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sidebands are observed in YbGaG and 30 pairs in
YbAIG. The remaining lines which cannot be so paired
are identified as the electronic transitions between levels
of the 2Fy, and 2Fy» groups. Using this information
together with luminescent data it has been possible
to identify for Yb%* all the 2Fy;5 and 2Fy), energy levels,
as summarized in Fig. 5.

The assignments differ most notably from previous
assignments in that no 2Fy, states except the ground
state are observed below 540 cm™ in the gallium garnets
and 600 cm™! in the aluminum garnets. The significance
of this observation will become more apparent in the
discussion of magnetic susceptibilities to follow in II.
In anticipation of these discussions, we note that Van
Vleck,? arguing from susceptibility data alone, has al-
ready questioned the existence of electronic levels below
the limits just set.

While it has been suggested that some Yb* ions may
occupy sites other than the normal rare-earth site, we
see no evidence for this in our YbGaG spectrum. Two
extra lines were observed, however, in the YbAIG
spectrum and on the basis of their intensities we con-
clude that a small percentage of the Yb?*t ions do
occupy other than normal rare-earth sites in our alumi-
num garnet crystals. This observation, too, has some

9 J. H. Van Vleck, J. Phys. Chem. Solids 27, 1047 (1966).
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bearing on the susceptibility problem and will be dis-
cussed further in II.

Very weak Yb* emissions have been observed near
1.07 p in YGaG and near 1.075 p in YAIG. These
emissions are thought to be transitions from the lowest
2Fse electronic state to vibrational (overtone) levels
near 975 cm™ in YGaG and 1025 cm™ in YAIG.

In closing, it should be emphasized once again that
the level analyses presented here are now complete,
unique, and independent of prior assumptions as to
the crystal field. As such they provide (with separately
determined g values for two states) a firm and sufficient
basis for the crystal-field calculations to follow. The
calculations in turn provide, through the quality of the
fit, an independent verification of the experimentally
deduced energy-level scheme. Beyond this, the calcu-
lations provide an unambiguous labeling of levels which
could zot have been obtained through experiment alone.
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Complete crystal-field calculations for Yb?* in yttrium gallium and yttrium aluminum garnets have
been performed. The energies and g values obtained in the ten-parameter fits agree well with experiment. The
calculated crystal fields are predominantly cubic with important sixth-order contributions. A five-parameter
fit to these data was also computed, using point-charge-model constraints derived by Hutchings and Wolf.
Results indicate that the point-charge model is a useful first approximation, but too crude for quantitative
predictions. On the basis of the derived wave functions, the susceptibility was calculated over a wide tem-
perature range. For yttrium gallium garnet, results agree well with experiment, but for the aluminum garnet,
the calculated temperature-independent susceptibility is appreciably below the reported value.

I. INTRODUCTION

N order to understand the magnetic properties of the
rare-earth iron garnets on a microscopic basis it is
helpful to be able to separate the effects on the rare-
earth ion of the iron exchange and the diamagnetic
lattice by replacing the latter with an effective crystal
field. The parameters of this field can be obtained to a
fair approximation from the energy levels of the rare-
earth ion in structurally similar nonmagnetic garnets.
The symmetry of the rare-earth site in the garnets is so
low that no fewer than nine independent crystal-field

parameters must be determined, and many pieces of
experimental data are needed for an accurate calcu-
lation. An exact computer calculation is feasible, despite
the low site symmetry, for a rare earth as electronically
simple as trivalent ytterbium. Until now a complete
calculation has not been carried out, partly because of
the difficulty of the calculation and partly because of
the scarcity of dependable experimental information.
The paucity of f-electron energy levels for ytterbium
forces the use of supplemental g-tensor information.
Furthermore, the optical spectrum of ytterbium is
surprisingly complicated, and an unambiguous assign-
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ment of energy levels, particularly those of the lower
(J=1%) multiplet was not available.

In the most sophisticated and rigorous calculation to
date, Hutchings and Wolf! (HW) avoided any utiliza-
tion of the J=1% level spacings as input data. By cal-
culating the electrostatic potential at the rare-earth
site for a point charge crystal-field model, they were
able to deduce constraints which effectively reduced
the number of adjustable parameters to five. In this
manner they were able to obtain a fair fit for the
J=3% level separations and for the two known sets of g
values. In addition the calculation yielded predicted
values for the J=% levels of Yb in yttrium gallium
garnet (YGaG), namely, 517, 697, and 796 cm™.

In the meantime a complete experimental determi-
nation of the J=7 levels has been made, indicating that
in fact these levels lie at 543, 599, and 642 cm™, in
substantial disagreement with the HW prediction.
An attempt, described below, to obtain the best
simultaneous fit to all available data, using the point
charge constraints, does not fare much better. This is
not too disconcerting, since the point-charge model is
admittedly a crude approximation. The question
remains how good this approximation is when compared
to a more general crystal-field solution.

Since twelve experimental values are now available,
a determination of the ten adjustable parameters for
Ybt+ ++is possible both in yttrium gallium and yttrium
aluminum garnet (YAIG). A computer search program
has been developed to obtain a best fit to the data.
The result has been a generally good fit to the observed
energy levels and g values. Because of the large number
of parameters, considerable effort was expended in
verifying the uniqueness of the solution and establishing
the sensitivity of the fit to deviations of the parameters
from their best values.

The parameters resulting from the general calculation
are roughly similar to those of the HW-type calculation,
the differences between the two sets of results lying
typically between 30 and 60%. Both yield a pre-
dominantly cubic field and an unexpectedly high sixth-
order crystal field. As already pointed out,? this forces
a reidentification of the J=Z levels, with the T
doublet lying below the I's quartet.

