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We study here the fluctuations of the order parameter in pure type-II superconductors in the vicinity
of the upper critical field H,, where the equilibrium value of the order parameter A(r) is described in terms
of the Abrikosov solution. Among many fluctuations we concentrate on two modes: (1) The longitudinal
mode, which couples to the density fluctuations. This mode is described by an equation of diffusion type at
all temperatures. The diffusion coefficient is weakly temperature-dependent and given by D=£xw2, where £
is the coherence distance and v the Fermi velocity. (2) The transverse mode, which couples to the current
fluctuations. At high temperature (i.e., T~Tq, where T is the critical temperature in zero field) this
mode is of diffusion type, while at low temperature, it becomes a strongly damped oscillation. We show
that the transverse modes cause an important modification of the electromagnetic response of the type-II
superconductor. When the oscillating current flows in the plane perpendicular to the static magnetic field,
the reactive part of the resulting response vanishes identically at low frequency (i.e., w < T). This modifies
strongly both the surface impedance and the attenuation coefficient of a transverse ultrasonic wave in the

corresponding geometry.

I. INTRODUCTION

N a previous paper! (to which we will refer as I

in the following) we have studied the collective
oscillations of the order parameter in dirty type-II
superconductors. It is shown there that those collective
modes have a significant contribution to the transverse
response function, giving rise to an anisotropic surface
impedance in dirty type-II superconductors in the
vicinity of the upper critical field (H~H.s).

Since the equilibrium as well as the nonequilibrium
properties of a pure type-II superconductor are quite
different from those of the dirty superconductor, it is
worthwhile to study these collective oscillations in a
pure type-II superconductor.

In the following we adopt the general formalism
developed in I, which applies as well to the present
problem.

In Sec. II, we will discuss the various collective
modes associated with the fluctuations of the order
parameter. Among many modes the following two are
most important for their physical relevance:

(1) longitudinal modes: which couple to the density
fluctuations,

(2) transverse modes: which couple to the current
fluctuations.

The longitudinal mode is of diffusion type at all tem-
peratures. The diffusion coefficient is always of order
22/T (v being the Fermi velocity and T the transi-
tion temperature in zero field). This mode is very
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similar, close to T, to the one discussed by Abrahams
and Tsuneto.? However, there is a significant difference
in the fact that they study the situation of zero mag-
netic field and constant order parameter, while we look
at the fluctuations of A in high field (H~H,), where
the order parameter at equilibrium is given in terms
of the Abrikosov solution.?+4

At low temperature our mode is still diffusionlike
(contrary to the one of Abrahams and Tsuneto) be-
cause we are dealing with a gapless superconductor.

The transverse mode is, at low temperatures, a
strongly damped oscillation, the real and imaginary
part of its frequency are both of the order of Ay at
T=0 (Ay is the BCS gap at T'=0 in zero field). This
mode can be interpreted as a resonance in the scattering
amplitude of particle-particle (or hole-hole) pairs due
to the pair interaction. At temperatures close to T,
this mode becomes of diffusion type like the longi-
tudinal one. At T'=0 the two types of modes obey
nonanalytic dispersion relations. The contribution of
these modes to the various transport properties can
be discussed as in I. We find that, in the present case,
similar to the case of dirty type-II superconductors,
only the electromagnetic (transverse) response couples
strongly to these modes (i.e., the transverse modes).
The transverse conductivity is strongly anisotropic,
which will be discussed in Sec. III. In particular, when
the microwave current flows in the plane perpendicular
to the direction of the static field H, the reactive part
of the conductivity coming from {[ 7., j.]) is exactly
canceled up to order (| A[?) and at all temperatures
by the one coming from the collective modes. This
result is strictly valid only in the low-frequency limit
(w&Tw). Generally speaking, in type-II supercon-
ductors the conductivity has a finite reactive part

2 E. Abrahams and T. Tsuneto, Phys. Rev. 152, 416 (1966).

3 E. Helfand and N. R. Werthamer, Phys. Rev. Letters 13, 686
(1964) ; Phys. Rev. 147, 288 (1966).

4 K. Maki and T. Tsuzuki, Phys. Rev. 139, A868 (1965).
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which is associated with the Meissner effect (i.e., the
oscillating field cannot penetrate into the bulk type-II
superconductor indefinitely). The above result indi-
cates that for a pure type-II superconductor in the
vicinity of H, there is no Meissner effect in the above
sense if the microwave current flows perpendicularly
to the static magnetic field. A similar result has been
obtained already in I for dirty type-II superconductors
at temperatures immediately below T. The explicit
form of the surface impedance is given, which can be
directly measured experimentally.

II. COLLECTIVE MODES

We shall concentrate here on the discussion of
various collective modes associated with the fluctua-
tions of the order parameter in a pure type-II super-
conductor in the high-field region (i.e., H~H). Since
the general formalism we use to deal with the above
problem has already been developed in I in detail, we
shall recapitulate the results, which we need for the
following discussions.

Generally speaking, the fluctuations of the order
parameter couple closely with the other fluctuations
(e.g., density and current fluctuations). In the field
region close to H,, these coupling terms are of the
order of | A [% and we can neglect this coupling in the
study of the dispersion relation of the collective modes.

It is important to point out here that the dispersion
relation that we obtain in this approximation is strictly
valid only at H=H.. In fact, we can show that this
approximation is sufficient to obtain exactly the terms
of order (| A |?) in the various low-frequency (w<T.)
response functions. This no longer holds if we are
interested in higher-frequency phenomena (e.g., far-
infrared region, w~T). In that region we would need
to know the corrections of order (| A|[?) to the dis-
persion relation, which are not necessarily negligible
even when A is small.

