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Resonance Broadening of Absorption Lines*

B~zr. BzzzzRzozs

La7oremce Radiatiort Laboratory, Urtiversity of California, Liverrrtore, California

(Received 12 September 1966)

A general theory of line broadening is used to study the effects of collisions on absorption line shapes
when self-broadening is important. Special attention is focused on the role of processes in which an excited
atom transfers its electronic excitation to an unexcited atom; it is this process which distinguishes self-
broadening from foreign-gas broadening. Several forms for the absorption rate are presented corresponding
to particular assumptions about the amplitudes associated with this phenomenon. For example, one ap-
proximation leads to a generalized Lorentz-Lorenz law in which the one-atom polarizability is replaced by
one that accounts for line broadening. Finally, the importance of many-body eGects in the calculation
of the linewidth is briefly discussed to determine when simple impact theories are applicable.

I. DTTRODUCTION

l 1HE subject of the broadening of spectral lines due.. to collisions has received extensive investigation.
The theoretical analysis has been guided principally
by an approach in which one atom is singled out as
an absorber and the others are regarded as perturbers. '
Such a procedure is eminently suited to systems in
which foreign-gas broadening predominates; however,
for self-broadening this test-particle picture requires
closer scrutiny.

Modern many-body techniques were used by the
author to develop a general theory of line broadening. '
In that paper, hereafter referred to as I, the absorption
rate is related to the correlation function of the whole

gas, i.e., the entire gas is considered the absorber. In
the present paper this method is applied to the problem
of self-broadening with the primary purpose of deter-
mining to what extent the usual foreign-gas broadening
theories are applicable. A great deal of confusion exists
on this question. ' 4 For example, it has been suggested
that a foreign-gas theory can be transcribed into one
applicable to self-broadening simply by replacing cer-
tain two-particle scattering amplitudes by ones which
account for exchange scattering. ' lt will soon be ap-
parent that such is not the case. Indeed, it should be
obvious on physical grounds that for a low-density
neutral gas the question of whether an atom is a fermion
or a boson is quite irrelevant.

The present paper relies on I to a certain extent;
however, its reading is not essential to an understanding
of this paper. In Sec. II the fundamental equations
relating the absorption rate to the propagator formalism
are listed. An integral equation is derived in Sec. III
whose solution yields an amplitude, the discontinuity
of which is directly related to the absorption rate. The

system is specialized to a low-density gas in which
broadening in the lower level is negligible. Section IV
is devoted to various limiting cases for the integral
equation, one of which corresponds to a generalization
of the Lorentz-Lorenz law. Section V brieQy touches
upon the question of self-consistency in the calculation
of the self-energy matrix of a given level. Finally,
Sec. VI includes a summary and some additional
remarks.

II. FUNDAMENTAL EQUATIONS AND
DEFINITIONS

A. Absorytion Rate

The transition rate per unit volume per unit Aux

of photons of definite momentum is given by

a(p, ~) = (2~/~c) l 2 2 p- I &ttt I J ss I N)I'
It, n, m

Except for the density matrix p representing the aver-
age over initial states, Eq. (2.1) is the familiar result
of quantum perturbation theory. J is the electric current
operator for the entire gas. Here ee and p denote,
respectively, the polarization and 4-momentum of the
incident radiation. Energy and momentum conservation
are expressed by the 8 function, which restricts tran-
sitions to states of 4-momentum for the gas equal to
p+I'„, where I'„ is the 4-momentum of the initial
state of the gas. In I it was observed that the Fourier
coeS.cients of the temperature propagator for the elec-
tric current field were closely related to a(p, to). These
coeKcients have the spectral representation
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1—exp( —Pto') 7A@(p, co'), (2.2)
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where p = (p, to„), with oo„=i (2rro„/p), o„=O, +1,
From the form of A;; (see I) it follows that

a (p, to) = (2~/&oc) s g(li);tA;t(p, to) . (2.3)
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8
(A I J,

I B)=8(a+p b)—(J;) p, (2.6c)

respectively.
Above, the 4-conserving 8 function denotes

Fn. i. Particle-
hole propagator in
medium.

