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crystals. The fluoride cubic crystals with perovskite
structure seem to be advantageous for that purpose.
It is evident that both ionic and covalent contribu-
tions to the zero-field splitting are smaller in Auorides
than in oxides. But from our calculations it appears
that the covalent contribution to the ratio G»/G4~
should be different for Quorides than for oxides. From
the considerations given above, the ratio G»/G44
should be greater for Quorides than for oxides because
of more contracted fluorine 2p wave functions.

Note added irt proof Rec. ently the values of G» and
644 for Ci~+ and Ni'+ in MgO were computed by
Tucker"" using the point-charge model. These values
differ greatly from the point-charge contributions
estimated in this paper for the following reasons: (i)
Tucker's values are obtained from a fit to the experi-
mental value of the cubic field splitting"; thus they

» E. B. Tucker, Proc. IEEE, 53, 1547 (1965)."E.B. Tucker, Phys. Rev. 143, 264 (1966).

are three or four times greater than the values com-
puted from the first principles. (ii) The expression
for G44 used by Tucker is smaller by a factor of 3 than
in our expressions (10) or (17), in which the terms
caused by the excited states t2', 'T2 or t2V, 'l2 are
truncated and near-neighbor model is used. (iii) The
effect of further neighbors is not negligible, and some
terms diRer by as much as 50% when Kanamori sums
are used instead of the near-neighbor model. (iv) The
effect of the excited states fs', 'Ts and/or ts'e', 'Ts was
not considered in Altshuler e) ut. 's" expression for 644

used by Tucker, though their effect is substantial.
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A quantum statistical analysis of an optical maser is presented in generalization of the recent semiclassical
theory of Lamb. Equations of motion for the density matrix of the quantized electromagnetic field

are derived. These equations describe the irreversible dynamics of the laser radiation in all regions of opera-
tion {above, below, and at threshold). Nonlinearities play an essential role in this problem. The diagonal
equations of motion for the radiation are found to have an apparent physical interpretation. At steady
state, these equations may be solved via detailed-balance considerations to yield the photon statistical
distribution p„,„.The resulting'distribution has a variance which is significantly larger than that for co-
herent light. The off-diagonal elements of the radiation density matrix describe the eBects of phase diftusion
in general and provide the spectral pro61e

~
E(a&) P as a special case. A detailed discussion of the physics

involved in this paper is given in the concluding sections. The theory of the laser adds another example
to the short list of solved problems in irreversible quantum statistical mechanics.

I. INTRODUCTION

1HE theory of an optical maser due to Lamb'
- .treats the atoms quantum-mechanically while con-

sidering the radiation as a classical electromagnetic
field. This theory has provided a basis for understanding
a wide range of observed laser phenomena and has
been extensively tested by Java» and Szoke s Fork and

* This work was supported in part by the National Aeronautics
and Space Administration and in part by the U.S. Air Force
Once of Scientific Research. The main results of the paper were
reported at the International Conference on the Physics of
Quantum Electronics, Puerto Rico, July 1965.

f This paper is based on a thesis submitted by M. Scully to
Yale University in partial fulfillment of the requirements for
the Ph. D degree.' W. E. Lamb, Jr. , Phys. Rev. 134, A1429 (1964).

'A. Szoke and A. Javan, Phys. Rev. Letters 10, 521 (1965),

Pollack, and others. Extensions of the theory to allow

for the presence of a magnetic field4 ' or cavity anisot-
ropy6 have been made by several authors, and there
is no doubt that remarkable fits are being obtained
with experimental data. The ring laser has been
analyzed by Aronowitz, ' and by Gyorffy and Lamb, '
again in good agreement with observations. Various
forms of modulation can be discussed, as in the work
of Harris. ' The buildup in time of oscillations from a

3 R. L. Fork and M. A. Pollack, Phys. Rev. 139, A1408 (1965).
4 R. L. Fork and M. Sargent, III, Phys. Rev. 139, A617 (1965).
5 M. Sargent, III, W. E. Lamb, Jr., and R. L. Fork (to be

published) .
6 W. M. Doyle and M. B. White, Phys. Rev. 147', 359 {1966}.
7 F. Aronowitz, Phys. Rev. 139, A635 (1965).
8 S. L. Gyorffy and W. E. Lamb, Jr. (to be published).

S. E. Harris and R. Targ, Appl. Phys, Letters 5, 202 (1964};
$s F, H:gxris and O. P. McDu6, ibid. 5, 205 (1964).
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very low level has been investigated by Pariser and
Marshall, m and satisfactory accord with theory is
obtained.