This can be qualitatively understood in the following
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way: In a dirty superconductor the pair-pair correla-
tions decrease exponentially with time. This loss of
correlation is isotropic in space because of the high
rate of collisions on impurities. In the pure supercon-
ductor these correlations are strongly anisotropic and
remain finite even when the time difference increases
indefinitely, if the correlation is taken in the direction
parallel to the field.> This gives rise to nonanalytic
behaviors of some response functions similar to the
irregularity associated with the BCS state, in spite of
the fact that we are dealing with a gapless situation.
For this reason, we are not able to calculate the precise
position of the bump in the infrared absorption, al-
though we expect that it is only slightly shifted with
respect to its position at H=H.
To lowest order in A, the dispersion relation is thus

given by

&g’

FZIRY) {5qq""'l gl ([\I’T: q’])qq’w}SAq'w=0: (1)

(2m)?
where | g| is the pair interaction and ([ ]) indicates
the retarded products on the Gibbs ensemble associ-
ated with the reduced Hamiltonian (see I). Here ¥t
and ¥ are the pair-creation and -annihilation operators;

Ti(r) =1 ()¢, (1),
V(1) =¢(r)r(1), (2)

where ¥t(r) is the electron-field operator.

In the present situation, where the external field H
is directed along the z axis, the eigensolutions of Eq. (1)
are the functions

Guip, (1) =Cop, exp(ip.z+iky) (II1)»
X exp[—eH (x—k/2eH)?],

where *=4(9/9x)F[d/dy—2¢Hxi] and Cu,, is a
normalization constant. We show in the Appendix using
a method due to Cyrot and one of us® that, in terms
of these solutions, Eq. (1) reduces to

. © é&} wp\ 1 —iw-+1vp, cosd _Ex_)}

0=1-[g|¥ (O)Lmd"‘f PG {m <2WT> v (2 * e (3)
- N L Zhotivpacosh | e Ly e

0=|g| N(O)/_wda'/%[pn(a, Q):P(Z + T + 27rT) pole, Q)¢ (2 + o )] ’ (4)

where
Pn(a: Qv) =2<¢'n00*(r,)5(v'Q+2a)¢‘n00(r) >

=2/d"’r/d3r’/ (;l:rq)a [exp {iq- (r—r1") +2ie r:A(l) dl}a(v-q+2a)¢noo*(r)¢noo(1")] ) (5)

and ¢(z) is the digamma function, wp the Debye frequency, N (0) =mpo/2x? the density of states at the Fermi
surface, and v the Fermi velocity. In the above derivation we have made use of the identity (which is the

implicit equation for H.)3* given by

0=1—| g| N(0) f_:da / %&?_ (e, 9) [m (E%) —y (% + %)] ()

¢ The Orsay group of superconductivity, Physik Kondensierten Materie 5, 141 (1966).
¢ M. Cyrot and K. Maki, Physik Rev. 156, 433 (1967).
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The explicit forms of the important p,(a, Q) are
given as

po(e, 2) = (1/me sinf) ! exp[ — (a/e sind)?], @)
2 a \? a \?
/e sinf <e sinH) P [,. <e sinf)) ]  (8)

e=v(eH,/2)12,

Pl(a) Q) =

where

As in the case of dirty type-II superconductors, the
nth mode (associated with functions ¢n,,) has the
symmetry of an nth-order tensor, so that in the follow-
ing we will limit ourselves to the discussion of the two
modes #=0 and #=1, which are the most important
in the various response functions.

A. Longitudinal Modes

As in I, we designate the mode with #=0 as longi-
tudinal. In this case, Eq. (4) reduces further, and we
have

@ aQ
0=/ da/~—p0(a,ﬂ)
—o 4

1 —iw+ivp, cosd _m_) _ (1 ioi)}
X {t.b (2 T 4xT T 2xT 4 2 + 2xT

P e dz 2 (g2
=(2vm) 1/;00d (1 22)112 10
—uo—i—wp,z

SERDE i) ¢<1+W>} 9)

x PG+
where p=¢/27T.
The asymptotic expansion of Eq. (9) at high tem-
perature is

1w
O==17 (37 —EWPZH-( )73“( )— ( >§§(3),
for To—T<KTn (10)
At T=0, the dispersion relation becomes

[ t dz 22

0=(2\/’ﬂ') /%dxﬁlme 10=2%
% In <—w—l—vpzz+2ex) o

2ex

which reduces, for small frequency and wave vector
(w, ¥p<LT), to

o= (2ma/m) %)—2 [1—111 {7 (’%)2}] y=1.78.

(11)
The above expressions indicate that, for small wave
vectors (p.£0<<1, where & is the BCS coherence length)
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the dispersion relation is of diffusion type at T'=0
and T~T. In fact, starting from Eq. (9), we can
show that this is the case throughout the whole tem-
perature region 0<S7T<Ty, the diffusion coefficient
being of order v?/T. But it is worthwhile to emphasize
that Eq. (11”) cannot be obtained by a simple power-
series expansion. This suggests that one cannot use a
time-dependent Ginzburg-Landau type of expansion
in the region T<wp, in the pure limit. Using this
result, and the analogous one obtained in the dirty
limit (see I), we can infer that the longitudinal mode
is of diffusion type for any value of the mean free path /,
the diffusion coefficient being roughly of the order” of
(1/&+1/1)"". A result similar to ours has been
derived, close to Ty, by Abrahams and Tsuneto,? in
the case where H=0 and A is a constant. However,
they find that, at low temperature, the collective mode
is wavelike. (It is essentially the Anderson-Bogoliubov
mode.)8 The difference between this result and ours
comes from the fact that we are concerned with a
gapless superconductor, while they deal with the case
of a finite gap.

