
PHVSICAL REVIEW VOLUME 159, NUMBER 1 JULY 1967

Stochastic Method for Calculating Wave Functions
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A relationship between the Boltzmann transport equation for a point in 3n-dimensional configuration
space executing random motion and the Schrodinger wave equation for n electrons is investigated. It is
shown that wave functions and related quantities for the ground and excited states of atomic systems
may be calculated with a stochastic computer program by incorporating the Pauli exclusion principle into
the stochastic formalism. Stochastic calculations are presented for the ground state of hydrogen and for
the 'S and 'S states of helium.

I. INTRODUCTION

"XVESTIGATIONS of the relationships between the
.. Schrodinger wave equation and the Boltzmann
transport equation have led to numerous important
results, ' " such as interpretations of the Schrodinger
equation in terms of the Brownian motion of a diffusing
particle, connections between quantum and classical
statistical mechanics, and stochastic methods for
calculating ground-state wave functions. It is the pur-
pose of this paper to develop further these results by
explicitly incorporating the Pauli exclusion principle
into the stochastic formalism, and by calculating wave
functions not only for the ground state of atoms but
also for excited states. I.et us start by considering the
Boltzmann equation'4 for the random motion of a point
in 3e-dimensional con6guration space:

to gradf(x, so)+$p, (x)+p.(x)$j(x, to)

=s(x, ~)+ f drai(xa')p(ra' «, ;x), o)

where f(x, eo)des is the probability that a point in
3e-dimensional conhguration space is traveling within
the differential solid angle d~ around the direction a
and crosses a unit area (normal to ta) at position x in
unit time. Since the areas and solid angles are those of
3e-dimensional con6guration space, the angular Aux

f(x, so) has the dimensions i s"+'t ' The prob. ability
per unit time of introducing a point at position x in the
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3e-dimensional volume element dx with a direction of
motion within the 3N-dimensional sohd angle dao about
so is denoted by the source term S(x, co) dxdse, and the
corresponding probability per unit time of removing the
point is given by the absorption term p, (x)f(x, ta) dxdta,
where p, (x) is the probability per unit distance for
absorption. Let pf(x) be the probability per unit dis-
tance that a randomly moving point in con6guration
space will 6ssion, that is, produce another randomly
moving point. For this case, the source term is propor-
tional to the angular Qux,

S(x, ta) =pf(x)f(x, so),

and (1) becomes an eigenvalue problem. The 6ssion
and absorption probabilities may be combined. to give a
net generation term

p. (x) =pf(x) —p. (x)

Thus, when p, (x) is negative, (3) is the probability
per unit distance that a point in conhguration space
will disappear, and. when p, (x) is positive, (3) is the
probability per unit distance that a new point will be
generated.

The probability per unit distance that a point of
con6guration space traveling in the direction m at
position x wiH have a scattering collision in which the
Anal direction of motion is within d~' about a' is de-
Iloted by p(ca~&; x)dta . Tlie probabihty pei' iiiilt,

dls taIlce that a scattering colllslon will occllr ls ob-
tained by integrating p(eo—+ca'; x) over all final
directions:

p, (x) = p(ta —+ca', x) dto'.

It is convenient, although not essential, to assume that
all final directions are equally probable. It is also fre-
quently convenient to rewrite (1) in terms of the
collision density

where F(x, eo)dxdss is the probability per unit time
that a collision will occur at x, u within the con6gura-
tion-space elements dxdw.
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If the probability of a scattering per unit distance
traveled in configuration space is independent of the
position of the moving point in configuration space,
then p, =1/X„where X, is the mean distance between
scattering collisions. For the case of ),~0, we may
expand F(x, ~) in polynomials of the angular variable
~.'4 Neglecting terms of order ),' yields the di8usion
equation of configuration space:

Z, bV2F (x)+p, (x) F(x) =0,
where

F(x)dx=dx F(x, a)) de

is the probability per unit time that a collision will occur
within the configuration-space volume element dx at x,
and where the value of the transport parameter b

depends on the dimensionality of configuration space
as well as on the functional form of p(~~~') and may
be adjusted to correct for transport e8ects. For example,
if conhguration space is three-dimensional, if scattering
is isotropic (p(~—+~') =1/4~), and if transport effects
are negligible, then b= 3.

The diffusion equation (6) of 30-dimensional con-
figuration space

'" O'F(x ~ ~, xs„)
Bx'

+ —pg(x» ~ ~, xt.) F(x„~~, xa„) =0 (8)

has the same form as the Schrodinger equation in atomic
units for a system of e identical particles in three-
dimensional space,

'" O'tP(x» ~ ~, x3„)

Bx,'
+2~E—V(x» ~ ~, xt.) ]f(x» ~ ~, xa, ) =0, (9)

provided that

2L~—I'(x) j= (p./&) p. (x)

and we draw a correspondence between the collision
density F(x) and the wave function tP(x) .

