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We study the time dependence of Quctuations of the order parameter in dirty type-II superconductors
in the high-field region (H—H,2). In this domain we can calculate their dispersion relation without taking
into account the other collective modes (i.e., density and current oscillations), since the coupling of these
oscillations with the order-parameter Quctuations is small (i.e., of the order of 6, which vanishes at H =H,2) .
Among many modes the following two are of special interest: the longitudinal mode, which couples to the
density oscillations, and the transverse mode, which couples to the current oscillations. The longitudinal
mode is of diffusion type at all temperatures. The transverse one is essentially damped, except in the vicinity
of T p (critical temperature in zero 6eld), where it is also di8usionlike. The thermal conductivity, ultrasonic
attenuation, and spin susceptibility are not affected by the existence of these fluctuations. We calculate
the transverse conductivity, which is strongly modified, showing an important anisotropy, which should
be easily seen in surface-impedance measurements.

I. INTRODUCTION

f lHE properties of type-II superconductors have been
extensively studied in the last few years. ' In partic-

ular we are able to describe not only equilibrium, but
also nonequilibrium properties of dirty type-II super-
conductors in the high-field region (i.e., in the vicinity
of their upper critical field) in terms of gapless super-
conductivity. '

The previous calculations of thermap and electrical4

conductivity show that, at least as far as we are con-
cerned with terms of order

~

6 ~' (6 being the order
parameter), these properties are given by expressions
equivalent to those obtained in other gapless situations
(e.g. , superconductors containing magnetic impurities) .
In fact, it is possible to establish such an equivalence
relation for all the response functions' except the
magnetic susceptibility. (The reason for that difference
is the same as in the case of a superconducting thin
film in the presence of a parallel magnetic field. ) This
result is true insofar as one neglects the effect of
Auctuations of the order parameter, which is then
given —for H H, ~ (i.e., in the perpendicular-field

case) —by the Abrikosov solution.
The purpose of the present paper is to study the

time variations of the order parameter, their coupling
to external perturbations, and their effect on various
transport properties of dirty type-II superconductors.
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In the next section we develop a formalism which
enables us to deal with the problem of Quctuations of
the Abrikosov structure in a quite general way. The
method is very similar to the one used by Kadano6
and Falko' in their study of the eGects of Coulomb
screening.

In Sec. III we concentrate on the solution of the
equation describing the time evolution of these Quctua-
tions for dirty type-II superconductors in the high-Q. eld
region (EI B,2). We find that, among many modes,
two are of special physical interest: The first one is
longitudinal; it couples to the density oscillations. It is
of diffusion type at all temperatures. The second is
transverse and couples to the current oscillations. At
low temperatures (T«T p) it is essentially a damped
oscillation; when T—+T,o its damping decreases and it
becomes also of diffusion type.

These results hold provided the scales of time and
space variations, ~ '- and q ', satisfy the "dirty limit"
conditions: &u '))r and g '))l. (r and l are the electron
collision time and mean free path, and go is the BCS
coherence length of the pure-host superconductor. )
This is a generalization of the result previously ob-
tained by Abrahams and Tsuneto' in the region T T,o.

The contribution of these modes to the thermal conduc-
tivity, the ultrasonic attenuation coeKcients, and the
spin susceptibility turns out to be negligible. Therefore,
these responses are still given by expressions equivalent
to the corresponding ones calculated for other gapless
situations. '

However, these modes play an important role in the
transverse electromagnetic conductivity (calculated in
Sec. IV) which becomes strongly anisotropic. This new
contribution is specific to the detailed form of the order
parameter at equilibrium. Thus it cannot be generalized

by an equivalence relation' to the other gapless situa-
tions.

Therefore, the observation of the electromagnetic

6 L P. Kadanoff and I.I. Falko, Phys. Rev. 136, A1170 (1964).
~ E. Abrahams and T. Tsuneto, Phys. Rev. 152, 416 (1966).
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response (e.g. , by surface-impedance measurements)
should demonstrate the existence of the transverse
oscillations in dirty type-II superconductors.

More generally, the following two criteria allow us to
tell which response functions contain a nonnegligible
contribution from these collective modes: (1) The
perturbation has to break time reversal symmetry;
(2) that perturbation has to be spin-independent, since
the collective oscillations all belong to the spin-singlet
state.