8(a—a') —= (2&r)'8(a —a')Pb„. . . (2.6d)

Instead of working directly with P;; it is convenient
to express it in terms of the amplitude Q. As illustrated
in Fig. 1, Q is essentially a particle-hole propagator of
the gas. From the rules,

Thus,

i (2~l(oc)
0(p, co) =— I-', TrI li n„P]=-,'n„Pi},

1 —exp( —Pro)

(2.4)
I x = I —pplp'

where I is the unit dyad, and S„f=f(cu ) f(&u+), f-
being an arbitrary function of complex co. Hence one
need only calculate P~, perform the analytic continu-
ation in or above and below the real axis, and construct
S„Pi.

B. Proyagator Formalism

Since P,; is a temperature propagator, its calculation
may be expressed conveniently in terms of simple
diagrammatic rules. In I it is shown that P;, is given
by the contribution of all connected graphs joining
two current-measuring vertices. These rules are put
into their most advantageous form by a slight variation
from the more conventional notation.

In general, atom propagators are matrices in their
internal degrees of freedom parametrized by a mo-
mentum and a frequency variable. Thus it is useful to
introduce a notation which places all degrees of freedom
on an equal basis. The variables associated with each
vertex are to be summed according to

~(p —p')P'(p) = (A l~ I B)
A,A~,B,BI

x&» I Q I
A'B'&&B'

I I'I A'). (2.~)

Since Q is 4 conserving,

&» IQIA'B')=b(b'+ -"-b)
& b IQ. . I

"b'&

(2 g)
Then Eq. (2.7) becomes

P„(p) = Z
N, P, ~~,P~

x&«+p I Q.&. t I

~' ~'+p)(r, ), (2.9)

The matrix-element notation is merely a convenient
device for keeping track of the various dependences of
the quantities J, Q, etc.

IIL INTEGRAL EQUATION FOR Q

Q satisfies the integral equation illustrated in Fig.
2(a). Thus

(AB
I Q [A'B')=&A'

I
G

I A)(B I
G

I
B'&

Al &A2, BI&&2

x(A&Bi
I
It

I
A2B~)(A2B2

I Q I
A'B') (3»)

(a)

The capital letter A is taken to denote an extended
state

I
A ) =

I
~o,an), where co, = (2» +1)kr/P, & =0, +1,

~ ~, a is the center-of-mass (c.m. ) momentum of an
atom, and o, is an internal-state label. Correspondingly,
an atom propagator is written (b)

A B

&A I
G I

A )=b(a —a') G..(a), (2.6a)

explicitly accounting for 4-momentum conservation.
The atom —atom and atom —external-field coupling be-
come

(AB
I

V
I
A'B') =b(a+b a' b') (ab I V z .p —

I
a'b—')

(2.6b)
I'io. 2. {a) Integral equation for Q; (b) integral equation for

Q in T-matrix&approximation.
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K=K&'i+Etsi, (3.1b)

Equation (3.1b) defines the kernel K. This section is
devoted to finding suitable approximations for K.

A. Approximations for K

Once an approximation for the self-energy Z is pre-
scribed, Q and hence K are fixed, i.e., it is possible to
limit one's attention to Z.

1. T Matri-x Approxirnatsom

The system under consideration is a low-density gas
of neutral molecules. Hence three-body processes should
be unimportant in the determination of Z, and for
this reason Z is adequately described by the diagram
shown in Fig. 3(a), where T is the two-body scattering
matrix in the medium. Contributions outside the
T-matrix approximation are given in Figs. 3(b) and
3(c). Figure 3(b) describes the simultaneous inter-
action of three bodies, whereas Fig. 3(c) may be
important to collective excitations of the gas analogous
to the exciton of solid-state physics.

In the T-matrix approximation Q is given by Fig.
2(b). Thus

formulation of pressure broadening such a notation is
used. 4 The dyad vector space is an ordered pair of
internal states of an atom. Given an operator 5, acting
in the space spanned by the internal states of an atom,
one may construct two diGerent operators in the dyad
space; these operators are dined by

& P I
S&in

I
'P')=8, .S

& p I
s'"

I
'p')=s„.s...*.