We shall now discuss the coupling of this mode to
the density fluctuation. The induced change in the
order parameter in the presence of a scalar potential
®,, 1s given by!

lg|
1—| g | (Lo, ¥])"

(¥, ¥])E is the longitudinal part of ((¥f, ¥]) and

= > " (1) ¥, (1) is the density operator. Therefore,
we need only to compute {{¥', #])qqr for this purpose.
The details of the evaluation of ((¥', #]) are given in
the Appendix. We have

00go=— { (e, n])@}qw. (12)

© dQ 2
O, D =N O [ daf T e @) G
1 o —iw—1iv-q’
XP§+ﬁ*—Eﬁ“>
1 —iw+io
a2 (5 + e )] Agg. (13)

We note here that this retarded product vanishes like
w at low frequency. Therefore, the contribution of the
longitudinal collective oscillation to the longitudinal
ultrasonic attenuation is always negligible and we can
always use the expression given by one of us (K.M.)?

7 This order of magnitude can be easily checked, close to T,
using the Ginzburg-Landau equation obtained by Gor’kov for
superconducting alloys {see L. P. Gor’kov, Zh. Eksperim. i Teor.
Fiz. 37, 1407 (1959) [English transl.: Soviet Phys.—JETP 10,
998 (1960)]}

8 N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov,
A New Method in the Theory of Superconductivity (Consultants
Bureau Enterprises, Inc., New York, 1959); P. W. Anderson,
Phys. Rev. 112, 1900 (1958).

9 K. Maki, Phys. Rev. 156, 437 (1967).
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B. Transverse Modes

We consider here the modes belonging to #=1. The basic dispersion relation is given by

o[ nf 2 a1+

i(— i(—w+vp, cos) cosf)
4xT

In the high-temperature region T~T¢, the above equation reduces to

- o e+ [ (22) - 3 () |+ S roe

which is diffusionlike (for p.£<1).
At low temperature (in particular at 7'=0) we have

O=/::daf Z_j_z-{pl(a, Q) In[i(—w+vp, cosd+2a) J—po(a, @) In(20i) }

o 1 dz 2x?
= — d. / ——— g—22/(1—22)
’r /_m ¥ _12(1__z2)1/ze [1_

Neglecting p.» in Eq. (16), we have
0=(2\/7r)“fwdx 1
=1+3[In (%) —e2Ei($?) ],
where

dat

2]
¢=—

=) e——t
, R =
2e

o § P—1
and we consider { as a complex variable.

One can show easily that this equation has no solu-
tion on the first Riemann sheet (i.e., physical sheet),
but that it has a complex solution in the second sheet:

| ¢ 120.66 Argf~— (3w —0.14). (17"

This is very analogous to a resonance pole in potential
scattering. Here a well-defined collective mode could
be understood as a particle-particle (and hole-hole)
bound state due to the pair interaction. The finite
width of the resonance state (17’) is related to the
fact that, since the superconductor is gapless, it has a
finite density of pair excitations at zero energy. The
collective mode can then decay into incoherent particle-
particle or hole-hole states.

This should be a general feature for pure type-II

dz
—_—— p—22/(1-22)
o (=)n’ [1

i
+ o)~ (5 + 'z'ﬁ)} . (14)
(15)
r In(—w+vp.2+2ex) — 1n(2ex)] . (16)
2x22 In(—w-+2ex) — ln(Zex)]
—3
(17)

superconductors in the gapless region, and should apply
to all the higher-order excited states (i.e., >1).

This resonance should show up as a broad bump
superimposed on the usual infrared absorption when
the polarization vector is perpendicular to the static
magnetic field.

Finally, the difference in the structure of the dis-
persion equations in the longitudinal and the trans-
verse case comes from the fact that the former (#=0)
is connected to the zero-azimuthal-momentum com-
ponent of the scattering amplitude, while the latter is
connected to the component with an azimuthal number
equal to 1. It is interesting to note that the transition
in the transverse mode from the diffusionlike to the
damped propagation behavior occurs when « becomes
comparable to T (i.e., e~T). The effect of finite tem-
perature in the damped oscillation region is to add a
term proportional to 72 to the damping coefficient.

We shall now give an explicit expression for expres-
sion (14) at zero frequency (w=0), which will be useful
in the discussion of surface impedance.

1- I gl <[‘I’f1 \I’:I)qq'.w=0T=— | g I N(O)Lz%f‘/mda dfﬂ_

19,V cosf
4xT

X [m(a, Q)Y (—; +

= [| g N(0)/7~ Lde/ (1_22) o 60D {

o dk
X /_ o eud (@ duolq),

where p=¢/2xT.

i

T aT):l G10™(Q) p110(Q") 84, g

) —pola, &)Y (

}¢( +ipx) +-0(g.0) ] g0’

(18)
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The coupling of the fluctuations of A to a transverse electromagnetic wave is given by ([ 7., ¥]). The explicit
form of this product is computed in the Appendix (where we also discuss the convergence of its development in

powers of A), and we have for u=x, y

11’0 2veq
Caw ¥ Daqro= — —747—7 my, mdapm(a, ) m
1 da) (1 —dotiveq ﬁx_)} o+
% {‘P (2 T 27rT) ‘ﬁ( T T 2er)| ey

. © i emstid
IR . (1—2z)12 —wx e ’

.
wi+(q-v)?