II. FORMULATION

%e shall consider here the change of the super-
conducting order parameter 0 induced by an external
perturbation 3U (which can be a vector potential,
scalar potential, etc.). Extending a linear response
theory, we can express this change in 6 in terms of
correlation functions (i.e., retarded products of opera-
tors) . First of all, let us write down the total perturbing
Hamiltonian which is given by

Hr = (V3U+4 "»+»'4) d'r,

where V is written as a bilinear form in the electron-field
operators

iJ,(r) and P,t (r),

+'(r, 1) =A'(r, 1)0 '(r, I)

Here the first term in Eq. (I) is the external pertur-
bation. The second and the third terms are due to the
variation of the interaction Hamiltonian;

Bg= +t rs~ ~ r, ~ ~~ r, ~%' r, ~ 4'r 2

in the presence of the perturbation 8U. h(r, 1) in
Eq. (2) has to be determined self-consistently by

~(r, 1) = —lrl &+(r, 1)&. (3)

In the spirit of the linear response theory' the change
of the order parameter 8h~ induced by the perturbation
B~ is written as

or

» = —((I—
I g I

&[+', K&) 'I g I
&[+' vj&3U).-.

(4)
Here co is the frequency, q the wave vector, and (C j)
means the average value of the retarded product taken
on the Gibbs ensemble of the unperturbed state of the
system. I I„s is a symbolic form of the expression

g +4 Q —I

&&([+' ~j&s".s -3U~ -.

As one can easily see from the above expression, the
zeros of the denominator

1-
I g I &C~', ~j&,.=0 (6)

give rise to collective modes associated with Quctua-
tions of the order parameter.

[In Eq. (6) we take ([4't, 4'j)„ to be diagonal in
momentum, since we will see later that in the high-field
region it is sufhcient to calculate this retarded product
to zeroth order in the order parameter; i.e, , the equilib-
rium state is then the normal state, which is transla-
tionally invariant. ]

Strictly speaking, the reduction of the original pair
interaction gives rise not only to H, [Eq. (2)]but also
to a density —density coupling of the form

g d're I', t e 1', $

This gives rise to the Anderson —Bogoliubov modes of
the neutral superconductor. '

In the high-field region (H~H. s) the first term in
Eq. (8) is of zeroth order in 6 (the orderparameter),
while the last one can be easily shown to be of order
I
6 I . Since in this region 6 is vanishingly small, this

last term is negligible and Eq. (8) is reduced to Eq. (6).
%hen we choose the equilibrium state in which the

average is taken in Eq. (6) to be the normal state, the
solution with +=0 determines the transition tempera-
ture or the critical field" (H.s or H, s depending on the
geometry) and the corresponding eigensolution for A(r)
(i.e., the Abrikosov solution" or the de Gennes-Saint
James solution" ) . The linearized time-dependent
Ginzburg —Landau equation" for the order parameter
can be derived simply from Eq. (6) by expanding
([+t, 0'$&„s in powers of to as well as q.

%e can describe the total variation in the average
value of an operator W' [also bilinear in P,(r) and

J. R. Sehrielier, Theory of SNPerconducteseiy (W. A. Benjainin,
Inc., New York, 1964), p. 174.

9 P. %. Anderson, Phys. Rev. 112, 1900 I'1958}; N. N.
Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, A Rem Method
je the Theory of SupercorIdgctiv~ty (Consultants Bureau Enter-
prises, Inc. , New York, 1959}.

"One should notice that this is true only because the transition
at the upper critical field is of second order. When the transition
is of first order, the ~ =0 solution of Kq. {8}determines the super-
cooling field, see for instance L. P. Gor'kov, Zh. Kksperim i Teor.
Fis. 3'r, 833 (1959) LEnglish transl. : Soviet Phys. —JETP 10,
593 (1960)g."A. A. Abrikosov, Zh. Kksperim. i Teor. Fiz. 32, 1442 (1957)
LEnglish transl. : Soviet Phys. —JETP 5, 11'/4 (1957)j."P. G. de Gennes and D. Saint James, Phys. Letters 4, 151
(1963).

"See for instance, Ref. 7.

so that the complete equation for the collective modes
should be, instead of (6),

f[f —
I g I &[+t, +j&+2 I g I &[~, +j&

X(l—I g I &[+', +3&) '&[+' Nj&jb~I-. =0 (8)
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P,t(r) ] induced by the external perturbation 8U as

b(W)„,= {([W, V]&bU+([W, 4'j)»+ &[W, +j&»'}.,
= {[&LW l'j&+

I g I &LW +'j) (1—
I g I

([+' K)) '&[+ l'3&

+ I g I &[W, ~3&(1-
I g I

&[~', ~j&)- &[~t, ~jn~L }.„(9)
where the first term in the bracket gives the ordinary
response discussed previously, while the second and
third terms are due to the Quctuations in the order
parameter, as described above. Therefore the present
formalism enables us to analyze these Quctuations and
their effects on various responses, simply in terms of
retarded products which can be calculated easily by
means of the usual thermal Green's-function techniques.
In the charged system we have to consider the electro-
magnetic interaction terms, which are treated in the
following. We here use the convention that the vector
potential is purely' transverse and that the scalar
potential describes the total longitudinal component.