We have performed a detailed calculation of the
susceptibility in YbGaG and YbAIG using the cal-
culated eigenfunctions. Results for the former agree
well with experiment, but for the latter, the calculated
temperature-independent susceptibility is somewhat too
low. Possible sources of this discrepancy are discussed.

II. CRYSTAL-FIELD CALCULATION

Geometry

Before turning to the calculation itself, it is useful
to define conventions. The first consideration is the

1 M. T. Hutchings and W. P. Wolf, J. Chem. Phys. 41, 617
(1964).

2 G. F. Herrmann, J. J. Pearson, and K, A. Wickersheim, J.
Appl. Phys. 37, 1312 (1966),
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choice of coordinate axes. The rare-earth ions in the
garnet are located at 12 distinct sites which are related
among themselves by the operations of the macroscopic
octahedral symmetry group. The local site symmetry is
orthorhombic (point group D,) with one axis along a
crystal [100] direction and the two others along ap-
propriate [110] directions. In practice, since all cal-
culations in this paper are invariant to the inversion
operator we need to consider only six sites and a local
symmetry of Dy,

Each rare-earth ion is surrounded by eight oxygen
ions, roughly at the corners of a cube (the so-called
“pseudocube”). In the past, as well as in the present
work, it has generally been assumed that the principal
contribution to the crystal field possesses octahedral
symmetry, and that a rough description of physical
properties and the labeling of energy levels can be
accomplished in terms of the octahedral symmetry
group. This group is defined with respect to a system
of local “pseudocubic” axes (xyz). There are three
coordinate systems relevant to the problem: the unit-
cell system (XVZ) with respect to which all macro-
scopic properties are defined, the system of ortho-
rhombic local axes (#/, ¥/, 2’) which determine, for ex-
ample, the principal directions for the g tensor, and the
pseudocubic system (xyz) whose principal function is to
make explicit the approximately cubic nature of the
environment. Detailed transformations relating these
coordinate systems are given in Appendix A.

Representation

In order to display the cubic parentage of the energy
levels and distinguish clearly between cubic and non-
cubic components of the crystal field, basis functions
and potentials were defined in terms of the irreducible
representations of the octahedral group (see Appendix
B). Although this constitutes no more than a formal
change from past practice, it has brought to light
features which remained hidden in the standard
formulation using operator equivalents and | JMy)
basis functions. The functions in which we choose to
expand the potential are the normalized tesseral
harmonics described in detail in Appendix C, and for
4f basis functions the nine undetermined crystal-field
parameters are the expansion coefficients of the field
in terms of these harmonics. The 4f basis functions
chosen reflect two features of the problem. First, that
the spin-orbit coupling is so large for Yb** that J is
nearly a good quantum number, and second, that the
symmetry of the crystal site is approximately cubic.
Thus, the 4f functions are first broken down into the
ionic *Fse and 2Fy7, multiplets and these are then
decomposed into irreducible representations of the
cubic double group. It should be emphasized, however,
that this labeling scheme is employed primarily for
display purposes and does not imply any additional
approximations. The complete Hamiltonian is diag-
onalized in terms of the orthorhombic field.
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The Hamiltonian

The ground configuration of the free Ybt+++ jon
consists, outside of filled shells, of a single hole in the
4f shell. Since this case is formally identical to that of a
single 4f electron (if the signs of the spin-orbit con-
stant and of the crystal field are reversed), we will
proceed as if we were dealing with the latter, con-
ceptually simpler, situation. Conventional crystal-field
theory assumes that the effect of placing the ion in the
crystal can be approximated by applying to the free ion
an electrostatic field having the same symmetry as the
crystalline site. If configuration mixing is neglected (a
good approximation for the free ytterbium ion), group
theoretical considerations show that the most general
such field for D, symmetry can be specified by nine
parameters. The form chosen for the Hamiltonian in
the present calculation is

H=\L-S4+ufUS+ulUf+u U +ulUSf
+M4§U4{+Mﬁal Usal+u60U60‘*‘us{aUﬁm"l"MG“bUﬁrb, (1)

where the U’s are tensor operators belonging to ir-
reducible representations of the octahedral group (see
Appendix C). No @ priori assumptions are made con-
cerning the coefficients. It is of some interest to con-
trast Eq. (1) with the standard Hamiltonian in crystal
field theory,

H=\L- S+a (7’2 >(A20020+A22022)
+B{r*)(ALOL L+ A 202+ AL04)
+y () (A0 + 48202+ A0+ AL0s),  (2)

as applied, for example, in the HW point-charge cal-
culation. Equation (2) implies a clear separation be-
tween those magnitudes, e.g., spin-orbit interaction and
radial functions, which are properties of the ion, and
the contribution of the crystalline environment in the
form of an electrostatic potential. Thus, in the HW
treatment, once the potential has been determined,
fixed relations must obtain between coefficients of any
given order. The crystal-field assumption is, however,
a rather crude approximation even for the very well
localized 4f shell, since the appropriate one-electron
functions in the crystal are not the free-ion functions
but molecular orbitals spanning the neighbor oxygens
as well as the central ytterbium. In addition, the
presence of shielding, and especially nonlinear shielding,
introduces modifications in the potential which in-
validate Eq. (2) in its strict formal sense.