1(—wtv-q) o+
{!P(z-l—wx) -V ( ——4—1?*3— -I-ipx)} (Gl Aqr—q, (19)
where, using the same convention as in Eq. (5)
pro(e, @) =2{pw0*(r")8(q* v-+2a) poao(r) )
tae'd a \?
= — e —_— — . 2
(2) 12(e sing)? o¥P [ (e sin0> ] (20)
Furthermore, in the limit w—0, vg—0 [keeping w/qv—0] we obtain
+
<[.7=C (2] A4 ])‘JQ'O (2 )2 ( T)_lf d 2)1/2/ xdx 8_12/(1—_22)‘#'( +’pr) (4 H)l/Z Aq ’
3 T ~1 ! /(1 I+
<[]I‘y, A :I>0qlo——- (2 )2 (’er) (_Tl/z/ xdx 6121(1—22)|I/ ( —-l—-’pr) (43H) 7z Aq
2p¢? /m idx 242 ) 2t I+
= (21r)3T(27r)1/2/ _22)1/2 o P (1 1—2/)° 1=y (3+ipx) ———— (eIl Aqry
{Lde ¥ ])oqr0=0. (21)

Using the above expressions, we find the change in A(r) induced by an oscillating transverse field in the same

limit! [w, ¢/, w/vg’ —0]

_ lg]
a0 ;{l—lgl@f,
2p¢ i 20 IIF

~ (27)'T p mpo (4eH)1"

In the above derivation we have substituted the ex-
pressions for (W', ¥1]) and ((¥', 5,]) given by Egs.
(18) and (21), respectively. We can take the wave
vector of the microwave field to be zero since in the
situation of interest the penetration depth is much
larger than &,.

It is quite easy to show that the coupling of the
above mode to the heat current vanishes like w for
low frequency, and hence these modes do not con-
tribute to the thermal conductivity at all.

III. COMPLEX CONDUCTIVITY AND SURFACE
IMPEDANCE

We have seen in the foregoing sections that, in a
pure type-II superconductor and in high field, the

AgdA

t ‘I’])T <[‘I’f,juj>}q00 5A,, (q’=w=0)

(@' =w=0). (22)

most remarkable effect of the collective oscillations of
the order parameter appears in the electromagnetic
response. We shall discuss in the present section the
complex conductivity in the mixed state in high field
(H~H,) and the surface impedance, which we find
to be strongly anisotropic. In the last section we shall
discuss the effect of this modification of electrical con-
ductivity on the attenuation coefficient of a transverse
ultrasonic wave.

The response of the transverse electromagnetic field
is described by introducing a quantity Q. (w, q):

= ZQW(q; w)A4,(q, @).

We take Q. to be diagonal in momentum, because on
the scale of q the system can be considered as homo-

ACHD) (23)
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geneous, since g£<<1. Qu(q, w) is given by

qu(q, w) = ([j#y jﬂ)q.q.w"l"RMV(q, w) +Rw(q; w); (24)
and!
Ruw(q, w) =—| gl {1, 70>
X (=] g| ¥ Y)Y, 5D }ager  (25)
([jn:jv:|>qu=0 if v,
(Lim Julaae =th°(‘l; )
aQ, o
37rT Z /— x| da po(e, )
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We can calculate R, (w, q) very easily, using the ex-
pressions of ((¥', ¥1)T, (¥, j.]), etc., already ob-
tained. We note here that R,,(w, q) gives rise to a
nonvanishing contribution only when the microwave
current flows in the plane perpendicular to the ex-
ternal static field.

([ Jus 7»]) is obtained by making use of the technique
developed by one of us (K.M.)? and we have

ve

X {1— {(oaia) (@' —ia) —Az/[(wn—ia)2+A2]"2><[(wn’—ia)"’J"2+A2}}
[ (wn—ia) FATPAH [ (' —ia) A7} —v+q

wn=2n+1)xT,

For small A, the above expression reduces to

Ne? dQv
QO———--—{31rTZ f_xn/ da po(e, ) I 1

where x, is the direction cosine, po(c, ) has been
already defined, and A=[(| A(r) |>)s 2. The second
term in Eq. (26) gives the electromagnetic response
in the normal state, which is the usual anomalous
skin-limit expression.

On the other hand, it is easy to see that

QI“’(qa w) =0

Finally, Q° depends not only on the direction of the
microwave current, but also on the direction of the
propagation vector q. Because of the cylindrical sym-
metry of the problem, it is necessary to distinguish
between the two situations q || Oz and q_L Oz.

Using Eqs. (18), (21), and (25), one obtains the
correction Ry, to Q, from the collective oscillations.
It follows from these equations that

for uv.

Ow=0,  if uzy
Q22=Q:"=0Qy,
Qw=Qw=QJ-- (27)

As in the dirty case, we do not find any “gyrotropic”
effect (i.e., we find Qz,, Qy==0). This result neglects
the Landau-splitting¥effects, which should g1ve only
a negligible contrlbutlon (i.e.y Quy/Que~Aw/Er is the
Fermi energy of the metal). Fmally, we have considered
only the case of a spherical Fermi surface, but the

10 The various directions in the (xy) plane are equivalent as
long as the external momentum ¢ is small compared with the
scale 1/, characteristic of the Abrikosov structure.

