeq) and as a plasma mode in a charged system
(ee=~„)." It must be emphasized, however, that a
long-range potential in no way precludes a regular
lattice, which occurs, for example, in a low-density
electron gas." The in6nite Coulomb energy of this
system is cancelled by a uniform positive background
to ensure charge neutrality. The main residual effect
of the long-range Coulomb repulsion is that the dif-
ference in free energy between various lattices is
extremely small. In a thin superconducting film, on the
other hand, the free energy per vortex actually di-
verges as the sample becomes infinite, since there is
nothing corresponding to the uniform positive back-
ground. Thus the free energy associated with a given
lattice structure cannot be calculated directly. In prin-
ciple, it would be possible to compare different regular
arrays in a large but 6nite system and then to let the
sample become infinite; such an approach is very
dificult and has not been attempted by us. In con-
trast, the lattice sums appearing in the vibration fre-
quency involve an extra derivative of V;; and con-
verge in this case even for an infinite lattice. Hence
the stability of a triangular lattice for II«H, 2 is in-
dependent of the size of the sample. Near II,2, where the
vortex cores overlap, the free energy per vortex is
independent of sample size, and all stability calcula-
tions have been based on comparison of the free energy
for diGerent arrangements"" of Aux lines; no dynami-

3~P. G. de Gennes and J. Matricon, Rev. Mod. Phys. 36,
45 (1964);J. Matricon, Phys. Letter 9, 289 (1964).

"See, for example, M. Born and K. Huang, Dynamical Theory
of Crystal Lattices (Oxford University Press, London, 1964).~ See, for example, P. Nozihres and D. Pines, Quantum Liquids
(%.A. Benjamin, Inc. , New York, 1966), Vol. I.

35K. P. Wigner, Trans. Faraday Soc. 34, 678 (1938); C. H.
Herring, in Magneresm, edited by G. T. Rado and H. Snbi (Aca-
demic Press Inc. , New York, 1966), Vol. IV, Sec. IV.
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cal theory of lattice vibrations appears possible in proximation. The necessary integrals are
this domain.

VII. CONCLUSION i—u=(4~) 'mR r' drf'(r) dg exp(2ig)

We therefore consider it well established that an
ideal superconducting thin film would exhibit a tri-
angular lattice structure. In real films, the main factors
which would destroy lattice order are nonuniformity
of thickness and edge effects, both of which lead to ir-
reversibility. A quantitative estimate of these effects
is difficult.

It may be possible to observe the lattice from outside
the sample because of its inhomogeneous magnetic
field. " Unfortunately this inhomogeneity is only ob-
servable over a distance of the order of the lattice
spacing a from the surface. Indeed, if the field H is
assumed to be periodic in x and y it may be expanded
in a Fourier series

H (r, z) =g a~(s) exp (ik~ r), (s&O) (53)

where k~ are the reciprocal lattice vectors of the vortex
lattice, and r is a vector in the x-y plane. Since the mag-
netic field in free space is both irrotational and sole-
noidal, it follows that H must be of the form

H(r, s) =Q C((s ik() ex—p(ik, r) exp( —k(s),
l

(»o), (54)

where C~ are constants determined from the boundary
condition at a=0. At large s, only the contribution
from the smallest k~ remains, and for a triangular
lattice we find

H(r, s) Cos+&g(x, y) expL —(4s.s/aV3) ]
+O(exp[ —(4~v3z/a) ]). (55)

Here y(x, y) is a periodic vector function given by

y(oo, y) =Q C((s ik() ex—p(ik( r), (56)
l

where the sum is over the six smallest reciprocal lattice
vectors. Thus the periodicity of the magnetic field in
free space vanishes exponentially with a characteristic
length 93a/4z. .~ This description applies both to a thin.

film and to the surface of bulk. material.