A. Longitudinal Response

Since a scalar potential couples to the density
operator e=g,P,t(r)P, (r), it induces a variation of

the charge density, which according to Kq. (9), is
given by

sp,„=e{e&[e,Ij)sy+ &[I,etj)»+&[I,ej)» },„,
(10)

where

»"'=s
I g I {(1—I g I

&[+' +j)') '&[+' ~3»4 }.-
(11)

»:= lgl {(1—Igl &[+,+'j)') '&[+, j»4}:
(»)

8P is the total scalar potential, and the symbol &
)~

means that we have selected the longitudina, l part of
&[+,+'j).

Combining Eqs. (10) to (12) with Maxwell equa-
tions, and eliminating 8A and M t, we have

(4 ")-'[e--'3~ '={[&[I,N3)+ ig i ([N, ~'j)(1-
i g i &[~, ~tj& )- &[~,.g&

+ I g I &[~, K&(1—I@I &[+', K&') '&[+', ~j&]~y}-., (»)

where 8&~„' is the induced scalar potential. Here we can
neglect the term oPbg„~' which is much smaller than the
first term on the left-hand side of Kq. (13).

As in the case of Eq. (10), in the high-field region
which we are interested in, the last two terms in Eq.
(13) are of order

i
6 i', so they can be neglected in the

study of plasma oscillations, which then satisfy the
usual equations for the normal state (i.e., we set bg'=
8p in the absence of any driving potential) .

1—(4s.e'/q') &[e, m)),„=0. (14a,)

Proceeding in exactly the same way, we can eliminate
» and 8P from Kqs. (10) to (12), and we obtain the
dispersion equation for the longitudinal Quctuations of
the order parameter to lowest order in 6

tuations of the order parameter couple to the density
Quctuations so strongly that the corresponding modes
are removed into the region of plasma frequency. ' It is
only because of the smallness of 6 in the vicinity of a
second-order transition that we can here neglect this
coupling (e.g., this is also true for the BCS case in
the vicinity of T,D) .

B. Transverse Response

We now apply the general expression (9) to the
response to a transverse vector potential described by
the Hamiltonian:

Xg = j„bA„d'r,

1—
I g I &[+' K&.-'=0 (14b)

where j„is the p, component of the current operator,
Generally speaking, in the charged system, because

of the long-range nature of the Coulomb interaction,
the coupling between these two types of modes is by
no means negligible. In fact, in the BCS case the Quc-

J„=g(2m')-'{ (V„y.t(r) y.(r) —y.t(r) V„y.(r) )}.

We then obtain for the change in the current density

~&J.&.-= {[&[i.,i.j)+ I g i (LJ., +'3&(1—
I g I &[+', +3&') '&[+,i.l&

+ I g I &[J., K&(1—
I a I

&[+', +]&')-'&[+',j.g&]&&},. (»)
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([%t, %))~ is the transverse part of ([%t, 4j). Com-
bining (15) with Maxwell's equations, we obtain an
equation which determines the transverse collective
modes. For the same reasons as in the longitudinal case,
provided we concentrate on the high-held region, the
coupling between current- and order-parameter Quctua-
tions can be neglected. Thus there are two distinct
classes of transverse modes: The mode associated with
current Quctuations is, in the pure case, the helicon
mode; the second one is a transverse fluctuation of the
order parameter, and has a dispersion relation analogous
to (14b).

F„(r, r') = (G„'(r, 1)6(1)G „'(r', 1) ),de (16)

6„' is the Green's function in the normal state in the
presence of field and ( ); mean that the average has to

' A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinski,
3fethods of Qguntgm Field Theory in Stutistica/ Physics (Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1963).

'5 This expansion is valid for all values of co in the dirty case
since one can show that aii the retarded products iLA,B))«„
are analytic at all temperatures in the neighborhood of co=0.

III. COLLECTIVE MODES IH THE HIGH-FIELD
REGION (H~H, s)

The formalism that we have developed in the pre-
ceding section enables us to analyze the collective
modes in terms of retarded products.

In this section we restrict ourselves to type-II super-
conductors in the high-Geld domain corresponding to a
perpendicular-field goemetry; i.e., B~H,2. In fact, the
same kind of treatment could be applied to the surface
superconductivity regime (parallel-6eld geometry; i.e.,
H H,s). The only difference is that the equilibrium
form of the order parameter is in the former case the
Abrikosov solution, and in the latter one the de Gennes-
Saint James solution.