2
Wy>1w m

’
Wy =Wy —Wy.

A? 3rwi  mwiwA 8A
‘?W”E*ﬁPm%N

Xf aQ,
4

25(veq) f_ :da po(a, Q,) cosh™2 (ff)} , (26)

result still holds for cubic metals, like Nb or V. We
then must consider three distinct geometries:

(a) J || Oz. In that case q is perpendicular to the
static field, so that Q does not"depend on its precise
orientation in the (xy) plane

2A2
ReQy=— 83]\(76;)2&1(/1),
TN e?
moi= e fi- 2 - (B e} oo
where

22dz

Guo) == [ o | S e i,

fulp) = / g 22/_@
(29)

and Y@ (z) is the tetra-gamma function. In Egs. (28),
A is given by

20Tm Ho—H
2 — _
3weNG(p) Ba[2x2(T) —1]" ° B4a=1.16

—2*(—2%) cosh—2(mpx).

with
14 -
G(p) =—/ z (1—2?) 1/2/ = —22 (=@ (1 i)
0 2 —oo '\/ﬂ'
(30)
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The reactive part of the parallel component of the
conductivity is proportional to A% so that the penetra-
tion depth along the magnetic field decreases like
(Heo—H)™2, when H is decreased below H,. The
leading correction to the normal-state absorptive part is
proportional to Aln(2A/w) ; this increases as (H— H) /2
in decreasing field. It seems that this conductivity could
be measured by surface-impedance experiments only
for pure materials with £3>1. In that geometrical situa-
tion, the surface impedance can be measured only on a
sample face parallel to the external field. Thus, if «~1,
the contribution of the surface sheath will be significant
and will obscure the interpretation of the measure-
ments. The only way to circumvent that difficulty
would be to coat the sample with a very thin magnetic
layer which would destroy the surface sheath.!

However, measurements of transverse ultrasonic at-
tenuation with a relatively high wave vector (I«
g<&™) should give an indirect measurement of Q...
This is discussed in Sec. IV.

(b) JLOsz ql| Oz In this case, the collective oscilla-
tions give rise to a finite correction to Q. This correction
is of order A? thus we can neglect the correction to the
absorptive part of the conductivity, since its leading
term is of order A. From Eq. (26) we obtain

ReQ10= —[3Ne2A2/8m (xT)*1G (p),

3rNew A 8A
25 o S oon (S]]

(31)

where

® g
F1®(p) = /_ ) \—/% e cosh™2 (wpx)
and G(p) is given by Eq. (30).
The collective oscillations contribution is given by
Re(2R1) =[3Ne2A2/8m (wT)%]G (p), (32)

where we have made use of Egs. (18) and (21). Then
we obtain
ReQJ.=0,

ImQ.1~ImQ.°. (33)

(c) JLOz qlOz. As one can see in Eq. (26),
ReQ.° does not depend on the direction of q, the same
holds for Ri(w). Thus we obtain again

ReQ1=0.

Proceeding as in case (b) we find
ImQu(w)= ImQ1(w)

- e, {1_ 2 [ (I%)] o),

(34)

17, J. Hauser, H. C. Theuerer, and N. R. Werthamer, Phys.
Rev, 142, 118 (1966).
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4 1 [ d
fL@(p) = - / dz / G e cosh~2(mpx).
™ 0 — '\/77

Thus we find that when the microwave current flows
in the xy plane the reactive part of the conductivity
due to direct current-current correlations is exactly
canceled out (up to order A?) by the contribution of
the collective oscillations. Contrary to the case of dirty
superconductors, this is true at all temperatures.

This means that the penetration depth of a micro-
wave current perpendicular to the static field is much
larger than in geometry (a) (it is now essentially con-
trolled by the anomalous skin depth of the normal
metal).

The surface impedance can be easily measured in
geometry (b) and is given in terms of Qi and of the
surface resistance in the normal state R, by

2.9 (w) /Ry = —2¢""1
X {1—(A/2T)[1—In(8A/] w |) Jf+®(p) }~13, (35)

while in geometry (c), it seems again that the most
simple way of measuring Q. would be by transverse
ultrasonic attenuation experiments.

IV. TRANSVERSE ULTRASONIC ATTENUATION

The general expression for the attenuation of a
transverse ultrasonic wave with a polarization vector
e in the p direction and a propagation vector q in the
v direction is given by®

L ((Cru )

iwp ionUs

ﬂ@mw=&{

(47762/92) <[7'nw ]n]><[ juy Tvu]>
1— (4re/ ) L 3u]) »’<%’

where 7,, is the u» component of the stress tensor, j
the current operator. This expression is valid insofar
as one neglects the effects of collective oscillations.

The first term in Eq. (36) is the “collision-drag”
term originally discussed by Tsuneto and Kadanoff
and Falko.d Let us note that the stress-tensor opera-
tor commutes with the time-reversal operator so that
one can show that the correction to the collision-drag
term due to collective effects (which is proportional
to ({7, ¥])?) vanishes at low frequency as does «?.
We can thus neglect that correction.

The second term in Eq. (36) arises from the electro-
magnetic current induced by the transverse wave. The
collective modes modify only its denominator. This is

12 A. A. Abrikosov, L. P. Gor’kov, and I. M. Khalatnikov, Zh.
Eksperim. i Teor. Fiz. 35, 265 (1958) [English transl.: Soviet
Phys.—JETP 8, 182 (1959) .

13 K, Maki, Phys. Rev. 148, 370 (1966).

4T, Tsuneto, Rutgers, The State University, 1964 (un-
published).