)&11—exp(iq r)],

g= —(4m.) 'mR dry'f (r) ]' d8

&&L1—exp(iq r) ], (A1)

iu=—', mR e-xp(2ix) r'drJ2(qr) f'(r),

dr[1 —Jo(qr) ]fr'f(r) ]', (A2)

where the propagation vector g has been resolved in
polar coordinates (q, x). Each of these expressions may
be integrated by parts, and Eq. (A2) therefore reduces
to

(—in = ', mR e—xp-(2ix) Lb'f (b) J2(qb) +qAI],

g =-',mR{ b'f(b) L1 —Jo(qb) ]+qAI } (A3)

Hence it is necessary only to evaluate a single definite

integral

r' drf (r) Jg(qr) . (A4)

It is easy to verify that this formulation repro-
duces the results of I, Appendix A, if f is chosen as

(Xr) 'K~(r/X), which is appropriate to a bulk super-
conductor. Here, we shall consider the interaction
function

f(r) =-,'s. (Ar) '[Hg(r/A) —&g(r/A) —2s '], (AS)

which provides an exact description of a vortex in a
thin film. This function has the following limiting be-
havior:

(r«A),

(r»A). (A6)

where the primes denote di6erentiation with respect to
y. The integrals over angle yield

(A7)I=Ig+Io,

The long-range behavior shows that the integral J
ACKNOWLEDGMENTS cannot be expanded in ascending powers of g. It is,

however, possible to rewrite I as
We are grateful for useful discussions with M.

Tinkham and P. W. Anderson.

APPENDIX A

In this Appendix, the sums required for the vibra-
tion frequencies are evaluated in the continuum ap-

where

Jg=A ' r' drf(r) J,(qr), (Aga)

'6 S. T. Wang, L. Challis, and W. A. Little, in Proceedings of
the Tenth International Conference on Low Temperature Physics
LT10, Moscow, 1966 (to be published)."We are indebted to Professor M. Tinkham for a discussion of
this point.

6

I2 —A ' r' drf(r) J~——(qr);
0

(Agb)

the first term may be integrated exactly while the
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second term is 6nite and may be evaluated by expand-
ing the Bessel function in powers of qr.

Equation (A8a) may be rewritten with the following
integral representation'8:

=2m ' de(@+1) 'Ji(fx),

which yields

g—2 de�(@+1) ' rdrJ, (qr) Ji(xr/A). (A10)

—I2~, r' dr Hg ——I'g ——2m '

=—,'irqb{bA. 'gKp(b/A) —P'p(b/A) ]
—(4A/orb) 2(3') 'b A—}. (A12)

These expressions may be used to verify the vibration
frequencies given in Sec. V for the continuum approxi-
mation.

It is also interesting to consider the approximate
interaction function suggested by Pearl'

f(r) =Ar '(r+A) ') (A13)

which reproduces the exact expression Eq. (AS) both
for r((A and for r&)A. The corresponding infinite in-
tegral is

drJi(qr) (r+A ) '.
rdrJi(qr) Lr ' —(r+A) ']. (A14)

0

It is rather remarkable that this expression is just the
integral used above in Eq. (A9), and we 6nd

Ii (qA)-'+1 —-',mgii(qA) ———Fi(qA) ]. (A15)

Inspection of the relevant series expansion shows that

Ii~~l —ipqALln(2/qA) —&+ip]+O(q'A') (A16)

where p =0.577 ~ ~ ~ is Euler's constant. The other
integral I2 is given approximately as

I;—-',
q rdr(r+A)

0

=-', {qA lnL1+ (b/A) 5 qb} (A—17).
Thus the approximate expression for the vortex velocity

0 0

This integral is a repeated Hankel transform, and we
therefore find

Ii=(1+qA) '=1—qA(1+qA. ) '

=1+0(qA) (qA«1) . (A11)

The second integral I2 may be computed to leading
order in q by writing Ji(qr) ~-', qr