II. PAULI EXCLUSION PRINCIPLE AND
EXCITED STATES

In order that the spatial-spin wave function of a
system of electrons represent a physical state, not only
must its spatial part satisfy (9), but also it must con-
form to the Pauli exclusion principle, which states that
it must be antisyinmetrical when any pair of particles
are interchanged. For a given spin state, this implies a
syz(Unetry condition for the spatial wave function
tP(x) . In the case of helium in the 'S ground state, for
example, the wave function tP(r, , r„8), which depends

whereas the wave function for the 'S excited state is
antisymmetrical,

0(r~ rm 0) = —4(r2, r~ O). (12)

Although the collision density of a diffusing point in
six-dimensional configuration space with p, (r» r2, 0)
given by the potential energy function for the helium
atom will satisfy (11), the antisymmetrical condition
(12) presents a problem, especially since the collision
density cannot be negative. This difhculty may be
overcome and a solution satisfying (12) obtained by
requiring the collision density to vanish at rl ——r2 and
restricting attention to the region of configuration
space where r2) rl. Thus, the wave function for the 'S
state is given by

y(r» r„e)=F(r„r„8)
for r2)rl, and by

tIt(r~, r2, 0) = F(r2, r» 8)— (14)

for r2(rl. Therefore, by introducing an absorbing
surface in configuration space, and restricting the
motion of the diffusing point to one side of the surface,
the Pauli principle can be satisfied.

III. DESCRIPTION OF THE COMPUTER
PROGRAM

The algorithm programmed for the digital computer
will now be described. A storage area S is reserved,
with a capacity of 1000 3e-vectors, representing pre-
viously occupied points in configuration space. S is
initialized with 500 random configuration points and
S, an integer variable denoting the number of con-
figuration points stored, is set initially at 500. Whenever
a point is added to or taken from S, E is incremented
or decremented by 1, so that X provides a running
measure of the number of configuration points in S.
As will be seen, a criticality parameter c is adjusted
while the program runs in order to maintain P at an
equilibrium value of about 500. The last point is never
removed from S, and no more than 1000 points are
stored in S.

I,et x' denote the conaguration vector at the /th

step with the origin corresponding to the nucleus, let
xl', x2', and x3' denote the Cartesian coordinates of the
first electron, etc. Given x', the configuration point
x'+' is obtained by executing a random step in 3m-space.
This is achieved by setting

Xt+I =Xt+r t

where (t is a 3rt-vector whose components are inde-

on the radial distances of the two electrons from the
origin and on the angle 0 between them, is symmetrical,

4(r» r2 O) =4 (r2, rt, ~)



A value of t,.o which is only a rough estimate is used on
the 6rst run, and subsequently re6ned. It was found
that the critical value of c was determined precisely
enough after a few short runs of the same program so
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FIG. i. Stochastic
and exact collision
density for the
ground-state hydro-
gen atoln. The sto-
chastic results were
obtained after 6
minutes execution
time on the IBM
'%94 and 4XHP col-
11slons %»th X= g.
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pendent random variables. In the program described,
the components of $' are uniformly distributed over the
interval $—2X, 2li), where X is a axed step-size param-
eter equal in this case to the average size of a step.
Other distributions of g' are possible, but this dis-
tribution was found adequate and is the simplest to
program. A pseudorandom number generator is used to
generate g'. Once x'+' is determined, it is used to com-
pile a histogram which will ultimately represent R

stochastic approximation to the wave function.
The value of P„given by (10), at x'+' now deter-

mines whether fission or absorption can take place. If
V(x'+') (F., where F. is the predetermined energy of
the final solution, the point is in the fission region.
Fission is taken to be binary, so that if 6ssion occurs
the point x'+' is entered into the storage area and. X is
increased by j..The ratio of the probability of generating
a new point to thc probability of scattering is given by
ALE—V(x)], where c is a criticality parameter whose
determination ls discussed below.

If V(x+ ))F, tile poiiit is iii 'the absoi'ptioii regioii.
IQ this cRsc, the ratio of thc pI'obablllty of RbsoI'ptlon
to that of scattering is given by cLV(x) —Fj.If absorp-
tion takes place, the most recently added point is taken
from 5 and a ncw random walk continues from that
point. This point ls delctcd from S Rnd X dccreRsed by
j.. If absorption does not occur thc random walk con-
tinues from x'+'.

The value of c required to maintain equilibrium is
initially unknown. A mechanism is incorporated into the
program which decreases c if X increases and vice verse.
Thus, if points begin to accumulate in the storage area,
a decrease in c tends to decrease the rate of 6ssion and
hence stop the buildup of points. The following linear
relation for varying c was used with the result that S
stayed between 400 and 600 almost all the time:

c=@0(2—X/500) .