In view of the successes of the semiclassical theory,
it may be asked why there is need for a better treat-
ment. One reason is that the foregoing theory implies
that laser radiation in an ideal steady state is absolutely
monochromatic. To be sure, an actual laser has me-
chanical and statistical disturbances, and these give
rise to a Gnite radiation band width. The intrinsic line
width, expressing the CBects of thermal noise, vacuum
fluctuation fields, and spontaneous emission, is in any
case far too small to detect with present techniques.
Still, the proper calculation of such CGects has pro-
vided a challenging problem in nonequilibrium sta-
tistical mechanics. Another defect of the semiclassical
thcoI'y ls that osclllRtlons will not glow spolltallcously
but require an initial optical-frequency (o.f.) field
from which to start. One would like to know how
oscillations can develop from a state with no radiation
initially present. Since spontaneous radiation must be
involved, it is clear that this kind of question requires
the quantum theory of radiation.

Still another problem requiring a fully quantum-
mechanical theory is to determine the statistical dis-
tribution of the energy stored in the laser cavity, i.e.,
the "photon" statistics. This information is a pre-
requisite for a proper discussion of the statistical dis-
tribution of photoelectrons" '4 produced by a laser.

A number of papers have appeared recently dealing
with a quantum-mechanical laser. The earliest of these
replaced the photon emission and annihilation opera-
tors by c numbers, '5 or prematurely factored" the
density matrix, and hence are a disguised form of the
semiclassical theory. Extensions of the semiclassical
theory to include an injected noise signal have been
given '~ '9

We now turn to an enumeration of the fully quantum-
mechanical treatments. One of these has been given

"B.Pariser and T. C. Marshall, Appl. Phys. Letters 6, 232
(1965); B. Pariser, thesis, Columbia University, 1965 (un-
published) .

"A summary of experimental results is given in I'roceedings of
the International Conference on the I'hysics of QNantum Electronics,
PNerto Rico 1965, edited by P. Kelley, B.Lax, and P. Tannenwald
(McGraw-Hill Book Company, Inc. , New York, 1965). See
especially: J. A. Armstrong and A. W. Smith, iNd. , p. 701; F.
Johnson, T. McLean and E. Pike, ibid. , p. 706; C. Freed and H. A.
Hausq 'bl5$L, p. 715.

rs C. Freed and H. A. Hsus, Phys. Rev. Letters 15, 943 (1965)."A. W. Smith and J. A. Armstrong, Phys. Rev. Letters 19,
650 (1966).' F. T. Arecchi, A. Berne, and P. Bulamacchi, Phys. Rev.
Letters 16, 32 (1966).

'5H. Haken and H. Sauermann, Z. Physik 173, 261 (1963);
176, 58 (1963).

't' C. R. Willis, J. Math. Phys. 5, 1241 (1964};Ref. 11, p. /69.
'~ W. K. Lamb, Jr., in Quantum Optics and Electronics; Lectures

Delivered at Les EANches During the 1964 Session of the SNmnser
School of Theoretical I'hysics, University of GrenoMe, edited by
C. DeWitt, A. Blandin, and C. Cohen-Tannoudji (Gordon and
Breach Science Publishers, Inc, , New York, 1965).

'g H. Risken, Z. Physik, 186, 85 (1965).
'9 R. D. Hempstead and M. Lax, Bull. Am. Phys. Soc. 11, 11'1

(1966).

by the authors'0 and extended in a recent pubhcation. "
The present paper is a detailed account of that theory
and is the 6rst in a series on the quantum theory of
the laser. The treatment will closely parallel that of the
semiclassical theory. McCumber, " Kemmeny, ~ and
Korenman" have applied a Green's-function technique
to the problem. Lax25 has also given a treatment of the
laser spectrum by postulating quantum noise sources
determined from gcncl Rl consldcl atlons~ Rnd ln col-
laboration with Louisell, "has subsequently calculated
an equation of motion for the density matrix. Willis~
has extended his earlier treatment, based on methods
due to Bogoliubov. The approach of the Haken school
has been generalized to include quantum noise sources.
The recent results of Fleck" are similar to those pre-
scntcd ln Rcf. 20.