On the other hand, the Hamiltonian as given in the
more general form of Eq. (1) does not depend on the
assumption that ionic 4f functions are being used, but
only on the far less restrictive assumptions: (1) that
the one-electron functions span the same irreducible
representations of D, as do the 4f functions, and (2)
that the spin-orbit interaction can be characterized
by one parameter in the same way as it can for the ionic
functions. Thus we can postulate that the functions
we are using are actually molecular orbitals and realize
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that it is by no means true that we are neglecting co-
valency altogether. This postulate will not affect the
details of the calculation but only the point of view
adopted at certain stages of it. It explains, for example,
why we do not assume the spin-orbit parameter to be
the same as that for the free ion but instead allow it to
vary along with the crystal-field parameters. It is also
the reason why we expand the crystal potential in
terms of purely angular functions, lumping all radial
factors into the parameters to be determined, instead
of attempting to draw any conclusions concerning
their size from the radial dependence of the free-ion
functions.

The Calculation

The first objective of the calculation is to determine
the values of the coefficients # of Eq. (1) which will
result in the best fit to the experimental data. For a
given set of coefficients the energy levels and eigen-
functions are obtained by diagonalizing the 14X 14
matrix which represents the Hamiltonian in the 4f
configuration. In practice, the 14 functions can be
divided into pairs of Kramers conjugates in such a way
that the Hamiltonian separates into two identical
7X 7 blocks. The spin-orbit interaction is diagonal and
constant for all states of a given J. The Hamiltonian
matrix for given crystal-field and spin-orbit parameters
can then be constructed as a linear combination of the
matrices for the individual U’s and diagonalized to give
the energy levels and wave functions. The wave func-
tions are obtained as linear combinations of the basis
functions with coefficients which are always real because
of the orthorhombic symmetry.

We calculate g values in the usual way by calculating
the magnetic moment in each Kramers doublet. In the
present convention,

8= —2((1+¢)/\/2-) (‘l’l L.+2S, I &)7
gr=—2(A=)N2)W | Ly+2Sy | ¥),
&= _2<‘P l Ly+42S, l ‘l’>7 (3)

where | ¢) and | ) represent a pair of Kramers con-
jugate wave functions associated with a given level.
As defined, the g’s are real but can be either positive or
negative (see Appendix D).

The Computer Search Program

The calculation of the energies and g’s in terms of
known crystal field and spin-orbit parameters is per-
fectly straightforward. More complicated, however, is
the inverse problem of determining the parameters
from measured energies and g’s. Algebraic inversion
of the equations is out of the question, and in fact, un-
certainties in the measurements and approximations
in the theory make it highly unlikely, as the number of
parameters increases, that an exact solution exists at
all. Some form of sophisticated trial-and-error pro-
cedure of the type to which automatic computing
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TastLE I. Energy levels (in cm™) and g values for Yb*t* in YGaG.

Cubic only Full fit Exp HW Point charge
J=%
Tsue 10 653 10 733 10 73743 11 028 10 724
Tsk 10 653 10 604 10 593+3 10 876 10 610
Iy 10 323 10 310 10 31141 10 601 10 311
g° —1.48 —0.43 —0.354-0.1 —0.27 —0.10
& —1.48 —2.28 —1.9840.1 —2.14 —2.24
g 1.48 1.70 1.80+0.1 1.92 1.93
J=1
T 607 662 6424-7 798 721
Tk 607 606 5997 700 606
T 529 529 54344 518 506
Ty 50 0 0 0 0
g° 3.48 2.84 2.8540.01 2.94 2.82
g 3.48 3.59 3.6040.01 3.42 3.61
g —3.48 —-3.72 —3.7340.01 —3.84 —-3.82

machines are so well suited is called for. We have chosen
to use the following least-squares approach.

A function S measuring the discrepancy between
theory and experiment is defined by

S(Py-++Py)= 2 WLE(Pr+-Py)—EF, (4)

where Py, - -+, Py are the parameters, E; is a calculated
energy or g value, F; is the corresponding measured
quantity, and W; is an assigned weight. The problem
reduces to that of minimizing the function S with
respect to the ten P’s. This was done using a numerical
method due to Powell.?

This method is based on a property of second-order
functions, namely, that a line through the minimum
point of the function is the only one which cuts the
level surface of the function at each point along the
length of the line at the same angle. If one is able to
find for each of two parallel planes in the #-dimen-
sional-parameter space a point where the plane is
tangent to a level surface of the function, then the
straight line joining these two points passes through
the minimum point of the function. (It cuts each of
the two planes at the same angle at just those points
where they are tangent to two level surfaces of the
function.) The problem is then reduced to the one-
dimensional one of minimizing the function along this
line. Finding the two points which determine the line
can be accomplished by the following procedure. The
first point is taken to be the initial guess. The plane
tangent to the level surface at this point is simply the
plane normal to the gradient of the function at the
point. Another point along this normal is then chosen
(in practice it is the minimum point of the function
along the normal) and a plane perpendicular to the
normal (and hence parallel to the first plane) is con-
structed at this point. The point in this plane which we

3 M. J. D. Powell, Comput. J. 5, 147 (1962).

are seeking is one at which the plane is tangent to a
level surface of the function. This will be true of the
minimum point of the function in the plane. Finding
this point is an (N—1)-dimensional problem in
contrast to the original N-dimensional one. It is clear
that by repeating this procedure, the problem is re-
duced to a one-dimensional one which can easily be
solved.