(3.4a)

(3.4b)

&~p I Q(a, p) I
~'p') =— &«+p I Q-e«e I

a' a'+ p&,

Eq. (3.3) implies that

Q(a, p) =IG'(a) O'"G'"'(a+a)

(3 6)

Thus in the dyad-space notation, with

&tripl I It (a, as, p) I rrsps)= &a a+p I Earernses I as as+ p)

(3.5)
a11d

where

&AiBi I
I~oi

I
AsBs&=—

e&,OII, C~, C&~

&Cs I G I Ci)
XII+ &(a, ar, p)Q(a, p) I (37)

and

X &Ci'
I

G
I

Cs'&&CsAs
I
T

I
CiAi&&Ci'Bi I

T
I

Cs'Bs&

(3.2a)

&A,B,
I

K&@
I A,Bs)= &BiAs I

T
I
AiBs). (3.2b)

&«+p I
lt- e - e I as as+ p)

X &as as+p I Q~sesa p I
a a +p), (3 3)

since E is 4 conserving.
An alternative form for Eq. (3.3) may be obtained

by utilizing the notational device of a dyad vector
space as intr~duced in I. In Fano's Liouville-operator

(a) (b)

FIG. 3. (a) T-matrix ap-
proximation for Z; (b) three-
body process; (c) excitori-
like process.

' G. Baym and L. P. Kadano8, QNantgm Stutistica/ Mechanics
(%.A. Benjamin, Inc. , New York, 1962).

Equation (3.1b) may be written

&"+pIQ. ."I""+p&=~( -")G..()G (+p)
+ Z G i-(a)Geer(a+p)

+1r &2&Pl rPQ

The absorption rate of radiation whose energy is in
the neighborhood of a level di8erence of an atom is of
primary interest in this paper. A given level may
include states of diGering energy as well as other
quantum numbers. However, the system is limited to
gases (1) whose atoms have a level difference suK-
ciently large that particle-propagator amplitudes con-
necting states from the two levels may be ignored,
and. (2) for which the number of atoms in the excited
level is negligible compared with those in the lower
level. These restrictions imply that the notation used
above designating internal states may be taken literally,
i.e., ns I p ] denotes a state from the lower

I upper]
level.

Z. So Broadenilg in Lower Level

Equation (3.2a) indicates that E&'& involves the
product of two scattering amplitudes, one amplitude
representing the quasielastic scattering of two unex-
cited atoms and the other the quasielastic scattering of
an excited and unexcited atom. E&'~ is given directly in
terms of an inelastic-scattering amplitude.

For foreign-gas broadening, E&@ is unimportant, since
the amplitude for the exchange of internal energy is
usually quite small. If K"& is ignored, the resulting
integral equation constitutes a generalization of the
Anderson-Baranger theory of impact broadening. ' Since
self-broadening is the issue here, the system will be
restricted to those situations for which broadening in
the lower state is negligible. Then E=E&@ and Eq.
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(3.7) reduces to

e(a P) =t G(0)'(a) O'"G'"'(a+I)

able 1'tsclf. It Is convc111cllt to llltl'odllcc Q till'ollg11

Q +(a, P) =2 1'~(JIo("(a) —a)Q'(a, P) (3 13)

X I K(2) where IIO a Is the free Hamlltonlan of an atom with

c.m. momentum a. Then Eq. (3.12) implies that

The frequency sum imphcit in Eq. (3.8) is performed
in the usual fashion. Since the method is illustrated
in I, the treatment here wiH be brief. Kith V static,
T Rlld hC11CC IO RI'e fuI1CtlollS Of (r)Ir+Nrrq+(r)II =(dlyrri+Ir.
From Eq. (3.6), Q is a function of (0„and a„+„.Thus
the frequency sum of Eq. (3.8) may be written

P Z + (~~I+~+n) Q(~~» ~~)+I )

Q ('r) , «"=(r+p) r+f ~I"(rr), S+,( *)
+1

X&(%("(al)—al)e'(al, P) (3 14)

Now Pais given by

P;;(p) = Z (~ ).s(~P l &(P) I
~'0') (~~) ( «

N, p, a,p

= (2Iri) ' f~(s) K(') ((0.p~+s) Q(s, s+co„), (3.9} M(r)=—f ()(o r)

where only frequency dependence is explicitly shown. The «equency summation may be pe«ormed» t"e
In Eq. (3.9), same manner as with Kq. (3.9). Here I'=I'I+I'u Rnd

the contribution of the I'2 contour may again be ignored.
f+(s) = ep'+1l-'. (3.10)