The calculations of the various retarded products
which come into play in the dispersion relations and
response functions are completely analogous to the ones
which have been carried out previously for dirty type-II
superconductors. ' 4 So, here we will only sketch the
procedure and give the results of these calculations,
leaving out all details (the main ones are given in the
Appendix) .

The products of operators like e, J„,%t, 0' are ex-
panded in terms of the Gor'kov G and F functions. '4

Furthermore, in the high-Geld region which we con-
sider here we can expand these Green's functions in
powers of h(r). is The developments have the well-
known form

G„(r, r') =(G„s(r, r') );

(G„'(r, 1)6(1)G „'(m, 1)6t (m) G„'(m, r') ),dsztzd'l,

be taken on impurity configurations (the rules for doing
such averaging on all the relevant diagrams are given
in the Appendix) .

Then from Eq. (16) it is obvious that the products
which contain the same number of creation and annihi-
lation operators (i.e. , ([zz, zz]), ([%t, 4))~ ~ ~ ) have
Gnite values in the normal state, whereas the leading
term in "cross products" like ([n, %$) is proportional
to 4.

One can then easily calculate all the products
provided that the external frequency and momentum
satisfy the "dirty-limit" condition; i.e., cur«1, g)«1
(z and I are the electron-collision time and mean free
path).

Since the fiuctuations of the order parameter are
given by Eq. (6), let us first consider ([%t, 4'7)s„;

(O', K).-= I g I-'+&(0)

To, ( ~—DQsl
X l.—'+P(-,')-41-', - I, (»)T ( 4zrT j

where Q is the differential operator which is the
gauge-invariant generalization of q:

Q =q+2eA.

D 3v@ 7 is the diffusion coefficient, " op the Fermi
velocity of the alloy, X(0) =zrzp&/2zr' is the density of
states at the Fermi level, and P(s) is the digamma
function.

The ground state (&v=0 solution) of Eq. (6) is
simply the Abrikosov solution. In order to find the
excited states, which correspond to the various types
of Quctuations, it is convenient to define the functions

y, s,„=(II+)"exp ( eH,s(x (0/—2eII,z) )'—
J

X exp[i(ky+p, s)],
II =Q,+iQ„.

(The Abrikosov solution, corresponds to a superposition
of various pp, s,s.) The p„,&,„, satisfy the relation"

DQ'p„.s,„,——D f p,'+ (2N+1) 2eP,z f p„,s,,
=—"(p*)4-.s,s., (Ig)

so that they form a complete set of eigensolutions for
Eq. (6) . The general dispersion relation is given by

ln- '-+P(-,') —P I

—',— I
=0. (19)

T,s ( zco —e (p,)l
T' ' E' 4 T )

It is easy to see that the +=0 mode transforms like a
scalar, the e=i one like a vector; more generally, the
eth mode transforms like an irreducible tensor of the
eth order. So, the nth mode appears only in the response

'6 In all the calculations we consider the impurity scattering to
be isotropic, so that Tt;ransport=&

"Note that Eq. {18) is strictly valid at H=H~ only. This is
consistent with the fact that we calculate ((@t,%'j)~i„ to seroth
order in 6 and that we neglect {(Pgt+, Ng)}' in the dispersion
equation.
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function corresponding to an operator having the same
transformation properties.

Consequently, the n=0 mode contributes only to
the density —density correlations, the m=1 one to the
thermal (or transverse electromagnetic) current —cur-
rent correlations, ~ ~ . The modes with e&2 can be
discarded for two reasons:

(1) The only possible contribution from these modes
to a linear response function would appear in the
collision-drag term of the ultrasonic-attenuation coefB-
cient (n=2 mode)"; but, since ultrasonic attenuation
corresponds to a time-reversal conserving perturbation,
this effect can be shown to be negligible.

(2) The damping coeKcient of the fluctuation modes
[which is proportional to s„(q)] increases linearly
with n.

Therefore, let us only consider the v=0 and a=I
cases, to which we will refer as longitudinal and trans-
verse, respectively.

A. Longitudinal Modes

In this case (I=0), using Eq. (19) and the equation
which defi es H, ' '

»(2'/2'. s) =4(2) —4 (s+(«/4~2') ), (2o)

where e0=2DeB,~, we obtain for the dispersion relation

ZM =Dpi ~ (21)

This means that the time evolution of the longitudinal
modes is of diffusion type. It is interesting to note that
the corresponding diffusion coeKcient, which is the
same as the one ruling density correlations, is therefore
independent of temperature. This feature holds only
in the dirty limit; it is not maintained in the opposite
limit of a pure superconductor, "for example.