Before developing the quantum theory, it is desirable
to review brieQy the semiclassical theory. Wc are in-
terested in the electromagnetic 6eld in a cavity reso-
nator which for optical frequencies can consist of two
plane-parallel mirrors. In the semiclassical theory, ' it
was assumed that a known electromagnetic fie1d E(s, 1)
was present, which consisted of one or more superposed
normal modes of oscillation of the cavity as given by

E(s, I) = Q E„(t) cos/v„1+q„(1)j sin(nss/L, ). (1)

The spatial dependence of the normal modes was taken
to be as simple as possibl. Each mode of the electro-
magnetic field was specified by an amplitude E„(t) and.
a phase angle q„(I), which were regarded as slowiy
varying in an optical period. The frequency of each
term was denoted by v„. The wave equation for the
clcctI'lc field with a driving folce tcHIl on thc right-hand
side involving the electric polarization of the medium
E(1), and an Ohmic dissipation proportional to a
6ctitious conductivity 0, was

poeor)'E/r)p+JJorrr)E/r)1+V & (V &E) = poBsp/Bp (2)—
In the solution of the inhomogeneous wave equation
the projection on the cavity modes I'„of the electric
polarization P(s, 1), and their in-phase and out-of-phase
amplitudes C„(I) and S„(1) played an important role.
One had the relation

P„(1)=C„(1) coslr I+q„(t) I

+S„(I) sinIv I+q„(t) f. (3)
"M. Scully, W. E. Lamb, Jr., and M. J. Stephen, Ref. 11,

p. 759.
2'M. Scully and W. E. Lamb, Jr., Phys. Rev. Letters 16,

853 (1966)."D.K. McCumber, Phys. Rev. 130, 675 (1963).» G. Kemeny, Phys. Rev. 133, A69 (1964}.
2~ V. Korenman, Phys. Rev. Letters 14, 293 (1965); Ref. 11,

p. 748.
2' M. Lax, Rd. 11,p. 735.
~6 M. Lax and W. H. Louisell (to be published).
~7 C. R. Willis, Phys. Rev. 147, 406 (1966).
~' H. Haken, Z. Physik 190, 327 (1966); H. Sauermann, i'.

189, 312 (1966);H. Risken, C. Schmid, and W. Weidlich, Phys.
Letters 20, 489 (1966)."J.A. Fleck, Jr., Phys. Rev. 149, 322 (1966).
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FIG. 1. Maser action
tak.es place between the two
excited energy levels a and
b separated by a frequency
co)0. These levels are
excited at rates r, and rq,
while the atomic decay con-
stants are given by y, and
N.

where
/a*a b*a)

/' w. V(t) I

(V(t) Wb )
The self-consistency approximation involves cal-

culation of the polarization, i.e., C„and S„, of the
active medium on the assumption that the electric field

E is known, and then substituting that polarization
in the right-hand side of the wave equation (2), re-

quiring that the polarization shouM produce the field

which was initially assumed. The result of this require-
ment is a pair of equations, giving the amplitudes E„(t)
and the frequencies v or phases p„(t) of each mode of
the radiation field:

(v„+j —0 )E = —2(v/«)C„,

&.+2 (v/Q. ) E.= 2(vl—«) s-,

(4a)

(4b)

P(t »0) =ALP, b(t t&)+Pb, (» tb)] (~)

where p=ex, b is the (real) matrix element of the
electric-dipole operator connecting states

~
a) and

~
b).

The density matrix obeys the differential equation

p= —iLB, p] ——',Lrp+pr],

where 0 =7'»c/L is the cavity resonance frequency and

Q„=v„bb/a gives the quality factor of the mode.
The next task is to determine the macroscopic driving

polarization which is a statistical summation over the
microscopic atomic dipoles. The atoms of the active
medium are taken to have two excited levels, a and b,

separated by a transition frequency or between which

the laser activity is taking place, as in Fig. 1. The
levels decay to lower states by radiative decay at
rates indicated by p, and pb. Atoms are excited to these
levels by some process such as electron collision from
the ground state. Let us imagine that at a time tp

an atom is brought into state
~
a) at some point sb

in the laser cavity. Initially its wave function is f„but
because of the presence of the assumed optical-frequency
field, the atom's wave function becomes a linear com-
bination of energy eigenstates, p, and pb Instead. of
using wave functions, it is better to work with the ele-

ments of a density matrix p, which is a more convenient

procedure when one wishes to describe a variety of situ-

ations in one formalism. The diagonal elements of the
2 X2 density matrix are the probabilities of finding the
states a and b occupied while the off-diagonal elements
are related to the (quantum-mechanically averaged)
induced atomic electric-dipole moment at time t of
the atom excited at time tp..