Since the functional dependence of S on the P’s
is only approximately second order, the procedure
must be repeated, but this iterative process converges
quite well. Starting from an initial guess for the param-
eters it takes one to the nearest minimum of S. The
minimum found by the initial fitting program is only
rather crudely determined because, in the neighborhood
of a minimum where first derivatives of S become
small, roundoff error in the complicated machine
calculation begins to dominate and the derivatives can
no longer be calculated with any accuracy. The detailed
behavior of S in the region near the minimum is of
interest, however, because for a fit involving so many
parameters, questions naturally arise about the
uniqueness of the minimum and the accuracy with
which the parameters are determined. Double pre-
cision arithmetic on the computer was therefore used to
calculate S together with its first and second derivatives
at the last point reached by the search program. Within
the very small region including this point and the exact
minimum, S is a quadratic function of the parameter
increments to a high degree of approximation. Its
minimum can therefore be found very accurately by
extrapolating the first derivatives linearly to zero
(occasionally a second iteration is required when the
starting point is bad). .S and its derivatives are then
recalculated at the minimum. Use of this procedure
yields several benefits. By determining the location of
the minimum very accurately, one can verify that the
minima reached from different initial guesses are really
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the same and not closely spaced distinct minima. By
diagonalizing the matrix comprised by the N? second
derivatives at the minimum and verifying that its
eigenvalues are all positive, one can verify that a
true minimum, and not a saddle point, has been reached.
Finally, the second derivatives permit one to establish
limits on the accuracy with which each of the param-
eters is determined.

III. RESULTS

The experimental energies and principal g values
which we chose to use as input to the fitting program,
together with their estimated errors, are listed in
Tables I and II. The sources of the energy levels are
made clear in paper I. The g values for the ground
state were obtained from paramagnetic resonance
studies* and those for the excited state from Zeeman
spectra.® It will be noted that the g values have signs

TasLE IL. Energy levels (in cm™) and g values for Yb*++in YGaG.

Cubic only Full fit Experimental
7=%
Tsu 10 634 10 678 10 67443
Tsx 10 634 10 623 10 620+3
Ty 10 334 10 321 10 322+1
& —1.49 —0.51 —0.49-40.1
& —1.49 —-2.50 —2.4640.1
I 1.49 1.47 1.27£0.1
J=3%
Tsx 731 795 78247
Tsu 731 688 69647
T 542 604 611+4
Ty 104 0 0
g° 3.49 2.47 2.4740.01
g 3.49 3.71 3.78+0.01
¢ —3.49 —3.86 —3.870.01

assigned to them. These signs are not given by the
experiments from which the g’s were obtained, but
they are important to the calculation and were chosen
according to the procedure discussed in Appendix D.
The weights W; in Eq. (4) were chosen in such a way
that varying each quantity by its estimated experi-
mental error would change .S by the same amount.

Since with ten parameters to vary many different
fits are possible, one must be careful to find that one
which is the most reasonable physically. To assure this,
three different sets of starting parameters, each ob-
tained from plausible assumptions, were tried. They
were: (1) best-fit parameters assuming the potential
to be entirely cubic, (2) the HW parameters, (3)
parameters resulting from a five-parameter best fit to
all the available data, obtained by imposing the HW

4 D. Boakes, G. Garton, D. Ryan, and W. P. Wolf, Proc. Phys.
Soc. (London) 74, 663 (1959); J. W. Carson and R. L. White,
J. Appl. Phys. 31, 53S (1960).

¢ H. M. Crosswhite (unpublished).
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Fic. 1. Calculated and measured energy levels for Yb*++ in
YGaG. The column “full fit” represents our best ten-parameter
fit and corresponds to the potential coefficients given in Table ITI.
The column “cubic only” represents a calculation using only the
cubic crystal-field parameters ¢! and ug! of Table III. The
column HW shows the fit obtained by Hutchings and Wolf. (It
should be noted that the HW fit is better than it appears here,
since a large part of the discrepancy is due to an erroneously
large spin-orbit parameter used by these authors.) The column
“point charge” refers to a five-parameter fit to all the data using
the point-charge ratios of Hutchings and Wolf. The data on which
this figure is based are given in Table I.

point-charge ratios. (This last calculation, henceforth
referred to as the “point-charge” fit, is interesting in
its own right and will be discussed later.) From each
of these starting points the ten-parameter search led to
the same minimum. That it is a true minimum is con-
firmed by the positive signs of the eigenvalues of the
second derivative matrix. In addition, the fact that the
second derivatives change very slowly in the region of
the minimum makes it highly unlikely that there is
any other minimum nearby.

The results obtained are shown in Figs. 1 and 2 and
in Tables I and II. Also shown are the results of the
HW and point-charge calculations for the gallium
garnet. The crystal-field parameters® corresponding to
the energy levels and g’s of Tables I and II are given in
Table III. Estimates of the relative accuracies with

TasrLe III. Crystal-field and spin-orbit parameters (in cm™)
for the full fit, HW fit, and point-charge fit in the gallium garnet,
and for the full fit in the aluminum garnet.

Full fit Full fit HW Point
Parameter (Al (Ga) (Ga)  charge (Ga)

EON —9984+ 4 —10 081+ 6 —10 300 —10 068
174 14415 85420 105 54
uf —2494-12 —203+16 —210 —227
s —574+13 —610+19 —619 —592
u® 25412 102416 167 48
ugd 68423 149428 107 102
ug?! —8884-16 —647+26 —1 023 —836
ug? —3144-22 —544-23 —50 —41
ule 599421 361447 179 146
ugto —1214+18 —123422 —123 —101

6 For those who prefer to use the operator equivalents of Ref.
1, our full-fit parameters in terms of the A’s of that paper are:
For gallium, A0=—70, A2=-4288, A0=—177, Ag=-4221,
Agt= 1621, AP=+49, A= —462, Agt= 1822, and A¢b=—233;
for aluminum, A= —12, A2=+42352, A0=—151, A2=-+102,
A423=0+692, As =+107, As =—767, Ae =+1009, and A(,'e:
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Tasre IV. Full-fit wave functions for the gallium garnet expanded in terms of the basis functions of Appendix B. The dominant cubic
component of each wave function is given in boldface type.