The cross product relevant to longitudinal perturba-
tions is

iX(0) . „, (, i(o &, . i(a
( i +Dq")—' 4 I l — +~I —4(l+c) +(—i +DQ') '

0 l — +c 4(l+n)—
4mT 2~T 4xT

ice 't f, ice
+(—i~—DQ') ' 0 l — +~i

I

—All — +el ~'(q —q'),
) I,

' 2~~ )
(22)

where dr(q) is the Fourier transform of the order parameter at equilibrium —which is here described by the
Abrikosov solution —and

P =«/O'llTq'pt =u+DP. '/4s T, Q =q+2eA

In the limit of small &o (i.e., &u«T, s, T p being the transition temperature in zero field), Eq. (22) can be expanded
in powers of I, and

iX(0) ( i(a) Dq'+—Dq", , 2

D, &'(-'+~) —,, [4(l+m) —tt(l+u)j ~'(q, —q')+o( ') (23)

The above equation implies that ([+t, e]&, „
vanishes like co for small frequency, if Dq))co. This is
in fact the case for ultrasonic measurements. Therefore
the contribution from the longitudinal modes to the
attenuation coefficient gives rise to a small correction
(bigher order in &o'), which can be neglected in usual
experimental situations.

The change induced in the order parameter by a
scalar potential p~„ is given by

, , ([e, ~])Sy . (24)
I@I

Substituting Eqs. (17) and (22) in the above expres-

's T. Tsuneto, Phys. Rev. 121, 402 (1961).

sion, we see that the change in the order parameter also
vanishes like co for low frequency and co«Dq'.

In order to compute the effect of the superconducting
transition on the plasma mode, one has to calculate all
retarded products involved in Eq. (14) up to second
order in A(r). However, the correction due to these
terms is likely to be of the order of (b/co~&)', where

or» is the plasma frequency.

B. Transverse Modes

These modes correspond to the m=1 excited states
of Eq. (18). Proceeding as in the case of longitudinal

"C. Caroli and K. Maki, following paper, Phys. Rev. 159,
316 (1967).
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modes, we find the dispersion relation

zo) =2ep+DPg . (25)

This means that the transverse mode is simply damped
at low temperature (where the damping coefFicient

eo—~oo, 600 being the BCS gap at T=O and in zero
field) while at higher temperature (T T,) it becomes
essentially of diGusion type.

These modes couple to the electrical and thermal
current.

erlV ZCO

([@,1])„,.= l2q„—q„+4eA„) (2e+Dq. —i.)- P —,— +p) —ill-,*+p)

+(2es+Dq*'+i~) ' 0 s
— +ps —4 s+p — ~'(q —q'), (26)

4mT 2KT

where

ps
—3p+Dq, '—/4n T.

current

j~ ———(2m) 'Qf. tVP.+(Vg, t) P,
It is cl'ear from Eq. (26) that ((N, J„])«„does not

vanish at zero frequency. This implies that the correc-
tion to the transverse electromagnetic response arising
from the Quctuations of 6 is not negligible and that
even a static transverse vector potential can induce
nonnegligible variations of h.

The explicit form of the Quctuation of the order
parameter is given by

».-t= Ial I(1—
I gl&B",K)) '&5+t, i.j»~.I.- (»)

Substituting Eq. (26), we see that the fluctuation of
the Abrikosov structure is in a direction parallel to
the microwave current A„. This might seem, at first
glance, to be in contradiction with the Qux Qow experi-
ments, " where the vortex lines move perpendicularly
to the current (or external electrical field). We would
like to stress that in the present situation there exists
no net total current Li.e., (j(r) )A, =0], and hence the
situation is completely different from those in the Qux
Qow experiments. At this point it may be useful to
emphasize that the modes defined by Eq. (25) are
completely different from the helicon modes, which in
the dirty limit do not exist, since they are damped
with a characteristic time r (characteristic time for the
loss of velocity correlations). On. the contrary, the
lifetime of the present modes is the characteristic time
for the loss of pair correlations.

Finally, one can readily be convinced that the
coupling between these Quctuations and the energy

is proportional to o)/( io)+D—q'+2es). Since the ther-
mal conductivity is related to the co=0 limit of
([4, jsj)«.„, it contains no contribution from these
modes. Therefore the previous result' is valid for the
case of thermal conductivity.

IV. ANISOTROPIC ELECTROMAGNETIC
CONDUCTIVITY

Since we have seen that the effect of Quctuations of
6 on ultrasonic attenuation and thermal conductivity
is negligible, we will now concentrate on the electro-
magnetic response, which seems to provide the only
way of detecting these modes.