and for the case of stationary atoms

K=a~E~ —P~E.' (12)

where the coeflicient n„was given" by

~.= —k(v/Q-) +k(vP'». b/&«) H~ —v-) '+~.b'] ' (13)

and is the sum of a negative loss term corresponding
to the cavity Q and a positive term characterizing the
linear pumping. The latter depends on the number

density $(s) of excited atoms only through the excita-
tion A' defined by

SOS nrS
1V(s) sin' ds sin' ds. (14)

0 I. p LI

The parameter P„ is a measure of atomic saturation,
which introduces nonlinearities into the problem, and
is given" by

p~= (b p'y~b'v&/f'b'«y pb) L(b~ —v~)'+p~b'] '. (15)

30 W. E. Lamb, Jr., in Proceedings of the International School
of Physics "Enrico Fermi, " Course XXXI, edited by P. A. Miles
(Academic Press Inc. , New York, 1964), p. 92, Eqs. (85) and
(86).

SV(t) = —P g E„(t) sin cosLv„t+p„(t)]. (10)
n 1 I.

We are interested in a solution p(t, tb) which satisfies

a particular initial condition for t=tp, sucli as

(1 0)
p(to) =

I

(0 0)

Because of the perturbation V(t), the atom injected
at tp acquires an electric-dipole moment which decays
with a time constant 1/y. b

——2/(y +yb). In order to
calculate adequately the electric polarization, it is
necessary to compute the o6-diagonal elements of the
density matrix to at least third order in the radiative
interaction. Having solved for P(t, tb), we perform a
statistical sum over atoms by integration over entrance
times tp.

The differential equation which determines the ampli-

tude E„as a function of time when only a single mode
can oscillate was found to be
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The steady-state solution of Eq. (12) is clearly

$ (linear pumping) —(damping) ]E2——— 16ap„(nonlinear parameter)

Equations (12) and (16a) are basic results of the semi-
classical analysis and must, by the correspondence prin-
ciple, have counterparts in a quantum-mechanical
theory of a laser operating in the usual region where
huge quantum numbers are involved.

Having set the goal as a quantum treatment parallel-
ing the semiclassical theory, we outline electromagnetic-
Geld quantization in Sec. II, present the model and
obtain the equation of motion for the radiation density
matrix in Sec. III. In Sec. IV we obtain the steady-
state photon statistics p„,„,while the linewidth analysis
is included in Sec. V. Discussion of the physics involved
in the paper and a sulnmary will be found in Secs. VI
and VII.

IL QUANTIZATION OF THE ELECTROMAGNETIC
FIELD

A. Quantum Theory of Radiation

In this section we quantize the radiation field cor-
responding to a typical laser mode, i.e., a scalar field
in a finite one-dimensional cavity. Although there are
many textbooks which develop the quantum theory of
radiation, " they treat the problem for an unbounded
region and make use of the vector potential. We are
here primarily interested in treating the interaction
between the laser radiation and decaying atoms in the
electric-dipole approximation. It is unnecessary and
risky"" to discuss such a problem using the vector
potential, and therefore we prefer to develop the quan-
tum theory of radiation in a form more appropriate
for quantum electronics, emphasizing the electric and
magnetic fields. Maxwell's equations for a classical free
Geld are

appropriate weighting factor

E.= Q q, L2QPM, /(LA pp) Jl' sin(K, s),

where q, is the normal mode amplitude with the dimen-
sions of a length, K,=srr/L, with s=1, 2, 3, ~ ~ ~, and
Q, =srrc/L the cavity eigenfrequency. The effective
transverse area of the optical resonator is denoted by A.
The magnetic ffeld in the cavity as implied by Eqs. (17)
and (16b) is

H„=g (q,pp/K, ) [2Q,'M, /(LApp)]'t' cos(K,s). (18)

As is well known, there is an analogy between the
dynamical problem of a single mode of the electro-
magnetic field and that of a mechanical simple harmonic
oscillator. We have inserted a quantity M, into Eqs.
(17) and (18) which has the dimensions of a mass in
order to emphasize this analogy. The equivalent me-
chanical oscillator will have a mass 3f, and a Cartesian
coordinate g,.