15 T,. P. Kadanoff and I. I. Falko, Phys. Rev. 136, A1170 (1964).
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due to the fact that 7,, is a tensor of second order,
while 7, is a vector. Thus no collective oscillation can
couple with both of them.

Therefore, in order to include in Eq. (36) the col-
lective effects, it is sufficient to make the replacement

L Ju =L s Ju 1) +2Rps= Qs

where Q,, has been calculated in Sec. III for the three
different geometries.

The collision-drag term for pure type-II super-
conductors has been already discussed by one of us
(K.M.),? so we will concentrate only on the electro-
magnetic term. It is important in actual experimental
situations to take into account the fact that the electron
mean free path 7 is finite although much bigger than &.
As in the dirty case,® we can show that ([, 7,])
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to the evaluation of (., we also need ¢£<1. This
means that the measurements have to be done on
very clean materials (in Nb, / should be at least of
the order of 5000 A). The expression of the electro-
magnetic term simplifies very much if ¢ also satisfies
the condition

q)\L('I)F/‘Z)s) 1/2<<1,

where Ap= (4wrNe?/m)~Y2 is the London penetration
depth and v, the velocity of sound. (This condition
can be satisfied only with very long mean free paths.)
In this case the electromagnetic term reduces to

92 <[Tvquju:| >q ,w2} . (38)

This can be expressed using the total attenuation
coefficient for the transverse wave in the normal metal

ael.m.T:: —Re {

'iwpionvs

has exactly the same value as in the normal state's: Pt 1—g(qd)
. 3 anT: o (lpionvs)_l ) (39)
(Crows Judaw=— (pd'es/3mq) [1—g(g]) ], 3 g(ql)
with T 9
m. I
8(s) =359 —s+ (#+1) arctanz}.  (37) o — B gl [1-g(aD)] IgQ“l: . (0
When ¢i<1, g(gl)~1, hence in order that the electro- Acain th i three different tri .W‘
magnetic term be nonnegligible one needs ¢/ 1. In gain there are three diiierent geometnes:
order that we can still apply the results of Sec. ITI (a) el| Oz.
ael.m.T =[1—g(ql)] 1_<A/2T)|:1— ln(SA/IwI)]f“(p) (41)
an” {1—(4a/27)[1— In(84/|w]) Ifui(p) }* + [34%(gl) /8 (xT)*rw ]Gy (p)
In order to take into account the finite mean-free- is given by
path effects; one has to modify slightly the definition TG [y T [ —
of f; and Gl’|. This amounts to making, in expressions aetm."®/en" =[1—g(al) ] . .
like Eq. (26), the transformation v-q—v-q—i/7, (see X{1=(4/2T)[1-In(8A/| 0 [) ]f+@ () }7, (43)
for instance, Ref. 9). It is easy to see that such a where the f1?(p) are now given by
replacement only affects the imaginary part of Qu 3 1 dz(1—2)12
[and consequently fi;(p) ], since we are interested in f,®(p) = f
the region I/&>>1 [i.e., the correction on the reactive 2g(y) Jo 14(32)*
part is of the order of &//]. Therefore Gy (p) is still o dx
given by (29) while we now have for f;(p) X / — 10D cosh~2(mpx),
3 n g 2 e VT
Julp) = @ _/; Z (1—22) V2 1442(1—22) Ji2 £10 () = 3 1 dz(1—z2)12
o d 2g(y) Jo [14y2(1—21) I
X f —— 210D cosh~2(mpx), y=gql, (42) o du
—o VT X / —~ 10— cosh2(mpx). (44)
and g(y) has been already defined in Eq. (37). — /T

In the denominator of Eq. (41), the second term
increases rapidly in the superconducting region, so that
the electromagnetic term vanishes almost abruptly
below H.. This appears as a discontinuity in the at-
tenuation coefficient if ¢/ is sufficiently large (i.e.,
gz=1).

(b) el Oz. In this case the attenuation coefficient

16 This is a consequence of the fact that r,, and j, have different

transformation properties with respect to the time-reversal
operation.

We have to choose the appropriate f1 depending on
the direction of the propagation vector q. Thus the
electromagnetic contribution to the attenuation coeffi-
cient is not screened out in the superconducting region,
hence the total attenuation should change contin-
uously through the transition point.

V. CONCLUSION

We have studied above the two collective modes,
longitudinal and transverse, in detail. The longitudinal



324

modes are found to be of diffusion type at all tempera-
tures. The transverse modes are diffusionlike at high
temperatures (i.e., T~T¢), while they obey a damped
propagation law at low temperatures. It is interesting
to point out that their dispersion equations are non-
analytic in frequency and in momentum at 7'=0°K,
which cannot be obtained by any power expansion.

It is shown that the transverse mode plays an im-
portant role in the electrical conductivity. In par-
ticular, we have seen that the reactive part of the
complex conductivity vanishes identically in the region
H~H, independently of temperature if the micro-
wave current flows in the plane perpendicular to the
static magnetic field. This fact is closely connected
with the degeneracy of the Abrikosov solutions at
H=Hy,. Thus this exact cancellation of the reactive
part of Q cannot occur in situations (like the surface
sheath region) where such a degeneracy does not exist.