Coefficient of basis function

State (energy

in cm™) iT'e8’) [5Tsu) #|3Ts) i|3T48"") |5Tsu) 4| §Tax i|3T46"")
10 733 —0.00252 0.00561  —0.00122  —0.00667  —0.95697 0.21226 0.19766
10 604 —0.00087 0.00638  —0.00406  —0.00290 0.19381 0.97494  —0.10897
10 310 0.00878 0.01709 ~ —0.00576 ~ —0.05088  —0.21518 ~ —0.06623  —0.97279
662 —0.45246  —0.85561 0.16611  —0.18839  —0.00364 0.00496  —0.00978
606 0.38520  —0.06464 0.90514 0.16732  —0.00492 0.00478  —0.01100
529 0.75974  —0.50624  —0.38470 0.13582  —0.00589 0.00331  —0.00579

0 0.26385 0.08434 0.07130  —0.95678 0.01655  —0.00059 0.04986

which these parameters are determined are included as
well. Figure 1 also indicates the way the free-ion energy
level is split by terms in the Hamiltonian of successively
lower symmetry: the spin-orbit interaction, the cubic
part of the crystal field, and the full orthorhomic
crystal field. It will be noted that the actual energy
levels are labelled by the representations of the cubic
group. That this is justified can be seen from Tables
IV and V, where the expansion of the actual eigen-
functions in terms of the cubic basis functions is given.
In every case, that cubic function which gives its name
to an energy level predominates in the composition of
the wave function corresponding to that level. Although
the upper J=17% states are quite mixed, as expected
from their close spacing, the more isolated states,
including the two states for which g’s are obtainable
experimentally, are seen to be very strongly cubic.
This well-defined cubic parentage of the eigenstates
reflects the approximately cubic nature of the po-
tential. As can be seen in Table III, the cubic terms,
w® and ue™, are significantly larger than the noncubic
terms. (In contrast to the operator equivalents, the
tensor operators used here are normalized quantities,
and the coefficients give a true measure of the relative
importance of the terms in the potential.) It can also
be seen that the same labeling of the energy levels
applies to the HW and point-charge calculations.

Examination of the point-charge fit reveals that the
Hutchings-Wolf assumption of point-charge ratios
among the fourth- and sixth-order parameters is not as
inaccurate as one would be tempted to assume from
the prediction for the J=1% levels given by the HW
calculation. Instead, it gives a useful first approxi-
mation to the correct result. The signs of all the
parameters agree, and their magnitudes are not grossly
at variance.

A word should be said concerning the “error esti-
mates” for the parameters quoted in Table II. For a
multidimensional theoretical fit there can be no unique
or truly satisfactory procedure for deriving such
accuracy limits. We have chosen quite arbitrarily to
define these limits in such a way that a change in a
given parameter by an amount equal to its assigned

error (all other parameters remaining fixed) will
double the function S.

IV. SUSCEPTIBILITY

The magnetic moment induced at a particular
ytterbium site by an applied magnetic field of any
size can be calculated as a function of temperature by
the rigorous formula

m(H)
=L 3 Giluli) exp(— E/RT)YL T exp(— E/RT)],
()
where
(Hcrystal—l'Hspin-orbit—U'H) l 7'>= Ei l 1); (6)
and
u=pB(L+28). (N

The eigenvalues E; and eigenstates | 1) are obtained by
actually diagonalizing the Hamiltonian matrix in
square brackets above within the 14-dimensional
manifold of the 4f functions. For fields of the size
normally attainable it is nearly as accurate to use the
perturbation expansion of Eq. (5) to first order in H.
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Fic. 2. Calculated and measured energy levels for Yb* ++ in
YAIG. This figure corresponds to the data in Table II.
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TasLe V. Full-fit wave functions for the aluminum garnet. The dominant cubic component of each wave function is
given in boldface type.

State (energy

in em™) |3TeB’) [3Tsu) 4|3Tsk) i|3T48"") |5Tsu) 4|3Tsx) 1|3T48"")
10 677 —0.00900  —0.01682 0.00646 0.01092 0.96895 0.01891  —0.24548
10 623 —0.00359 0.00563  —0.00579  —0.00170  —0.02247 0.99963  —0.01219
10 321 0.01980 0.02706  —0.01162  —0.06356  —0.24322 —0.01752  —0.96708
795 0.11011 0.44518  —0.88809 0.01300 0.01964  —0.00656 0.01971
688 —0.09524 0.87928 0.43185 0.17659 0.01039  —0.00222 0.00329
604 0.92018  —0.02341 0.10848 0.35247 0.00176 0.00466  —0.00663

0 0.33902 0.16461 0.11321  —0.91665 0.03141 0.00086 0.06252

Doing so yields the tensor relation

m(E)= 3 B {5 e - )| Sl 2 ol )

= ; xiH1,

where
(Hcrystal+Hspin-orbit) ] 'i0>= EiO 1 'il))- (9)

The macroscopic response to an applied field, obtained
by summing Eq. (8) over all sites in the crystal, has
the isotropic form

=XH) (10)
where
=3No Z Xii
Ny
(3 Z exp(— Ew/kT)) 2 E exp(— Eu/kT)
X{(w IZJTI zo)ZT ; 2| (Zloifgj:) I } an

x is defined as the gram-ionic susceptibility. One further
observation can be drawn from this formula. If T is
low enough so that ATK[ Ey— Ey] for all i#1(E; is
the ground-state energy), the factor exp(—Ei/kT)
causes all terms except that with ¢=1 to become
negligible. The temperature dependence of x then has
the form

x=C/T+a, (12)
with
C=(No/3k)[ {1 [ o | 1%+ (1 iy | 1)1 [ | 1)7],
(13)
and
o= (2N0/3)
Zl (| oo | 70) 24| 1| oy | m0) 24| (1| pelm)
En—Ey
(14)

(io | i | mo) (o | s | 30)+c.c.
Z nO_E;(] ]}

8

Deviations from this behavior would of course be ex-
pected at high temperature when the terms with i1
become important.