The Hamiltonian for the Geld

B= 2 dr(cpE'+tl pEP) (19)

expressed in terms of Eqs. (17) and (18) for E and
H becomes

H = ,'g(M. Q,PqP +M—,q.Pj, (2O)

H = xp QLM, QPq '+P '/M, ], (21)

where p, =M,q, is the canonical momentum of the sth
mode. Equation (21) expresses the Harniltonian for the
radiation Geld as a sum of independent oscillator
energies. Each mode of the field is dynamically equiva-
lent to a mechanical harmonic oscillator which is quan-
tized by simply taking over the well-known quantization
of the mechanical oscillator

V xH=BD/N,

V x E= —aB/at,

v.B=O,

v E=O

(16b)

(16c)

(16d)

(16e)

EP., q"3 = (&/i) ~..", (22a)

E =AQ, (e+-', ), (23)

Lq., q. 3=Lp. p"j=O (22b)

The mth stationary-state energy of the sth mode of
the field is given by

B=ppH, D =epE. (16f) and the corresponding wave function is~

We take the electric field to be in the x direction
and expand in the normal modes of the cavity with an

"See, for example, W. Heitler, The Quantum Theory of
Radiation (Oxford University Press, New York, 1956), 3rd ed. ;
or W. Louisell, Radiation and Noise in Quantum E/ectronics
(McGraw-Hill Book Company, Inc. , New York, 1965).

3'W. E. Lamb, Jr., Phys. Rev. 85, 259 {1952),especially p.
268.

3' E. A. Power and S. Zienau, Phil. Trans. Roy. Soc. 251, 427
(1959).

a, = [2M,M,] 'I'(M, Q,q, +ip, ),
a,t = /2M, AQ,j 'I'(M, Q,q,

— ip, ) . —
(25a)

(25b)

'4 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1955), p. 64.

q (q ) = (n/~'"2"e!) '~'H„(nq, ) exp( —-'n'q, ') (24)

where n'= (,M /Qfi). It is sometimes convenient to
make a canonical transformation to operators a, and a,t:



H =6 Q (a,~a, +-,') Q„ (26)
4(q, t) =Ra.(t)o-(q), (35)

The Hamiltonian and commutation relations implied Concentrating on a single mode of the free field in the
ale q representation,

[a)) a))) ]=t)))'),

[a)) a)']= [a) ) a)) ]=0

(27a)

(27b)

These operators a, and a, ~ are the usual annihilation
and creation operators for the number states of the
sth mode of the radiation field

P(q, t) = g a (0) exp( —inQt)o)„(q). (36)

This wave packet, in general, has a nonzero average
electric field

(E(s) t) ) =sin(Es) +[a„*a„+g(n+1)'t'e *"'+—'cc], (37)

a,
I

n, )=n, 't' I n, —1),

a," I n, )= (n,+1)'"
I
n, +1).

In terms of these operators, the electric field is

E.= Q 8,(a,+a,t) sinÃ, s,

(28a)

(28b)

(29)

which has the sinusoidal spatial dependence of a normal
mode and a monochromatic time dependence with fre-
quency Q.

The photon probability distribution is given by
I a„(0) I', and the mean photon number is

(a'a) = g na.*a„

where the quantity

8,= [RQ,/(I.Aeo) ]'"
has the dimension of an electric 6eld.

The states
I n) are eigenstates of the number operator

8 8)
a'a

I n) =n
I n) (31)

([Z (&)]')= (n I
8 '(a'ya)'

I n) sin'E s (32)

and describe a cavity mode containing exactly m

photons. These states have zero average electric field
and a mean-square average of

a (0) = dqo)t) (qo) *4'(qo, 0) ~ (39)

We may write the wave function at time t as

4(q, t) = dqoG(q, qo, t)P(qo, 0), (40)

i.e., if at time t=0, P=P(q, 0), then the time evolution
will be given by folding P(q, 0) with the Green's
function G(q, q„ t):

The probability amplitudes a„(0) may be determined
from the initial form of the wave function P(q, 0) by

=28,o(n+-', ) sin'E s. (33)
G(q, qo, t) = Z v-(qo)*o-(q)e '""' (41)

It is the purpose of the next section to investigate
more general states of the radiation field, and the
electric field calculated from these states. We will be
particularly interested in states corresponding to the
classical limit of the quantized field.

B. Wave Packets for the Radiation Field

I
))t') = Z a i ( & i I f n(s) }» (34)

Since the radiation field for a single-cavity mode is

dynamically equivalent to the problem of a simple
harmonic oscillator, the wave function describing the
radiation in the cavity is a linear combination of
products of these pure photon eigenstates. For such a
state, there would be no definite photon number, but
only a distribution of probabilities for finding various
numbers of photons if one made an observation of the
energy in the cavity. This general state vector for the
field is

The physical interpretation of G(q, qo, t) is that it
represents the time development of a wave function
which is initially localized as a delta function of gp.