The contour I"0 encircling the poles of f+(s) is shown

in Fig. 4. The distortion of the contour I'0 to I'=I'I+
I'2+1'3 reduces the integral in Eq. (3.9) to the sum of
contributions from the contours F~, I'2, and I'3, along
the branch singularities at Ims=0, Im(s+co„) =0, and
Im(s+a&~„) =0, respectively. The contribution of the
contour I'2 is proportional to the density of excited
atoms. The integral along I'3 is proportional to the
square of the density Lthis fact is obvious from the
spectral representation of T(s) j.Thus only the contri-
bution of the I'j contour need be retained.

De6ne

Equation (3.16} nlRy be lcwl'lt'tcn Rs

~(p') = »("(a)Q (P'), (3.17)

Q (P) =Q'(a, P)*

»l@(a) =f+(a), with a =B'0(+ (a) . (3.18)

~(p) =(2 )-' f.()e-'(, P) (316)

Q+(al P) —=Q(al+, al+~~) (31») From Eq. (3.14) an equation for Q (p+) may be

Q(al al+P) —Q(al+ al+p) —=Q +(al, P); (3 1»)

then Eq. (3.8} becomes

e(, p)=&G ()i G (+p} Im»0

2~( E() 8» c], y cy
61

In Kq. (3.12),
(3.12) C r))I 1

ir

1 rl I
II~ I

Im (z+ca&) = 0

Im ( z+Apo+p) -0

with aq denoting a real continuous energy variable.
It shouM always be clear from the context when aq

represents (al, a&) collectively, or just the energy vari- FIG. 4. IQtCgI'RflOQ COQtOUX'S fOl Eq. 4,2.19).
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determined. In that equation appears

8 (H ' '(a) a)—E~'(u, al, p+) B(ep' ) (a) —a) nrP

= (ar+p a j &s, „,t),[e,(a)+e, (ar)+o)+]~ ar a+y). (3.19)

For the energy-exchange amplitude of Eq. (3.19), write

(nor i (ar+y a [ T, +
i ar a+y) i n,p, ).

Finally,

Q'(p') =G'"'(~+&') I+ (ar+y a I
2'.*'

I
a a+p) &'"(a )Q"(P'),

~1

(3.20)

(3.21)

Q"=[exp(Ba V.)]Q', 8a—=ay —a. (4 1)

Then Eq. (3.21) reduces to

f[G'"(o+P') ] '-A.'(a) -&.'(a) V.
—6,+(a):V.V'./2! —~ ~ ~ IQ'=I, (4.2)

where the moments are defined by

A+(a) = (at+pa I 2'-'Iara+p)X'"(ar), (43a)

a,+(a) = (a&+p a I
2',+

I ar a+y)&'"(ar) ~a,

(4.3b)

~,+(a) = (a,+y a.
~

2'. +
~

ar a+y)X '(ar) i)a Ba.

(4.3c)

If the gradient terms are small compared to the contri-
bution of A~+(a), then Eq. (4.2) implies that

Q.(~ )=Q„.(P )=-I[G (+P )]--A. (.)}-.
(4.4)

where it is understood that

G(&) (@+pe)=G(&) (s+p +e(r) (a) +o)k)

It should be emphasized here that the only important
restriction of Eq. (3.21) is that it be applied to systems
for which broadening in the lower level is negligible.

IV. LIMITING CASES FOR INTEGRAL
EQUATION

In this section simple limits of Eq. (3.21) will be
discussed to illustrate its content. Indeed, a general
solution is impossible without detailed knowledge of
Tex ~

A. Collision-Dominated Line

If Q'& in Eq. (3.21) is a smoothly varying function
of atomic momentum a~ compared with T, , the integral
equation reduces to an algebraic one. To investigate
this situation expand Q ' about a.

Thus Ap+ appears as an additional contribution to the
self-energy, augmenting the shift and width of the line.
To estimate the importance of the gradient terms it is
sufhcient to consider a two-state system. Berne the
corresponding diagonal matrix elements of Q&s)'(p),
A„(a), and Z&s) (a+P) by Q&s), Z, , and Z&, resPectively.