%e. can write the complex conductivity as

..(q, q', )=(i )-'Q,.(q, q', ),
where

Q"(q=q'=o ~) = (I:J., if)ss-+~" (o,~) + ~"(0, ~)

&"(0, ) = —
I a I I &L+', i.3)

x(&—
I g I

&C+', +))') '&Li., +j)j,=, ~,. (»)
We only need to know Q„„(o), q= q'=0) since q and q'
are essentially of the order of the inverse penetration
depth X '. Since in the dirty limit the electrodynamics
of the superconductor is local (X))l) we can put
q=q'=0. In that case &Pj„, j,])ss,„has the simple
expression

(30)

&Lj. i.j)so-=~.. —i~+ 4'll — T+p + . + .
&I

~f' s
—

2 T+pI 4(s+p) —( 9)
&I A I') 2n. T 2~T 'l, io)

&r = (Xesr/m) is the normal-state static conductivity and P'(s) =Ldll(s)/dsj. The correction to Q„„arising from
the collective modes is, using Eq. (26) and the expression of ([%t, %j)r,

& —
I r I

&L+', +j)..:= I z I
Ã0) 0(l —

~ r+a) 4(l+n)—
L&'( )+s.( )j=—2 (&..&:+4& ) (2 —~ ) 4 l — +3P) 4('+P)—-

( ZM ZM Zco

+(2es+i~) ' 4 l s
— +3p —4 s — +p 4 s — +3p 4(s+p) (3—1)

4~v 2xT 4xT

"See for instance Y. B. Kim, C. F. Hempstead, and A. R. Strand, Phys. Rev. 139, A1163 (1963).
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0,4

0.3
A(I)

0.2

O. I

Making use of Eq. (36) we can rewrite Eqs. (34) and
(35) in the form

e HQ H ZM

Q(((~) = —~~+— 1— C(((t)
sr P L2(c s(t) —lj SsT,

(34')

00 0.2 0.4 0.6

t
T

TCO

0.8 I.O

Fro. 1. The temperature dependence of A (t), which appears
in the expression of Qc(co), is plotted against the reduced tem-
perature t= T/T, p.

(t) ~r r+ W' (s+P)
4'(s+P)

e H, 2
—H

Qi(co) = oi—co+-
w (4L2.ss(t) —1$

t =T/T, p, (34")

In the derivation of the above equation we made use of
the relation" 4(s+3p) —4 (s+P)

2A'(s+P)
(35")

X A(t) — C.(t), (35')
~~T'.0

since II 4=0, where

/ r

X (Il+&(1))*(II„&(1))dl =?(„+h„eH(I 6 I') dl, (32)
The universal functions of the reduced temperature
CI~, C~, and A are plotted on Figs. 1 and 2. Equation
(35) implies that

II„=(iV'„+2eA„), IIg =II &iIIy (33) Reg J.(Reg((, Img J.(Img((,
We see from Eq. (31) thai. this correction is highly
anisotropic, since it does not contain any (ss) compo-
nent. Thus, the transverse fluctuations only couple with
vector potentials having their polarization vector in
the plane perpendicular to the static field. We note that
Q„=Q„„which follows from the high symmetry of the
Abrikosov structure in the high-field region. This fact,
added with the dirty-limit condition, eliminates the
possibility of any "gyrotropic" effect" (i.e., we have
Q,„=Q„,=O). At low frequency ( co« s,T, pwhich is
usually satisfied by microwaves) the expression (31)
reduces to

Q**(~) =Ql( ~ I
—i~(1+L(I & I'&/2(2~T)'j

XI P V'(s+P) +34"'(s+P)j)
+((I ~ I'&/~T) lt'(s+P) I, (34)

gg GO =
yy GO = J

=Q..—.I(2(l ~
I &/") (~(-:+3p) -~(-,+p)

—(i~/4~T) L4'(s+3P) —24'(s+P) 3)I (33)

where, as usual

Z((, J.=scoL4rl/cQ((, J.(co) g? I (37)

depending on the direction of the microwave current,

48

40

= 24

"
16

8

namely, the transverse Quctuations increase both the
penetration depth and the absorption of the electro-
magnetic wave. Since the current Quctuations perpen-
dicular to the static external field couple to these trans-
verse fluctuations, they have electively a larger
penetration depth than the current Quctuations parallel
to the external field.

The surface impedance is expressed in terms of
Q„,(co) as

, —8'(l+p) j-'. (36)

"P. G. de Gennes, Snperconctnctioity of 3Eetots one? Alloys
(W. A. Benjamin, Inc. , New York, 1966), p. 204."In a pure isotropic material one expects a 6nite "gyrotropic"
effe t, thcough it should be extremely small Li.e., o»= —o»~
o„(8/E?.s) (?s/Its), where J3 is the magnetic induction and Er the
Fermi energyg.