In the ideal situation where the quasiparticle has an
infinite lifetime, the Abrikosov state can adjust itself
to the low-frequency external magnetic field without
absorption of energy. This can happen only if the
external electric field is perpendicular to the static
magnetic field so that the corresponding adjustment
involves a real motion of the vortex lines (i.e., in the
plane perpendicular to H). This takes place by means
of virtual excitations of the transverse collective mode.
Consequently, in the pure limit, we have obtained a
complete cancellation of the reactive part of the com-
plex conductivity at low frequency. In the dirty limit,
on the other hand, we know that this cancellation
happens only at temperatures close to 7. This is
clear from the fact that, because of the impurity
scattering, the quasiparticles cannot follow the motion
of vortex lines instantaneously, which gives rise to the
incomplete cancellation at low temperatures. This can-
cellation of the reactive part has significant conse-

C. CAROLI AND K. MAKI

159

quences on the surface impedance and the transverse
ultrasonic attenuation coefficients as discussed in the
text, which can be easily verified experimentally.

Finally, the infrared absorption would probably re-
veal an anisotropy at low temperatures and for fre-
quencies comparable to Ty, due to real excitations of
the transverse mode. Unfortunately we are not able
to make a precise prediction about the position of the
corresponding bump for a finite value of Hp—H. It
may be very difficult to observe this anisotropy for
two reasons. First, the transverse mode is strongly
damped. Secondly, as in the case of the surface im-
pedance, it is difficult to achieve the geometry where
the propagation vector q is perpendicular to the static
magnetic field, since in that case the surface sheath
might play an important role, especially if « is small
(as is the case for Nb and V). Therefore, it is probably
necessary to destroy the surface sheath by depositing
a thin layer of magnetic material in order to achieve
this situation.

APPENDIX

We want to calculate retarded products of the type
(C¥, ¥1agres (¥, juldaara, * -, etc. In order to do
such calculations, one first expresses products like
¥ in terms of the Gor’kov G and F Green’s functions.
It is then tempting to expand these functions in powers
of the order parameter A and to keep the lowest-order
terms, since A is small in the region of interest (H~H ).
However, it has been shown® that such an expansion
does not always converge at low frequency (w<T).
In order to circumvent that difficulty a systematic
procedure has been proposed by one of us (K.M.)*:

(1) One first calculates the corresponding retarded
thermal product R(q, ») for a BCS superconductor in
zero field. This is usually given?” by

A By (Gny @n'y A) Yim (Do) Viems (2)

Rlq, ) = C‘”’Stn;m/ dr (8248 (@) K4y g

wp=2n+1)=T,

where # and #’ are integers. @ and A are renormalized
by the impurity scattering

@O =N, 5=A77£é4.,,

1
= [t s
In the pure limit this effect is always negligible, except
in the case of ultrasonic attenuation and thermal con-
ductivity.? In order to simplify the expressions, we
will neglect it in the following. %y (ws, wy,+wo) is the
relevant coherence factor

(A2)

wn (wnFwo) A2
(wn2+A2) 1/2[(wn+w0) 2+A2]1/2 ’

and ¥;,(Q,) is a spherical harmonic. /, m, I/, m’ are

hy(wn, watwo) =1—

wn' =wn~wo,

(A1)

wo= 4%071'T y

given by the transformation properties of the retarded
product of interest. For example, {[#, #]) corresponds
tol=1'=0, ([ J.,7.]) corresponds to I=0'=1, m=m'=0,
(Lissj-1) tol=V=1, m=—m'=1 (where j+=ju=ij,),
etc.

(2) Then one generalizes expression (A1) to the
case of a current-carrying state by doing the trans-
formation w—w—1ia with a=v-q,, where q; is the mo-
mentum of each pair, associated with the supercurrent.

(3) In the type-IT superconductor (where the cur-
rent is spatially varying) g, no longer has a unique

17 This expression is valid for all retarded products except the
one relevant to the calculation of the nuclear-spin-relaxation time.
This is due to the fact that nuclear relaxation involves spin
operators which are completely localized. This corresponds to
large momentum transfers.
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value, but can take all values. So, an average has to be taken on the distribution of values of q,, which is given by

the spectral function po(a, 2), so that

By (wn—10, wntwo—1) Vin(Qy) Vi (Qy)

R(q, w) = const i fm

aQ,
2 _mda/ e pole, ) [(wn—ia)2+A2T24-[ (wtwo—ie) +A2H24-q v’

(A3)

A?={| A(r) |*)n and po(a, Q) is a normalized function defined, as in Eq. (5), by

pola, Q) =2/d3r/d3r’f (;Z:I)a {exp [iq- (r—r')+2ie r:A(l) -dl] 6(v-q+2a)¢o*(x)¢o(x’)} ,

where

L, and L, are the dimensions of the sample.
We can easily carry out the integration in (A4)
and find,?

po(a, @) =[ (/7)€ sinf 1 exp[ — (a/e sin)2]. (A6)

Expression (A3) evaluates only the g=q’ elements of
the general-response function R(q, q/, w). This is
sufficient if the external perturbation is slowly varying
in space, namely, if ¢5<1. Equation (A3) can then
be used to obtain the behavior of R(q, wy) for small
values of A. Two cases can occur:

(a) If, for small A, R(g, wy) can be expanded in
powers of A? and if the development is convergent,

bo(%) = (%1)1/4(11,,14;) 112 exp(—eHa?).

(A4)

(A5)

the first term (coefficient of A?) is equivalent to the
one that would be obtained by a direct development of
the Green’s functions. This is, for example, the case
for the reactive part of the electrical conductivity.

(b) If R(g, wo) cannot be expanded in powers of A2
expression (A3) gives, to lowest order in A, a formal
summation of the divergent-power series one would
obtain by an expansion of the Green’s functions.
[Equation (A3) then gives a correct description of the
singular part of R considered as a function of A.]