For example,

(~&!Q(o)'(P) I ~P)=Q(o), (4 &)

VaQ(o) = (p/r)r+ V.Z) /(o) —o)p, —a p/r)r —Z) ', (4.6)

Thus,
Z=Z, +Zg.

Consider the lowest-order nonzero contribution of
the energy-exchange amplitude to p [see Fig. 5(a)].

'M. Goldberger and K M. Watson, Qogision Z'heory (Joh
Wiley R Sons, Inc., New York, 1964).

I
&'V.Q&0)l& (I & I/Z') (P/~+) V.Z [). (4.2)

With V,Z V,e(B/Be) Z and cL (a)Zex, Eq. (4.2) im
plies that

I& V Q(s) I &V[P(~/~)/Z

+ ((a/rN)/(K)) fl(B/Be) (in() ], (4.g)
where

Ze vZ, y= 8(1),
(K) is the thermal de Broglie wavelength, and ( is the
elastic-scattering amplitude. Equation (4.S) may be
rewritten as

I A'VaQ(o) ( +'y(1'r)opp)er/I'Pressure+(v)/o/(K)), (4.9)

where the collision time-delay tr)= A(B/Be) (In&) , has been
introduced. If the line is collision dominated, the first
term is negligible. For most situations t@ 0. Indee
in the limit of classical motion t@ is rigorously equal to
zero. Similar arguments may be constructed for the
higher moments. Hence in the event that Doppler
shifting is small compared with collisional broadening
Eq. (4.4) is a good approximate solution to Eq. (3.21) .
In the static limit this result follows trivially.

B. Hard-Core Correlation
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(b) or

Q(r) (a) G(&) (g+p+)

(2)----

FIG. 5. (R) Fust-
order contribution of
T„, to P; (b) cuts of
Pig. 5(a).

M(p~) =

&("(a)G'") (~+p') V-'(y)

(4.17)

u.lnatc s acc 18 equivalent toThe darkened region in coor~1na e p

art of the interaction betweenO»y the long-range part o
two atoms need be included in Kq.
d1pole approximation,

V(»—») =di Au ds, (4.18)
P1.~(xi &1ggl where 6 is the dipole moment operatoerator of a single

(4 10) atom, and
'

ude has a particularly simp le form in theThis amp11tu e a
hm1t of har8-

~ ~

d-core correlations. e
trix a rox1ma ion is

6(a). The corresponding rela
'

p eclat, loQS 1p c wc
T 18 shown 1Il lg.F' 6(b) which implies that

Ats—=&*its I »—xs I
'

exp( —ty x) V(x)

(4.19)

(XY I
G"V I XsFs) =

Xl +1
(xIG'Ix) exp( —iy x)v' V Ixl—=— v„v' Ix I

—',

I I
X Vs) (4 11) since pa&(1. From isotropy,XP. IGiIV, )(X,V, ~2, ». (4.20)

ollectively denote the internal-stateThe capital letters collective y en

an sta ic,
' d' t that Eq. (4.10) mayand static, Eq. (4.11 indicates a

be replaced by

'
I G ~

"
I &e's)&(~"—~v.) Vf -s- f),- *(»—ys).

(4.12)

In the event at that the two-particle propagator may e
0

d b hard-core eorrelat1ons,approximate y a

(ss'
I Gs-s -"I*vs)

=&(Ix —y I)Gss.(,~)G. -, ",~s) (4 13)

V.V. I x I-i =0, (4.21)

where

Ats exp( —&p'8) =4t(py/p = tr )),'=4trl (4.23)

Eq. (4.15) becomes

V'
I x ' Trl=-, 4 b(x) =' . (4.22)

lxlgalxl&a

in Eq. (4.12).
V,'(y) =dd: (~i+4~i))). (4.24)

» in E . (4.24) may beTh 1 ngitudinal contributions in q.ns 1n

neglected due to the isotropy of y
8'(I x I) =0, I

x l&u

H(I x I) =1, I x I&g. (4.14)

e E s. (4.12) and (4.13) show thatFor the general case, Eqs.
is to be replace y1Q F~q.

Plo. 6. (a) Two-
particle propagator
ln T-matrix approxi-
mation; I'b) rela-
tionship between 6II
and T.

Q'(p') =G(")(+p+) I+V yV '( ) &")(at)Q"(p+)
GX

o

(3.21) T.