Kennard35 has given a very ingenious derivation of 6,
based on the observation that the Green's function is
an eigenfunction of the Heisenberg operator q( t)—
having the eigenvalue qp. He found that

G(q, qo, t) = [MQ/(2)rA
I

sinQt I)7
)( exp f iMQ[(q'+qo') cosQt —2qqo]/(2A, sinQt) I (42)

develops from a delta function at /=0 to a plane wave
at Qt=)r/2 and back to a delta function at Qt=~, etc.
Thus even though the wave packet always returns to
its initial state in one period of the oscillator, it has a
spread which is a strong function of time. In contrast,
however, a wave packet which maintains the same
variance while undergoing simple harmonic motion
evolves from the ground-state wave function displaced

by a distance a:

where

fn(a) i

fn(s) }=nr, no, ~ ~, n„~ ~ .

4 (q o) = (~'"/~") expL —-'~'(q —u)'].

3' K. H. Kenoard, Z. Physik 44, 326 (1927).
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p(q l) = (nits/sr't4) expI —-'t'Qt —-'n'I (q —a cosQt)'

+t'(aq sinQl+ —'a' sin2Ql) )}, (44)

and the probability density is

I P(q, t) I'= (n/srit') expL n—'(q a—cosQl)']. (45)

It may be seen that this packet has the minimum un-
certainty product hqhp=trt/2 allowed by quantum
mechanics.

From (1/), the average electric field for this wave
packet is

&E)=&en sinEs q I Ilr(q, l) Is dq

=v28n slI1KS cosQt.

Fxo. 2. The photon sta-
tistical distribution for
single-mode black-body
light, Eq. !STl, is compared
to that for coherent radia-
tion, Eq. (54). The wavy
line indicates that two
separate curves are shown
in the 6gure.
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this operator becomes a matrix p„,„with an in6nite
number of rows and columns labeled by the integers
123

A few pertinent examples of the density matrix for
single-mode light are now given. (1) The field might
be in a pure number state

These states provide the closest quantum-mechanical
analog for a free classical single-mode 6eld, and are
in fact the coherent states I n) se ~:

I ~)=I-&= ZiL- -p(-'Ql) j"/( I)'"}
which by (4"/) is

p~, ~ =&,~,

p-,- = &~ I a)(a I
~'&, (53)

&«m( —l I a I') I ~& (4'/)

C. Statistical Properties of the Radiation Field

p„,„.= "n*"n' exp( —
I
n Is)/Lrt!rt'Ijits

or (3) a phase-diffused coherent state

(54)

Up to now we have been considering a 6eld which
could be represented by a single-state vector

I 1/r) for
which thc quantum-mechanical RvclRge of Rn operator

which may be written as

«Q)&eneembie=Tr(pQ) y (5o)

&Q&=&~! I Q I4) (48)

In general, however, we do not know the exact wave
function of our system but rather only the probability
I'~ that our system might have this wave function. ~
The ensemble averaged expression for Q is then

«Q»..--"=2 ~.« I Q I ~&,

p„,„=p(na*)"/rt!7 exp( —
I
n Is) 8,„,

which has no oG-diagonal elements. Neither the pure
number state nor the phase-diGused coherent ensemble
(nor any p diagonal in the rt representation) has an
average electric 6eld, since the ensemble average field
involves p„,„+~.

«)"ZL~-;+I(~+1)"+ccj (56)

It shouM be noted that for distributions (3) and (4)
the probability for finding I photons p„=p„,„is given
by a Poisson distribution characterized by an average
rt given by &rt) =

I
a I'. Another example (4) often met

is that of single-mode thermal or black-body radiation
of temperature 8:

where

p=Z&tlat&Q I

which is diagonal in the e representation and therefore
contains no phase information, i.e., has zero-ensemble-
average electric 6eld.

It will be noted that the probability of 6nding e
photons in the member of the ensemble under considera-
tion, often called the photon statistics, is radically
diGerent for black body and for coherent light. Plots
of p„,„versus rt for coherent radiation, Eq. (54), and
for incoherent black-body light, Eq. (57) are given
in Fig. 2.

is the weighted projection operator for the states
I P&.

This operator p represents our state of knowledge or
ignorance about the system. In the m representation

'6 For a discussion of the coherent state formalism see R. J.
Glauber, in Quantum Optics and Electronics; Lectures Delivered
at I.es Hogches Dgrsrtg the 1964 Sesstog of the Sgrrtlter School of
Theoretical Physics, Ugteersety of Gregoble, edited by C. DeWitt,
A. Blandin, and C. Cohen-Tannoudji (Gordon and Breach Science
Publishers, Inc., New Vork, 1965).