(B1)

where f is given in Eq. (AS) . It is not possible to eval-
uate these quantities for arbitrary q, however, and the
present work will be restricted to the long-wavelength
limit. The main difFiculty is the long range of the inter-
action, since the sums diverge if the exponential is ex-
panded in ascending powers of q. It is convenient to
separate f into two parts

where
f(r) =fo(r) +f(r), (B2)

fp(r) =Ar

f(r) = ', m (Ar) '+ (r/A) -F(r/—A) ] (rA) —i Ar p. —

(B3)

Each lattice sum then separates into two terms de-
noted by {gp, np, fp} and {p,a, t},in which f in Eq. (B1)
is replaced by fp and f, respectively. The sums involving
fp may be evaluated exactly with the Ewald method38;
furthermore, it is straightforward to verify that

f(r) -o(A'/r'), (r&») (B4)

which allows an expansion of the barred lattice sums
through terms of order q'.

Long-Range Contributions

The long-range contributions are most easily evalu-
ated by considering the following quantity:

Z„(q) =g' E; "exp(iq R ) (.BS)

All the relevant lattice sums may be expressed in terms
of Eq. (BS) as

~,= (4~) -iuALZ, (0) —Z, (q) ], (B6)
—&+i .=(4 )-'3 AI ~*,(0) —~.,(q)], (»)

"See, for example, J. M. Ziman, I"rinciples of the Theory of
Solids (Cambridge University Press, Cambridge, England, 1964),
pp. 37—42.

field Eq. (A13) produces spurious logarithmic correc-
tions to the dispersion relation; such terms are clearly
absent in the exact expressions obtained from Kqs.
(Agb) and (A11).

APPENDIX B

The previous Appendix contains the evaluation of
the vibration frequencies of a vortex lattice in a thin
61m using the continuum approximation; we shall
here describe the corresponding exact results for the
particular case of a triangular lattice. The vibrations
are completely determined by three lattice sums

(4~) —'rc g' -L1 —exp(iq R;)]L2f(R;)+Rf'(R )]
n = (4m) —'ii Q'L1 —exp(iq R;)]L2X;I';E, fi'(R,)],

k=(4~) '~ Z'L1 —exp(iq R~)]L(&P—I iP)~r'f'(~ ~)],
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where

(q) =Q'exp(iq R;) (X~+iV,)'R; ',

)2 (g 2 g2—
I

—
I

—+22 & (q) (Bg)
()q,) &Bq„()q,()q„

Since g R; ' converges absolutely, Eqs. (86) and
(87) are well defined.

Equation (86) may be rewritten with the Ewald
method using the identity

The other part of the sum Z3 may be rewritten with
the Poisson sum formula"

g exp( i—2R2+iq R )

=i-'/22p p exp[ —(4i') '(ir&+q) '], (816)

where /2=2/v3u2 is the density of lattice sites and {lr&}
is the set of reciprocal lattice vectors associated with
the direct lattice {R,}.Equation (811) now becomes

Z2(')(q) =42r '/' dip{+ exp( i'R,—'+iq R,) —1}
de exp( —i2R/2). (89)

0

Substitution of Eq. (89) into Eq. (85) yields

~2(q) =~ "'(q)+~ "'(q), (»0)
where

=4~~»2 dt Z expL (4i'—) '(i /+-q)']

—)'r4n. "'Z', (817)

2»'(q)=4 '&'g'exp(&q 2) f d//exp( —/'2 j,
0

Z2(') (q) =42r—'/' g' exp(iq R,) di 1' exp( —QRP) .

X de exp( —PRp2) . (813)
2

The linear term in Eq. (813) vanishes by symmetry.
The quadratic term is of the form

g' q'R2F(R;) cos2(() —X)

which may be simplified by summing over concentric
circles containing equivalent neighbors. For a triangular
lattice, the angular factor is then replaced by its
average value -', (see, for example, I, Appendix 8).
A straightforward calculation leads to the result

g (2) (0) g (2) (q) q2Z(2~1/2) —1 Ql

(812)

Here Z is an arbitrary constant that is eventually
chosen to simplify the computations. The definite in-
tegral in Eq. (812) becomes expon. entially small as
8,—+~, so that it is now permissible to expand Z3&'&

in powers of q, which yields

~2"'(q) =4~ "'Z'[1+2q R/ —2(q R )'+p" ]

—qr'/'(2Z) ' exp( —kP/4Z') ]. (818)

The linear term in q reQects the long range of the
interaction and arises from the term associated with
the origin of the reciprocal lattice.