The applicability of the perturbation approximation
leading to Eqgs. (10) and (11) was tested by calculating
the magnetization per gram ion by the rigorous formulas
of Eq. (5) for a magnetic field of 10! Oe in various
directions and for the temperature range 20-1000°K.
M (H) was found to exhibit isotropic behavior of the
form (10) with x given by Eq. (11) to within 0.06%
over the entire range.

Susceptibilities for Yb*++ in the gallium and
aluminum garnets have been measured by three dif-
ferent groups.”® The results, expressed in terms of C
and « [determined from the data in the range where
Eq. (12) applies] are listed in Table VI, where they
are compared with the values of these quantities cal-
culated from Egs. (13) and (14). The values for the
gallium garnet are seen to lie well within the range of
the experimental numbers. For the aluminum garnet
there is some disagreement between the result of Ball
et al’ for a and our calculation. These authors find
almost identical values for a in both gallium and
aluminum garnets, whereas the calculation predicts a
considerable difference.

It should be emphasized that a discrepancy of this
magnitude cannot be due to the detailed features of the
calculation. Rather, it is a reflection of the fact that
the energies which appear in the denominators of
Eq. (14) are found experimentally to be quite different

7M. Ball, G. Garton, M. J. M. Leask, and W. P, Wolf, in
Proceedings of the Seventh International Conference on Low-
Temperature Physics, 1960 (University of Toronto Press, Toronto,
Canada, 1960), p. 128.

8Y. Ayant and J. Thomas, J. Cohen, and J. Ducloz, J. Phys.
Radium 22, 63S (1961).

*W. H. Brumage, C. C. Lin, and J. H. Van Vleck JPhys. Rev.
132, 608 (1963).
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TABLE VI. Experimental and theoretical susceptibility parameters
[as defined in Eq. (12)] for YbGaG and YbAIG.

Experimental Theoretical
Ref.8 Ref.7 Ref.9

Gallium

o 1.09 1.116 1.082 1.089

a 0.003  0.00358 0.00397 0.00345
Aluminum

C 1.111 1.100

a 0.00359

0.00272

in the two crystals. This is because the susceptibility
depends only to second order on the noncubic potential
terms,' as do the I's and mean TI's energy levels.

Two possible explanations for the discrepancy suggest
themselves: (a) The data of Ball ef al.” obtained over
a rather restricted range of low temperatures, is af-
fected by exchange in a more complicated manner
than is accounted for in the expression to which they
fit their data; (b) The experimental susceptibility is
modified by the presence of Yb on other than normal
sites, evidence for which is adduced in Paper 1.

[Noie added in proof: Recent susceptibility measure-
ments by C. C. Lin on the same YbAIG crystals used
for the spectroscopy work of Paper I over the tempera-
ture range 77.3-905°K indicate a value for « of 0.0030.
This agrees much better than the previous measure-
ments with the theoretical result. We wish to thank
Professor Lin for informing us of these measurements. ]

The detailed temperature dependence of the sus-
ceptibility as calculated from Eq. (11), including its
high-temperature bendover, is compared in Fig. 3
with the experimental points of Brumage et al.)’
these being the only data available over the full temper-
ature range of interest.

V. CONCLUSION

The search for a ten-parameter fit to the spectrum
and g values resulted in a Hamiltonian dominated by its
cubic terms. The Hamiltonian is thus consistent with
the elementary picture, according to which the main
contributions to the potential are the fourth- and sixth-
order cubic terms due to the eight nearest-neighbor
oxygens at the corners of the pseudocube surrounding
the Yb*++* ion, the smaller noncubic terms arising
from the displacement of the oxygens from ideal cubic
positions and from more distant ions. The Hamiltonian
is also in its rough features consistent with a point-
charge model, although the latter is by itself insuf-
ficiently accurate for quantitative predictions (as shown

10 This follows from the group-theoretical statement that func-
tions with full cubic symmetry Iy cannot depend linearly on
functions belonging to T, 25%1. It is also borne out by the calcu-
lation, where the values of the squared matrix elements

Z; | (o | pi | no) [

for the orthorhombic wave functions were found to differ from
those for the cubic wave functions by less than 109,.
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by the failure of the original HW calculation properly
to predict the remaining unknown levels). The fact
that a unique solution is arrived at using either a
cubic or a point-charge potential as starting points
lends strong support to the belief that the calculated
Hamiltonian is indeed the proper one. The Hamiltonian
includes unexpectedly large sixth-order potential
terms, forcing the I's levels of the J=7 manifold to lie
above the I'g levels contrary to what has been generally
assumed in the past. These features are shared also by
the approximate forms, i.e., the cubic, HW, and
point-charge Hamiltonians.