"l6
0.2

i

0.4
I

0.6
T

TCO

I

0.8 I.O

I'ro. 2. The coefEcients appearing in the absorptive part of QI I (~)
and Qs(co) are plotted against the reduced temperature t.
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where Q~~ and Qi are given in Eq. (34). Substituting
Eq. (35) we have in the immediate vicinity of H,s(i.e.,

(I ~ Is)&&M2'. ),
~ii=~-(1-') 0-E&l ~ I')/4(2»'j

&& fr V'(s+u)+4" (s+I ) I

-«'
I ~

I )/2-»~ (-:+.) &

the asymptotic behaviors of which are given by

r./r~, = l.—Ll —(56/~s) f (3) (& —t) ]
=0.70(i—t) for mi,

r~/r~i =1—tsLln3+(+s ln3 —~) (4yi) sg

=0.451—0.406P for «&j.,

(42)

with p= 1.78.
The anisotropy in r increases with the temperature

from about 55% at 2'=0 to 100% close to 2;s. This
means that in the vicinity of T,o, the reactive part of
the complex conductivity for a microwave current Qow-

ing in the plane perpendicular to the static field vanishes
completely ('i.e., the term coming from (Lj„, j„$)
cancels exactly the one coming from the E.„„'s and
hence the penetration depth increases much faster than
(Z,s —H) '".

Such an anisotropy in r has already been noticed'4
and is in rough qualitative agreement with our results.
However, more experiments would bc desirable in
order to make a quantitative comparison, since the

»Precisely speaking Eq. (41) is not valid in the immediate
vicinity of T.s)1—{T/Tcs)((1), since it assumes that es(T) )ca.

'4M. Cardona, G. Fischer, and B. Rosenblum, Phys. Rev.
Letters 12, 101 (1964).

~ =zii+~-(1-') (&I ~
I )/.)

~ I («» '8"(s+3u) —20'(s+i ) 3

+(s/~) 8 (s+3~) —4 (s+u) jl, (39)

where E„=(2trce/o)'Is is the surface resistance of the
normal metal. From the above expression, wc sec that
the surface resistance for the microwave current in the
x (or y direction) is larger than for a current in the s
direction. Let us dc6nc the surface resistance for the
currents in the (x, y) plane and in the s direction as Ri.
and E~ ~, respectively. Since E~ and Et

~
decrease linearly

in field in the vicinity of H,s as the external (static)
field decreases, it is convenient to introduce the new
quantities

~i, i.=BR~[,i./8P Iir ~,s. (40)

Then the ratio of these two quantities is given by a
universal function~ which characterizes the anisotropy
in the surface resistance

f(s+31) 4(s+~)—
2~4'(s+i )

existing ones were concerned only with the parallel
geometry (i.e., the static field B parallel to the surface
of the sample).

We mlglit point out that the salTle kind of calcula-
tions could be done for the surface sheath regime
(H~B,s), provided we knew the wave functions for
the excited states with the appropriate boundary
condition Li.e., (sV+2eA) „/=0 at the boundary). We
expect, in this situation, an anisotropy in the surface
resistance similar to the one discussed above.

V. CONCLUSION

It appears from our results that, besides the usual
(plasma and helicon) collective modes, there exists
also in a type-II superconductor a class of modes
associated with fluctuations of the order parameter.
These modes have no correspondent in the homogeneous
superconductor, since they are intimately connected
with the space variations of the order parameter at
equilibrium. For example, in the BCS state in the
absence of a magnetic field. (L%', j„$) vanishes identi-
cally so that there is no contribution to the electro-
magnetic response from the collective oscillation. It is
dear from our calculations that they exist, not only in
the Abrikosov structure and in the surface sheath
regions, but also, for instance, in the intermediate state,
close to the superconducting interface. Ho~ever, in
the latter case the equation ruling their time evolution
is strongly coupled with the one governing the electro-
magnetic fluctuations.

Although our calculation applies only to the high-
field region, these Quctuations of 6 exist all over the
mixed state or surface sheath range, However, contrary
to the case where 5 is small, in lower 6eld they mix
with the density or current oscillations (which are the
collective modes of vortex lines discussed by several
authors) ss and the various modes are no longer the
solutions of independent dispersion equations.

Wc have seen also that, among many response func-
tions, the electromagnetic response function is most
suitable for the study of these collective modes, since
it contains a significant contribution coming from thc
transverse collective modes of the order parameter.
Hence, measurements of the surface impedance would
be of particular interest.

APPENDIX

We shall present here the calculation of various re-
tarded products, which have appeared in the main text.

Fro. 3. P-wave vertex with a 6nite external
momentum.