Cx~l~ l ~'~'P = s&V '
y = V,(x)a(lxl) exp( —sy x). (4.15)V y — V, x

X
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definition of Pd. . In Eq. (4.24), where in dyad-space notation

&
'e'I ddl e)—= & Idle&&~'Idl '& (425)

From Sec. II,

[Pd (P+) )/cdp. ' ——-,'Tr[M(P+) ddj: li, (4.26)

where the trace is taken over a complete set of dyad
vector states, and sop is the frequency of the absorption
line. Thus, upon defining

iV (p+) f Ã=—''(a)G'"'(s+p*)dd:I, (427)

[P~(p') j/~p-'=k Tr „(42g)
1Va d. (P+)

I 4dr 3 —1Vnd. p"

Eq. (4.28) has a very suggestive form. The above
assumption of pure hard-core correlation results in an
expression for P~ which has a formal equivalence to
the Lorentz —Lorenz law usually derived from the view-

point of macroscopic electrodynamics. ' The essential
difference is that the one-atom polarizability is replaced
by one which explicitly accounts for pressure broadening
and Doppler shifting.

C. SX, Small Comyared with SXq

At times a direct procedure for calculating SP or the
absorption rate is useful. Again consider Fig. 5(a).
Direct calculation shows that the amplitude corre-
sponding to this graph contributes three terms to SP,
each characterized by the product of various spectral
functions for the lines and an associated amplitude
[see Fig. 5 (b) ).For example, one term is to be identified
with the "cut" labeled (1), where the two intersected
particle lines contribute spectral functions, and the
remaining portion of the diagram yields an amplitude
calculated in the usual fashion. Cut (3) provides a
similar contribution. Cut (2), however, may be ignored
whenever SZ, (&SZ& or, equivalently, when the dis-
continuity of the energy-exchange amplitude is small
compared with the total cross section for scattering.
Recall that in Sec. III ST, =0, since T.„was approxi-
mated by a purely static correlation. In general, all
possible cuts of all possible graphs must be counted. '

The result of the procedure described above may be
put in a convenient form by introducing generalized
atomic-dipole operators:

Dp..(p')=—Q (O'Idl~'P-p-p"(P'), (4»)
0)p pl

8 L. Rosenfeld, Theory of Electrons (North-Holland Publishing
Company, Amsterdam, 1951).

J. S. Langer, Phys. Rev. 127, 5 (1962); D. F. DuBois, V.
Gilinsky, and M, G. Kivelson, ibid. 129, 2376 (1963).

V'(p') =I+ (ai+p a I 2'-'1«a+p)

Then
X&'"(ai) I'"(P+) . (4.30)

~(p t~~') =i 'p f d""(~)~(G'"'( +p) )
a

XD'(P') (D'(P+) )':~~ (4 31)

When D is set equal to d, Eq. (4.31) reduces to the
usual foreign-gas result. Thus one may regard self-
broadening as identical to foreign-gas broadening with
a renormalized coupling between the external radiation
field and a given atom of the gas. V allows for the
transfer of the optical excitation to another atom
through the energy-exchange amplitude.

V. SELF-CONSISTENCY IN X

In the previous sections, no essential restrictions were
placed on T. It is tempting to replace this scattering
amplitude in the medium by its zero-density analog,
the two-particle scattering matrix in vacuum. It has
been observed, however, that Z cannot be expressed
as an analytic expansion in powers of the density in
the core of the line, ' and this observation thereby
questions the validity of simpIe-impact theories. ' The
issue is the importance of self-consistency in the calcu-
lation of Z. The arguments, however, assumed the
static limit from the outset, and it is conceivable that
the appearance of any divergences may be spurious
(note that no divergence results if Z is given in terms
of the free-scattering amplitude) .

The scattering amplitude in the medium may be
written'

&ab I '3-p- p (~.) I
a'b') = &ab I

U p- p I
a'b'&

+ Z &.bl~ p „,la,b, &
+1 2 Pl P2 +1 51

& biz, , I
'b')

= (2m)'b(a+b-a' —b') V p, p, (a a'). (5.2-)

In the limit of no broadening in the lower level, reso-
nating contributions to the intermediate-state sum of
Eq. (5.1) arise for (ai, d)~) [(pi, pm)$ chosen from the

A, ,(ai) 2p,p, (bi)X &ab I 3, , ~ .(,) I
a'b'), (5.1)

COp
—Gy —5'y

where

COp =COg+y
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lower [upper] or upper [lower] levels. Thus either
c4 y, or A p,p, may be approximated by the uncorrected
spectral function.