It has been stated" that a tetragonal potential may
represent a useful second approximation to the rare-
earth potential in the garnets (a cubic potential repre-
senting the first approximation). No indication of
tetragonal symmetry is given by our calculation, nor is
it consistent with the point-charge model, or with the
experimentally observed g values.

We believe that these calculations represent the most
reasonable fits to the experimental data consistent with
the assumptions we have made, the most important of
which being that crystal-field theory is applicable and
that only a single configuration need be considered.
The failure of the calculation to fit all the experimental
data within its limits of accuracy indicates that these
assumptions are only approximately correct.

One of the purposes of the calculation was to obtain
an approximation to the crystal-field parameters of
ytterbium in the iron garnet. Since the iron and
gallium garnets are structurally very similar, the iron
garnet parameters should not differ much from the
gallium parameters quoted here. Certainly the dif-
ferences should be less than those between the gallium
and aluminum garnet parameters. Finally, it should also

40

35

1 1 | 1 |l
[0} 5 10 15 20 25 30

T (1073 2k ™)

F16. 3. Paramagnetic susceptibility per gram ion of Yb*++in
the gallium garnet calculated using our crystal-field parameters.
The circles represent the susceptibility of YbGaG as measured
by Brumage, Lin, and Van Vleck (see Ref. 2).

1 J. A, Koningstein, Theoret. Chim. Acta 3, 271 (1965).
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be emphasized that the data used in these calculations
is for ytterbium dilutely doped into the garnets and that
the crystal fields for the fully substituted garnets may
be somewhat different. Comparison of the spectra in
the two cases suggests, however, that these differences
should not be large.

APPENDIX A: COORDINATE
TRANSFORMATIONS

For a particular Yb*t site the basis vectors for the
orthorhombic coordinate system are given in terms of
the crystal axes as follows:

n,=[1,0, 0],
n,=[0, 32, —3V2],
n,=[0, 1V2, V2]
The pseudocubic basis vectors for the same site are
n.=[3V7, -3, 1,
n,=[3V2, 3, =31,
n,=[0, $V2, 3V2].

Basis vectors for other sites are obtained by successive
application of the operations of the crystal-symmetry
group O.
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Transformations among the coordinates are given by

x' =X,

y=12(Y-2),

2= WIY+2),

and

x=p2(x'-y),

y=3V2(x'+y’),

z=12'.

APPENDIX B: BASIS VECTORS

The basis vectors are of the form | JTxy) where v
denotes a particular row of a given representation T';
of the octahedral group O. We follow the notation and
conventions of Griffith,'? except for retaining the more
popular designations I'g, I'7, and T's for the representa-
tions E’, E"”, and U’, in the Griffith notation. Our
basis functions, with proper phase, are given by

l %Pﬁﬁ’ >7 l %F8#>5 { l %P8K>7 1 I %I‘76H >7

| $Tsu), ] §Tsk), i | $T46").
These seven functions together with their Kramers con-
jugates span the 14-dimensional eigenfunction space
of the 4f configuration.

In terms of eigenfunctions of the form |mum,)
these functions are defined by

| 3T68")=—[(v/5)/2¥3]13, 5)—(A/V3) |0, =1)—(3) | -1, %),

| 3Tsu)=[(v/7)/2¥3]1 3, $)—[(v5)/v21]]0, =3)—[(v/5)/2v/T]|

_'1; %))

| §Tax)= (V3/v/14) | 2, =H)+[(V15)/2v/T]| 1, $)+(B/V14) | =2, =5)+(GvT) | =3, %),
13148 )= (1/v/14) | 2, =5)+L(v5)/2vT11 1, $)— (3/v14) | =2, =)= (V3/2v/T) | =3, %),

[$Tsu)=—(3/v7) 10, =5)+(2/V7) [ =1, ),

[§Tsk)=—[(v5)/v42]]2, =3)+(1/v21) | 1, 5)=[(v5) /v42]| =2, =5)+[(V5)/vVT]| =3, %),
|3T48")=—(5/v/42) | 2, —5)+[(v5)/v21] | 1, 5)+(1/v42) | =2, —=3)—(1/V/T) [ =3, %).

The seven functions belong to the 8 (‘“spin-down”)
row of the representation C,*, associated with the
two-fold symmetry axis along z. Functions | ¢) in the
text refer to linear combinations of these spin-down
functions, and functions | ), to their Kramers con-
jugate spin-up functions.

APPENDIX C: DEFINITION OF OPERATORS AND
CONVERSION FACTORS

The crystal-field Hamiltonian is expanded in terms
of operators U;® with transformation properties of
Kubic harmonics of order I belonging to a row v of a

representation I' of the octahedral symmetry group O.
Only operators of orthorhombic symmetry and even /
need to be included. For brevity we mark only the row
of the representation using the notation of Griffith,!?
as the corresponding representation is always self-
evident. The normalization is chosen expressly so as to
make the norm of the matrices U;» within the 4f
configuration equal to unity. The coefficients #;* in
Eq. (1) therefore provide an absolute measure of the
contribution of each term to the crystal-field splitting.

The most compact definition is given in an |Im)

2§, S. Griffith, The Theory of Transition Metal Tons (Cambridge
University Press, Cambridge, England, 1961).
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representation, with quantization along z. The matrix elements are given by

3 2 3
(m | U | M'>=(-1)"’+‘\/5( )
—-m 0 m

(m | U | M')=—i(—1)"‘+1\/5/2|:(

343
(m| Ut |m')=(— 1)m+1|1x/21(

m 0 m

3 4 3
(| US| m')= <~1>m+1{—%\/1s<
—m 0 m
(m | U | =i 1>+3[< P
m 4 =—q(— mtl
" V2 —m 2 m

(m | Ut | )= (— 1)’"*‘[%?(

(m | Ug | m')=—i(— 1)'"’*1\/13[

|A/\
8
(=)}

13
(m| Ua"’lm'>=—i(‘1)wxx//2“

<11 I la)
my me M3

are Wigner 3j symbols.}® From the properties of the 37
symbols one easily verifies the normalization

2 m | U [ m' Yo' | U | m)=byybu0r.
mm!

where

The same relation holds equally in any other representa-
tion.