FIG. 2, Stochastic
collision density fol
either electron. of
the ground-state he-
lium atom. These
results mere obtained
after 6 minutes exe-
cution tinM and 2 g
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tha, t R consta, nt value of c could be used thereafter with
no feedback mechanism at all.

Thc RlgoI'lthIQ dcscI'lbcd Rbovc ls Rppl'opllatc foI" thc
ground. state of an n electron atom, without regard to
the Pauli exclusion principle. In order to incorporate the
exclusion principle in the case of the 35 state of helium,
the constraint ri(r2 is applied. This is done by com-

paring r» with r~ at each newly generated point in con-
6guration space. If r»&r2, the point is disregarded and
the program continues as if an absorption had taken
place.

IV. MSCUSSION OP RESULTS

Four separate cases were considered, each of in-
creasing complexity. The simplest system treated was
that of a single electron moving in a Coulombic 6eld.
Fig. I shows both the colhsion density F(r) resulting
from a six-minute stochastic program, and the exact
distribution p(r) =4wr'f(r) = 'r'e ". All stoc-hastic re-
sults reported in this section were obtained from runs
of approximately six minutes on the IBM 7094 digital
computer. Here F(r) dr is the probability that a collision
will occur between the radial distances r and r+dr, and
the wave function P(r) is a solution of the Schrodinger
equation of the ground-state hydrogen atom; the curves
are normalized so that thc area under each is unity. A
comparison between the stochastic result F(r) and the
exact result $(r) indicates satisfactory agreement.
Deviations of F(r) from P(r) may be attributed to
stochastic fluctuations, transient cBects of the initial
distribution of points in stora. ge, and transport cGccts.

The ground state of the helium atom was considered
next Rnd lt was found that thc Iepulslvc lntcI'Rctlon
bctwccn thc tw'o electrons was cRslly lncolporRtcd into
the stochastic program. Stochastic results for the
collision density of either election are presented in Fig.
2. These calculations are consistent with other inde-
pendent six minute runs of the same problem.

IQ oI'dcI' to clmck the VRlldlty of thc pI'occdulc for
lncoI'poI'atlQg thc Pauli exclusion pl lIlclplc into thc
stochastic formalism, the 'S state of hehum was treated
with no interaction between the electrons, and the
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FIG. 3. Stochastic
and exact collision
density for the inner
electron of the 'S
state of the helium
atom without the
repulsive Coulombic
interaction between
electrons. The sto-
chastic results were
obtained after 6 min-
utes execution time
and 2&105 collisions
wIth X=~s.

and where C is given by the normalization condition

C (r,) dr, =1. (24)

@(r2) =4~r~ f(ri, r~) 4xridrj

=~ ( ) L1-A(")j-~.( ) L1-&(")j, (26)

In terms of the stochastic formalism, C (ri) is the proba-
bility pcl unit radial distance thRt thc inner paI ticlc
will have a collision at ri Sim. ilarly, if we integrate (17)
over r~ from r~=0 to rj ——r~, we obtain

stochastic results compared with the exact results,
which are known in this case:

which is the probability per unit radial distance that
the outer particle will have a collision at r2. Results

where

C (rg) =4vrr, f (rg, r2) 4nrgdrm
rl

= CL4.(ri) ~(ri) —4»(r~) A (ri) j,

where fi, {r) and $2, (r) are the one-particle wave func-
tions for the 1s and 2s states, respectively, and C is a
constant of normalization. A convenient comparison
between the exact and stochastic results may be made
by integrating (17) over r2 from rm

——ri to r2= ~ ..
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Flo. S. Stochastic
collision density for
the 'S state of he-
lium. Shown is the
sum of the collision
densities of the in-
ner and outer elec-
trons. These results
were obtained after 6
min execution time
and 2)&10' collisions
with) =s
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FIG. 4. Stochastic
and exact collision
density for the outer
electron of the 'S
state of the helium
atom without the
repulsive Coulombic
interaction between
electrons. The sto-
chastic results vrere
obtained after 6 min-
utes execution time
and 2&10' collisions
with P = ~.
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obtained from a six-minute computer run are given in

Figs. 3 and 4, and a comparison with the exact results
again indicates satisfactory agreement. Stochastic
calculations for the '5 state of helium were obtained

by adding the repulsive Coulombic potential between
the two electrons to the program; results from a six-
minute computer run are given in Fig. 5.

A more detailed analysis of stochastic, transient, and
transport effects is under way. Future investigations
will be concerned with the application of this method to
more complex atoms, and to molecules.
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