» L. Mandel and E. Wolf, Rev. Mod. Phys. 3'7, 231 (1965),
give an extensive review of the coherence properties of optical
fields. See the bibliography of this paper for references to earlier
work.

"See for example, U. Pano, Rev. Mod. Phys. 29, 74 (1957);
or D, ter Haar, Rept. Progr. Phys, 24, 305 {1961).

III. MODEL AND ANALYSIS

Having developed the quantum theory of radiation
in a form suitable for our purposes, we norv turn to

(51)
p„,„.=exp (—I/tQ/kII8) L1—exp( —/tQ/ktte) )8„,„., (5'/)
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FIG. 3. Atomic-level
scheme for atoms. Maser
action takes place between
levels a and b which are de-
caying to levels c and d,
with decay constants given
by y, and yb, respectively.
The corresponding excita-
tions to levels a and b are
given by r, and rf„re-
spectively.

the fully quantum-mechanical theory of a laser. Both
the radiation field and the atomic medium are to be
treated according to the laws of quantum mechanics.
For simplicity, we consider a gas laser with a single-
cavity mode. We neglect the motion of the atoms and
spatial variation of the cavity mode. These are non-
essential simplifications. The basic idea is the same as
in the semiclassical theory. In the earlier work the
radiation was described using amplitudes, phases, and
frequencies, but now the radiation Geld has to be
characterized in proper quantum-mechanical termi-

nology, i.e., by a density matrix.
To describe laser oscillation, the theory must include

a nonlinear active medium and a damping mechanism.
To obtain laser pumping action we introduce two-level
atoms in their upper state

~ a) at random times to

The more general case of excitation of both the
~
a) and

~
b) levels will be dealt with in a later publication. The

details of the dissipation mechanism are not very im-

portant for the theory of a laser. In the semiclassical
theory the damping was represented by Ohmic currents,
but it is more convenient for our present purposes to
include the dissipation by coupling the electromagnetic
field to rapidly decaying, and therefore nonresonant,
atoms injected into the cavity in the lower

~ P) of
two states

~
a) and

~ p).
One way of looking at the semiclassical theory is

that each atom contributes its mite to the Geld inde-

pendently, except insofar as the other atoms have
prepared an electromagnetic field with which it in-

teracts. Similarly, in the quantum theory we consider
the change in the density matrix for the radiation
field due to the injection at time to of a single pumping
atom in the upper of the two states

~ a) and
~

b) in-

volved in the laser interaction. Working in the e
representation, this change is given by

where n takes on the values of a, b, c, and d.
Proceeding to calculate pn, n we write the Hamil-

tonian A,II, for the interaction of the active atom with
the single-mode laser 6eld as

H=1&ata+W. ata+Wbaat+g(ata+aat) (60)

=H„d+EI,b, +V
=&0+i',

(6l)

(62)

where v is the laser frequency to be determined from
the theory" and FATS; and 68 b are the atomic energies;
the raising and lowering operators

fo l.) fO 0)
and a=

I0 0) El 01

operate on the atomic states

t'0)

I0i

(63)

(64)

The coupling constant is g=ex,b8/(v25) which has the
dimensions of a frequency, as 8 is the electric 6eld (30) .

As shown in Appendix I, the Wigner —Weisskopf ap-
proximation for our four-level atom interacting with
the radiation field yields the following set of equations
for the density matrix of the composite system:

pa, n;, a,n'= lL(+0+ l ) & p]a, n;a, n' Vapa, n;a, n'& (65a)
~r

pb, n+1;b,n'+1 bL(L1—0+ l ) & p jbn+1;bn'+1, Vb,Pb, n+1;b, n'+1&

(65b)
~r

Pa, n;b, n'+1= bL(rlo+l ) & Pja,n;b, n'+1 VabPa, n;b, n'+1&

(65c)
~f

Pb, nial an& = bL(L10+l ) & Pjbnyl an& Vabpbn+1 a,n'&

(65d)

pc, n; c,n' =Vapa, n;a„n'y (65e)

to time 10+X and then form the trace of its density
matrix over the atomic states

p. ,- (&0+2') = Z p-.- (~0+~)

8 „,„= „,„.(t,+T) —„,„(t,), (58)
Pd, n+1;d,n'+1 —VbPb, n+1; b,n~+l~ (65f)

where T is a time which is long compared with the
atomic lifetime, but short compared to the time charac-
terizing the growth or decay of the laser radiation.