For a triangular array, typical direct and reciprocal
reciprocal vectors are of the form lail//2a2 and lbi+2)2b2,
where l and m are integers and the fundamental lattice
vectors are given by

Ri =8$, a2= 2a(*+&3-j),

bi ——(2 '[i—(%3) 'j], b2 ——(2/u3) j. (819)

The variables appearing in Eqs. (814) and (818) are
ZR; and ki/2Z, respectively, which become identical if
the constant Z is chosen as

Z= (22m. ) '"= (2qr/V3)'/2u '. (820)

The remaining analysis is elementary, and we hnd

where
qp —~el(.Aq+gp) (821)

where Eq. (816) has been used explicitly. In the long-
wavelength limit (qa((1), the ratio q/ki is small and
serves as an expansion parameter except in the single
term k~=0. A rather lengthy calculation eventually
yields

Z2(') (0) —Z2(u (q) = 2222pq nm'"—q'Z '

+22q2 Q' [-,'qrk/-' erfc(k, /2Z)

2/2= —(4m.) '/(422'/'q'[1 ——2'm'" Q' x/~ ' erfc (x/„) ].
)&[exp (—Z'R ') + 'qr'/2 (ZR;) ' erfc (ZR;) ], -(814) ltn

where"

erfc(f) =1—erf(i') =22r—'/' dt exp( P). (815)—
3' See Ref. 20, p. 297.

(822)

X/ = (2m/K3) '/'(P+lp)2+2/2') '/'

' This is easily derived using the methods of Ref. 38.

(823)

Here, the dimensionless quantity x~ is defined as
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and the sum in Eq. (822) is over all positive and nega-
tive integers, omitting the single term /=m=0.

The calculation of —to+ino is only slightly more
complicated than that given above, because the six-
fold symmetry of the triangular lattice may again be
used to simplify the explicit dependence on the polar
angle y. Detailed evaluation gives

=—2(ss) ' CxE0(x) x'(x'+s') '. —(830)

Equation (827) may therefore be rewritten as

valid for Re~~ —-', In particular, it can be shown that

—-,'7rs'PIO(s) —Fo(s) j+s—s '

—&0+ino ——-',e((Ag exp(2ix) + ( &—0+ino),

—$0+zAO =s exp(2') Fjo (825)

« «=«('(—8 '«) 'f 4('(('+«') '

X{Q' (P+bn+m') Loge(P+lm+m') '~'j}, (831)

In the derivation of Kq. (825), it is necessary to use
the following summation:

Q' (x( '—-', ) exp( —x( ') =-,'; (826)

this equation may be proved from the Poisson sum
formula Eq. (816) evaluated for q =0by differentiating
with respect to t'2 and then setting f'2=Is..

Short-Range Contribution

In the preceding section, the function fo has been
used to compute the long-range contribution to the
lattice sums, including terms linear and quadratic in
q. The corresponding short-range contribution will
now be found with the function f. Since f r ' as r+~,
the sums converge even when expanded to order q', and
we may therefore write

Here, the abbreviation

(r2=-', 16s'(P+fm+m')

= (Ss/V3) x(„'

has been introduced. Substitution of Eq. (832) into
Eq. (831) yields

(I = —(((t'(8s'p) ' dÃ'(f'+w') '

where @=a/h. is a small parameter. The summation in
curly brackets was denoted by Zg(f) in I, Appendix 8,
where it was proved that

g' (P+bn+m') Rot t (P+lm+m') "j
Im

g= (16s) '((q' Q' {—-'s.(E /A)'

X[H,(R~/A) —I",(Z /A) ]+(Z /A) —(A

g+ic7 = (32s) 'rcq' —exp{2~x) Q' {-',s {Eg/A)'