» P. G. de Gennes and J. Matricon, Rev. Mod. Phys. 36, 45
(1964); A. L. Fetter, P. C. Hohenberg, and P. Pincus, Phys.
Rev. i', 140 (1966).
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A. Calculation of C (4, %7 &,„
The retarded product is obtained from the thermal product by analytical continuation. "The term of lowest

order in A(r) of the thermal product is given by

T
&C+', +]&.,,= —Z (G-.(r, l)G--.(r, 1) &'expC'a (r —l)]d",

V „

where rs and ) are integers and ( ), indica, tes that the average has to be taken over the random configurations of
impurity atoms. Using the standard techniques of the impurity-scattering problem" (Al) is reduced to

d3

, (i~.—4) '(i~-'+4 —v q) 'vt-.+-. t/s,.2' s

with Is I
=vs

&C+', +]).,=&(o) ln —
Wl l+ " +

mT & 4mT AT

~.=~.C1+ (2r
I
~- I) ']

r/t + t/s= I 1—(r I
o)+(e I) (1—rav ) I

8(x) =1, for a) 0

=0, for

and f(s) is a digamma function. After analytical continuation we have

for (d('d +0 (A3)

{A4)

1—
I g I

&C+", +]&-.= I g I &(o) 4 I l — +io) Dq'

4rrT 4s.T

Finally, the effect of the magnetic field is introduced by the simple transformation'

B. Calculation of (C@t, rr]) and (C@t,y'„])

First let us consider (C0't, I]).It is important to note that the above retarded product depends on two momenta,

(Cot, ~z]), , ,„= dt e'- d'rd r' expCi(q r —q' r')](C+t(r'/), )s(rO) ]).

The term of lowest order in A(r) is given by

(C+, I]),, „=Tg d'rd'r'd'I expCi(q r—(I' r')](G„„(r„I)/I((I)G „„(r',1)G„„.(r', r) );,

d3
(C+, rs]).. .=TQ

s (io). &„) '(~(e„+p„+v q,)-'—(2s.) '

+Cio)» 4 v' ('0+'0r)] l~», szA('0&)r/(ca»+co»')/s, a"/(ro» e»')Is s' 1st~'—a—
s'See for instance: A. A. Abrikosov, L. P. Gor'kov, an(i I. E. Dzialoshinslu, Me/hods of QNor)else Field Theory ir) Sto(istical

I'hysk s (Prentice-Hall, Inc. , Englewood Clips, New Jersey, 3.963), Sec. 37-2.
"See Ref. 26, Chap. 7.
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=i'(0) p d&. &(~.~ ') (2i~ +v gi) 'Li(~ +~ ') —v'%j 'n .. n(.+ .'»2.
(de

n+ 0( ~n&e ) (~&~+ v' g—i) Li(~n —~n ) —v' 0 j %.qual(~„—a n'/r), (e ~(qs) Iqi=a' —a
~e

cv, Dq') 5, Dqg'
&& 0 2+

" + l

—4i 2+ —I:D(q' —qP) —~.] '
AT 4~Tj & 4+T

D 2 (o D'

From the above equation we haveiX(0), , ia)
(L+', N3)a,'.-=

4 T ( i~+Dq—") ' 0 k —
2 T+p I 4(k+p)—+(Dq' —«—i~)-'

4vrT 2&T ]

i~ Dq')
&& 0 lk — + I

—4(2+p) —(Dq' —«+i~) '
4m T 47rTi

$Q) Dg Ad
&& 412— + —0 k — +p ~(a' —0)4~T 4~T 2~T

where in the above expressions q is understood to be q —2eA because it operates on 6'. Here we have made use
of the relation

D(q —2eA) 'h(r) =«A(r) .
Similarly, we have

Zh)

(L+', i.l)..., -=
2

(2 o
—'

) ' 0 l —
T

+3p I 4(l+p) +—(2 o+' ) '
2m 4mT )

i(o & f, i(o
+3p

~

—p ~

-', — +p ~
(q„'—2q„+4eA„) A(g —tl'), for p=x or y) (A10)

4~T ) ( 2+T )

—Dq,"
+p —p ~

—— +p ~
(q„—2q„+48A„)A(q —g'), f» p =s

4mT 2mT ]
Here we have made use of the fact

D(q —2eA)'(q, —2eA, ) h(r) =3«(q, —2eA, ) b (r).
Note that the rule for renormalizing the p-wave vertex of Fig. 3 amounts to the replacement of (2p+g)
by (2y+ng), where

n= .
"

(~ (o„~ +Dq') ', if co„((o„+(o„))0
3i [ ca„f

=0
7 ~a(~~+~~) +0