The operators with full cubic symmetry are U, and
U

The relation to spherical harmonics can be obtained
from the equation'®

m | Y M| U'm)

! L1
=(=1)@|| YL\ll’>< )
- B —m M m

18 See, for example, M. Rotenberg, R. Bivins, N. Metropolis,
and S. K. Wooten, Jr., The 3-j and 6-j Symbols (The Technology
Press, Cambridge, Massachusetts, 1959).

3 2 3

—m 2 m

ml

M)
)

< 3 4

')_ —-m' 2 m ’
3 6 3

(m | US| m'y= (—1)’"’“{3@1( >

( 36 3 :|

—m 2 m ’
( 36 3

—m 6 m ,

The coefficients #;* are related to the operator
equivalent coefficients 4;(r'), as used, e.g., in HW
by the equations

uf=—[(4v/7)/(5v3) 14 (r*),
ut=—[(4v/7) /15142 (r*),
™ =[4V2/3+/33](TAL— Ad) {r*),
ud=—[ (4+/14)/(3v/165) J(SAL+A) (r*),
ud="[(4v/14)/(3+/55) J42(r*),
wg = —[ (400/14) /(39+/33) J(3AL+Aet) (r5),
u = —[40v2/394/337(21 40— A ) (#°),
uge=—[(32+/10)/(39+/11) 14 (1),
ug®=[160vV2/429] A (r°).

)
»

APPENDIX D: SIGNS OF g VALUES

Measurements of magnetic splittings give no in-
formation about the signs of the principal values of the
g tensor appearing in the spin Hamiltonian of paramag-
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netic resonance, because the expressions for the split-
tings involve only the squares of the g values. In general,
it is impossible to establish a unique correspondence
between the two components of the actual Kramers
doublet and the up and down states of the fictitious
spin # of the spin Hamiltonian, and it is therefore
meaningless to talk about a sign for the g value. With
the field along a symmetry axis, however, the trans-
formation properties of the states allow each of them
to be identified unambiguously with one of the spin
components, and a sign for the g can then specify
which of the two lies lower in energy.

When a magnetic field is applied along a twofold
symmetry axis of the crystal site, the symmetry of the
problem is reduced to that of the double group C.*
around the axis in question. This new symmetry group
is a subgroup of the original group as well as of the full-
rotation group. C,* has only one-dimensional repre-
sentations, and only two of these are allowed for odd-
electron wave functions. Since a Kramers doublet
transforms as a two-dimensional representation of the
original group, its representation is reduced by the
lowering of the symmetry, and one of the components
of the split doublet transforms as each of the two
possible representations of Cy*, namely,

Ce* ] ‘p>=7’ ] \b)l
Cﬁ* | ¢>= —1 I 'i;))

where C.* is defined as a positive rotation of = about H.
The wave function of a free spin quantized along the
direction of the magnetic field also transforms as one of
these representations, and that of a spin quantized
opposite to the field transforms as the other. One can
thus uniquely identify the two components of the split
doublet by comparing their transformation properties
with those of a free spin. A positive g value can then
be assigned to the doublet if the energy of the state
transforming as the plus spin is the higher in the
magnetic field and a negative g if it is the lower. This
convention is the one reflected in the signs of the g’s
given by Eq. (3).
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It must be stressed that it is this possibility of
labeling the two components of the split doublet
uniquely, and, in principle at least, of distinguishing
them experimentally, which makes the sign of the g
value a meaningful concept. In turn, it is the presence
of a symmetry axis in the direction of the field which
makes such a labeling possible. In an arbitrary (non-
symmetry) direction a magnetic field removes all the
symmetry of the site, and it makes no sense to talk
about which of the split states lies higher, since they
cannot be distinguished.

The magnitude of g is thus a well-defined continuous
function of the direction of the field. The sign associated
with g, however, is defined only along symmetry axes
and can be different for different axes (as in the present
case) even though g is not zero in any direction.
In addition to the meaning given here for the signs of
the individual principal g values, the sign of their
product is involved in the relation between magnetic
moment and angular momentum.

Once it is established that the signs of the principal
g values are meaningful (since the principal axes of the
g tensor are indeed the twofold symmetry axes of the
orthorhombic site), the practical problem of choosing
them can be resolved by the following considerations.
The g’s and their signs are well defined for the cubic
parents of the doublet states and are listed in the
cubic columns of Tables I and II. Since one expects the
actual eigenstates to resemble their cubic parents
quite closely, it is reasonable to assume that the signs
of the g’s will be the same as they are for the cubic
functions. Any other assumption forces the states
artificially to be noncubic or to resemble cubic states
of the wrong J. (Note that the I'y state coming from
J=1% has opposite signs for its g’s from that coming
from J=3%.) Making the wrong choice of signs, or
attempting to fit only the absolute values of the
g’s, greatly increases the chance of reaching a false
minimum and obtaining an unrealistic fit. It should be
pointed out that the signs obtained in this way agree
with those used by Hutchings and Wolf.!

4 M. H. L. Pryce, Phys. Rev. Letters 3, 375 (1959).