/~f) }~ The second sum Eq. (828) may be treated similarly.
The integral representation (829) provides the identity

(s) P" 2(s) ] 3s-1

X[H ~(E~/A) —F s(R;/A. )j—3 (A/E;) }. (828) = —2(ss) ' dxE2(x) x4(x'+s') ', (835)

The form of these expressions has been simplified by
using both the recurrence relations for Struve and
Neumann functions'0 and the triangular symmetry of
the lattice. It is shown below that these sums do not
affect the vibration frequencies in the limit of low
vortex density (u))h.), which occurs for H, q &II.
Hence, it is sufhcient to evaluate Eqs. (827) and (828)
in the intermediate-density limit (r,(&u«A) when
II„«II«B„.

The fundamental identity to be used in computing
both Eqs. (82/) and (828) is the following integral
representation4'

PI „(as)—I" „(os)j, (829)

which reduces Eq. (828) to

( g+io() exp—( —2ix)

= —«t('i(& '«) ' f d(('(('+«') ''
X{+'(P+lm+m')E2[i (P+lm+m2)'I2j}. (836)

lm

The summation in curly brackets was also evaluated
in I, Appendix 8, where it was denoted Zq(((t'); the
explicit result is

g' (P+bm+m') E2gt (P+lm+nP) '('$

+ Reference 28, p. 426.
= {32~/v3) {f-4++'I2{f2+~')-'}—2f-', (837)
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with o defined in Eq. (833).Substitution of Eq. (837)
into Eq. (336) gives

In Eq. (844), the integration over p may be per-
formed directly, and we find

(—g+ia) exp( 2ix) = —irq2(82r2p) ' dg (t +I. ) -J"'(p) = df f'(V+p') ' exp( R—'f')

&(u) I 4' (0 +I ')''
X[V'—(16~/~&) Z' a'(V+a') '] (84o)

lm

It is not diflicult to see that the definite integral J(p)
is finite, because the summation over l and m behaves
asymptotically like Q2 for large f and thus cancels the
6rst term in square brackets. Furthermore, only the
erst two terms of the expansion in ascending powers
of p, are required to evaluate the lattice vibrations.
Nevertheless, direct expansion of Eq. (840) in powers
of p,

' is clearly forbidden, and we must again resort to
the Ewald method. Since

Q2 —2 dp p exp( p t )

(f'+a') '= dp P' expL —p'(a'+V)] (841)

Eq. (840) maybe rewritten as

X I (162r/K3) f-4—t-'+ (162r/K3) f' g' (f'+a')-'}
lm

(838)

Equations (834) and (838) separately diverge like

p,
' for small p, this singular behavior precisely cancels

in the evaluation of the vibration frequency of the
vortex lattice, which depends only on the quantity

2l+ ($ ia—) eXp( 2iX—) = —(Rq2/82r2p) J(p), (839)

where

X f&'—(82r/V3) Q'o' exp( —R'o') [2(t'+a') —'
lm

+2R2 (f2+ 2)
—

2+R4 ((2+ 2)
—1]} (845)

Liberal use of partial fractions shows that Eq. (845)
depends only on a single definite integral and its de-
rivatives

K(R' p') =— di exp( —R'f') (f'+I4') ' (846)
0

It is easy to verify that

BK(R'—P2)/BR2= (2R) '2r"2 —y2K(R' y2) (847)

which is an ordinary differential equation for E. An
elementary integration yields

K(R', P2) = (2p)-'2r exp(442R2) erfc(PR), (848)

where the complementary error function has been de-
fined in Eq. (315). A tedious calculation eventually
gives

J»(p) = (2R)-'m'12 —-2'2rp

—(22r/V3) 2r'"R g' [exp (—R'o')
Zm

+-222r'12(aR) ' erfC(oR) ], (349)

where terms of order p,
' have been neglected.