It is convenient to introduce the self-energy operator

g —f'(g) g(u+g(o SI
such that

(pbaa I Z(s) I
p'bn'a) = (~apb I ~(s) I

~'ap'b)

(5.3)

=S„.,Z», [s—~.(a), b]. (5.4)

where
3(s) ='U+'UGs(s) 3(s),

Gs=[s—Ho —Z(s) ]—'.

(5.5)

(5.6)

The question of self-consistency then reduces to de-
termining the rela, tionship between 3(s) and

~x(s) =0+«0(s)~f(s), (5.7)

i.e., with Z =0. It is a simple matter to show that

where

Thus,

~(s) =~f (s) [1+G&s~(s)],

Rs =Z+ZGsZ.

(5 8)

(5.9)

~(s) =~~(s) +A~(s) +A2(s) +", (5 1o)

where the first correction term is

6((s) —3r (s) GDZGQG f (s) . (5.11)

Since only an order-of-magnitude estimate of Eq. (5.11)
is required, take s=ea(b)+e (a) above. A given contri-
bution to an expansion of Eq. (5.11) in intermediate

states is bounded from above by

f (ba I ~s-ai. i I b~ai)~sos. (b) (bia~ I ~a.-u - I ba)

[&(a) +&(b) '(a&) ~(b&) +'U]'

(5.12)

Note that either the elastic or the energy-exchange
amplitude may appear here. An order-of-magnitude
evaluation of Eq. (5.10)~ yields

f Z/2
&=~, 1+6

(K) (e) )
(5.13)

where f is the scattering amplitude and (lt) the thermal

deBroglie wavelength.

(n, o(') [(p, p')] are chosen from the lower

[upper] level, and Z(o is the usual atom self-energy.
In Eq. (5.3) the right- and left-hand outer products
of Z('& with the unit operator I appear. With Eqs.
(5.3) and (5.4), Eq. (5.1) may be written as an oper-
ator equation:

Consider an example taken from absorption experi-
ments of Lauriston and Welsh" For Na (3S"' 3P—")
at a density of 0.34X10 's atoms/cc and T=891'K,
they measure a damping constant p&=2.3)&j.0" sec '.
Thus (e)=0.1 eV, ()t)=0.03 A, and & kg~/2=7. 5X
10 ' eV. With f~o'" and o. 1.4X10'a ' (see Ref. 11),
f 2X102ao. Thus,

f Z/2

(7) (~)

Clearly self-consistency cannot be ignored in this case.
For H (15—2P) fn/(Xn) 0.05fN, /()tN, ); thus, even if
the same collisional width were measured, the correction
would be less tha, n 7%. Actually this estimate is an
extreme upper bound since the corresponding cross
sections differ by at least an order of magnitude. Hence,
self-consistency for H is closer to a 1% correction and
the simple impact theories are relevant.

VI. CONCLUDING REMARKS

The applicability of the simple-impact theories has
been the primary concern of this paper. At least in the
limit of negligible broadening in the lower level, it is
always possible to make formal contact with the results
of such theories as shown in Sec. IV. However, it should
be clear that the energy-exchange amplitude results in
a qualitative difference between self- and foreign-gas
broadening. Thus, the relative importance of T, to the
quasielastic scattering amplitudes must be understood.
Several limits of the general integral equation have been
discussed, but they certainly do not represent an ex-
haustive collection.

The question of self-consistency is a difficult one
which must not be ignored for certain systems. The work
of Reck et al.' may be interpreted as an attempt at a
self-consistent calculation of Z in the static limit. They
were motivated primarily by the rather confusing ex-
perimental situation, but Sec. V indicates that motional
effects may be of great importance and result in con-
siderable simplification in spite of the anomalously
large resonance-scattering amplitudes.

Finally, it should be clear that the contact between
self- and foreign-gas broadening is not made simply by
accounting for exchange scattering. Indeed, if exchange
scattering is included above, nothing is significantly
changed.
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