Let us now calculate, for instance, (7., 7:])q.-
Since the coherence factor for the current operator is
h_, we have

([jzlj5]>q @0
Ne? @ aQ, h—(wn—10t, wptwo—1tcr) }
PSS L L I P . .
{ +3”T,,§m B e PR Ty prmmr sy T
After analytlcal continuation we have (replacing wp by iw)
daQ, A%py(e, Q,) cos?, = aQ,
2]z = T f / . - / /_ y Sy 2 v *
Lieged {3” ngm i [ (on—ia) parpe o™ 0] g poley @) cos%, 5(v-0)
w+to’ ’) (o' =) (0wt —a) +A2 }
® 4o’ (tanh
X . (a T — tanh oT) [ =) =B P X [ (ot —a) = AP]] (A8)

where we have assumed w<T .

Finally, for small A (i.e., AT ) we can further simplify (A7) and obtain (we put here ([ ., 7:]1)q0=0:2)

Nez 3A?

ReQ..,=—

4qv

where y®(z) is a tetra-gamma function. We note
here that ReQ,, is of the order of A% An identical ex-
pression can be obtained for ReQ,, by a direct ex-
pansion of the Green’s functions in powers of A(r).
On the other hand, the superconducting correction to
ImQ.. begins with A In(A/w), which cannot be ob-
tained by an expansion of Green’s function in powers
of A(r). This singular behavior in A is a consequence
of a coalescence of two singularities in the densities
of states,® which also appears in the BCS case.? The
above prescription does not apply if one calculates the

1 i
—_— - @) (2 e —
m (27rT)2f_wda/ costupo(at, )¢ (2 2 T)

Q.. Ne {3&‘, _ 37rwA[ In ( 8A )] _/;,,,da/ — c08%0,6(v+q) po(t, Q) cosh2 <2T)} )

(A9)

retarded products, which are relevant to the fluctua-
tions of the order parameter (which involves the
operator ¥ or ¥T). They are of two types.

(1) ([¥*, ¥])qw needs to be calculated only to zeroth
order in A (i.e., we can evaluate the above average
over the normal state). In order to compute this
average, it is convenient to decompose into the com-
plete set of eigenfunctions of the operator II2= (q—2eA)?

¥t(r) =

Z ‘I/n.k.p.1¢nkp.*( r), (A10)

n,k,pz
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where ¢uip, () has been already defined in Sec. IT. In terms of ¥, * the above retarded product is evaluated as

(O (@), %) D= b (1) () o), (1)
a9 = [V, T
=15 [ 55 [ s (Cion—t T Concban) e —v-a}
X [ [ exp g (e +2ief AW 1] ()0 )
NOT S [ [ dapla, ) et
a6 =N ) [ [ 2 (o) [ 22— (5 4 L0 ) (A1)

&
Prn’ (a, Qv) =/ 1

and the ®.(r) are the normalized eigenfunctions.
In the above derivation we have made use of the
orthogonality

dQ [«
/—f dot pone (0, Q) =8pne.
47[' —0

We note also here that the p,(a, Q) defined in Sec. IT

(A14)

(¥, n])a,a" w(=—iwe)
By

zk: ngm/ (2m)?

d3 7

G [ [ar {exp (iq-(r—r’) F2ie :'A(l) -dl) ¢nm(r)¢n:00*(r’)} 25(v-q+2), (A13)

are given by
pa(a, Q) =pun(a, Q). (A15)

(2) ([¥, #]) and {[¥, 7,]) have lowest-order terms
of the order of A. First, we shall consider ([¥, #]).
Taking only the first-order term in the development
of the Green’s functions in powers of A(r) we have

(27)* /d3rfd3r {Ciwn—Ep L twn+Ep+ V' Q[ (wntwo) +Ep+V'+ (44" ]}

X exp [iq (—r)+2ie[ AQ) -dl] A*(2) o b (@)

aQ, [~ 20 1
=—N(0) Aq—q'Tf i /_mda polex, ) {m [lﬁ <§ +

where we have restricted ¥ to the longitudinal modes
(i.e., to its projection on the eigenstates #=0).

In the derivation of the above expression, we have
made use of the reflection invariance of the spectral
function

po(a, @) =po(—a, Q). (A17)

We note that ({¥, #]) vanishes like & for small fre-
quency. It is easily shown that this low-frequency be-
havior is common to any operator which conserves
the time-reversal symmetry (e.g., 7, the stress-tensor
operator and jg, the energy-current operator). We can
calculate {[¥, 7,]) in a similar way. The only difference
is that we now have to take the projection of ¥ on
n=1 eigenstate (i.e., the transverse mode), which
introduces the spectral function

2ice’® a \2
VR T YRR Y - LAl
(27)2(e sinf)? exp [ (e sinﬁ) ] (A18)

poe, @) = —

_iw+ia) —y <} _ i(0+veq’)
2xT 2 4xT

2], o

(C¥, ju]) is given by

(0, Tae==0) [ T [t pu(a, 22
% oy ¢ G+ )

Y (l t(wi;vq) 27rT)[((4eH)1/2) ]q o
(A19)

<|:‘I’; ]+] >qq'w =0,
<[\Il; ]z] >q,q’.w =0(‘1=) .

In the limit w—0, the above expression gives rise to a
finite value of ([¥, j_7), which is a consequence of the
odd parity of the spectral function involved [i.e.,
p(—a, Q) = "'plo(a) Q)]