In con.trast, the integrations in Eq. (843) must be
performed in the opposite order. The integral over f
is obtained by differentiating Eq. (846) twice, which
shows that the leading term of Eq. (843) is inde-

pendent of p and that the corrections are of order p'.
Hence Eq. (843) becomes

J( ) =J"'(p)+J"'(p),

J i (p) = p dp[2 —(162r/&3) p4 g' o2 exp( —p2o2) ]
lm

(850)

(842) J'"(p) =4~'" p 'dp

X[2—(162r/v3) p' Q' a' exp( —o'p') ]+0 (P2)

di i (i +14 ) ' exp( —p~t ) (843)
0

J'N(p) = df i'(f'+p') '
p ~p exp( —PV)

X[2—(162r/v3) p4 g' o exp (—p2a2) ]. (844)
lm

The sum over lattice sites may be rewritten with the
Poisson sum formula; it is not dificult to show from
Eq. (816) that

2 —(162r/43) p4 P' o' exp( —o'p')

2 2 L1 (E!4p )]exp( g /4p ) (851)
lm

The constant R will be chosen below to simplify the where
subsequent calculations. g2 =P+l2r4+ 2222. (352)
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If R ls chosen as

——',x'12(g/2R) ' erfc(g/2R) I. (853)

R =-', (V3/2s ) 'I', (854)

then both J~'& and J&@ contain the same lattice sums,
and the definite integral J(p) therefore reduces to

The remaining integration is elementary, and we find

P'& = (4R) 's'I' Q' I exp (—g'/4R')

ing quadratic terms arising from f exhibit a more com-
plicated dependence on p. For p&&1, the distance be-
tween vortices a is large compared with the effective
penetration depth A, and both Eqs. (827) and (828)
may be expanded in powers of R;/A;the .asymptotic
form of the Struve and Neumann functions shows that
O and g ia—are each of order p ' and therefore negligible
in comparison with the leading term of order p '. This
result is physically obvious, because only the asymptotic
tail of the interaction can affect the long-wavelength
dispersion relation in the low-density limit. Thus, Eq.
(858) reduces to

(859)

—2~~+o(~') (855)

A combination of Eqs. (839) and (855) yields

il+ (g—in) exp( —2') = —rcq'(Ss p) '(2/V3) 'I'

XL1—-'s'" Q' xi~ ' erfc(xi„) j+rcg'(16') '

and substitution of Eqs. (821)-(825) yields

oP= (-',err)'q'A'(Ns) ."C (p))1),
where

C=2s-'~' —Q'xi -' erfc(xi )

~1.10611,

(860)

(856)

Evaluation of Vibration Frequencies

All of the quantities required for evaluating the
vibration frequencies cu have now been computed. The
explicit expression from Sec. V

oP =rP —{e'+P)

may be separated into contributions from the long-
and short-range parts of the interaction

~'= (no+8)' —(~o+~)' —($0+&)' (85g)

Different analysis is required for the low-density (ii»1)
and intermediate-density (y((1) lattice, and we shall
first consider the case ii&)1. Equations (822) and
(824) show that the quadratic terms in q arising from
fq are of order ii ' for all ii. In contrast, the correspond-

and the relation m=2/V3u' has been used. The sum in
Eq. (861) converges very rapidly, and only the first
few neighbors need be included.

In the opposite limit (p((1), the continuum approxi-
mation Eq. {38) suggests that o is of order ekq~'A"'u.
this means that the singular p ' dependence of the
long-range lattice sums t Eqs. (822) and (824) 7 must
be exactly cancelled by a similar behavior of the short-
range sums t Eq. (856)). Such a cancellation in fact
occurs, although we have been unable to prove this ex-
cept by the detailed calculations discussed above. The
remaining analysis is straightforward and gives

aP = (-',er()'q'A(es) ' (p((1). (862)

Thus the triangular lattice is stable against small per-
turbation both in the limit of low densities (p»1) and
intermediate densities (ii((1); this conclusion pre-
sumably remains valid for intermediate values of p.