The states
~

&b) and
~

fl) of the atom are assumed to
decay as in the Wigner —Weisskopf theory of radiation
damping. For the state

~
a), we introduce a state

~
c)

to which the atom decays with the emission of (non-

laser) radiation of type s with a decay constant V,.
Similarly

~
b) decays to state

~
d) with a decay con-

stant Vb (see Fig. 3).
To obtain „,p„(tp+T), we must follow the time

development of the combined atom-laser 6eld system

where V,b= ,'(V,+Vb)-. We see that Eqs. (65e) and

(65f) may be integrated directly to yield

Pa, n;a, n&(~0+T) Va

tp+T
d~ P (~ ) a,n;a, n'& (66a)

Pd, nial;d, n'+1(~0+ 2 ) —Vb

t0+T
dt P(t )bn+1 b,n'+1 (6,6b).

"The frequency ~ is the frequency of the laser radiation and is
determined by the theory. In this paper we are most interested
in the case co&v,' then the laser frequency will be the same as that
of the free 6eld. The more general problem of co=a will be given
in a future publication.
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Concentratingnowon the lasing levels [Eqs. (65a)- Next we could solve for the eigenvalues and eigen-

(65d) ], our equations in expanded form are vectors of C and C' which would facilitate evaluation of

Ps,n;a, n' = 2[(22 22 ) I 2'Ya]Pa, n;a, n' Pa, n;a, n' (t) and Pbn;b, n' ,(t)

2[Vs,n;b, n+lpb, n+1;a,n' pe, n;b, n'ylVb;n'+l, a,n'], (67a) and by llSIIlg (66a) and (66b) could calclllate

Pa, n;b, n'+1= 2[(22 22 )&+ (00 &) 2Ysb]Pu, n;b, n'+1 p, ,„,,„.(tp+T) and pd, ;~,"(to+T)

2[Vs,n;b, n+Ipb, n+I;b, n'+I pu, n;a, n'Va, n', b,n'pl]~ (67b) Tllen pn, n&(tp+T) is obtained by contraction with
respect to the atomic variables as indicated in Eq. (59):

P'b „~I,.„.= —i[(22—22') I —(Io—I ) iY—.b]Pb,„~l
'f TT (67 )

pbn+I;b, n'yl ,
= —Z[(N —22 ) I FYb]p—b,n-bl;b, n'+I

2[Vb,n+1;a,nPa, n;b, n'+1 Pb, n-bl;a, n' Vs, n, ', b,n'+1] (67d)

The term involving i (22 —n') I —in these equations
will now be transformed away by replacing p„,„by
p„,„exp[—i(22 —22')lt]. It should be kept in mind
that subsequently p„,„will be in an interaction picture.

We may write Eqs. (67a) —(67d) as a 2)&2 matrix
equation

p ."(to+T) =p.. ;., (to+T)+Pb. ',b."(to+T)

+p. ,n;...(to+T)+P0,.;a,.(to+T). (72)

Instead of following this approach for obtaining the
elements of the density matrix, we adopt another
method which has the advantage of side-stepping a
considerable portion of the algebraic tedium of the first
approach and leads to the same result.

Ke introduce the notation

to+7

po.p (t') «'= ~i,p (to+T)

p= 2[CP —PC']— (68)

Pa,m;a, e'

2 ~
ttPb, n+I;e, n'

Pa,n;b, e'+I

Pbn+I; bn'+, I),
(69)

&I'I Oa n a n'

01;2 Oa, n;b, e'+Ip

&2 1—&b,a+I.N m'
(We+221 —2iY,

I
1?2~b,~I;.,

Va, n;b, n+1

I, (7o)
Wb+ (22+1)V 2iYb)—

Pc,n;c,n' {to+T)—Tao I; I s (74a)

From Eqs. (66a) and (66b) it is then clear that in
&s obtained fiom C by rePlacing + the present notation the g- and

by m' and taking the Hermitian conjugate. ments are
The solution of (68) is clearly

p(t) =exp[ —iC(t —to) ]p(to) exp[iC'(t to) ]—
t'P. ,"(to)

=exp[ —iC(t —tp)] ~
~

exp[iC'(t —tp) ].
o o)

(71)

pz, +I;s, yl(to+T) =Yb&2;2 ~ (74b)

The essence of the simpler approach is the conversion
of the differential equations (67) into algebraic equa-
tions for 0 by integrating both sides from tp to to+T.
%e 6nd

Pa n a '(n+tp)TPcna n'(tp) V,a&ll 2[Vs n b a+1021 &12Vbn'+I;an']q, ,

Pu, n;bn'+l(to+T) , Pa, n;b, n'+1(tp) = [2(~ 2') +Vab]&12 [2V, a; n, be+10220'IIVs, n';bn'+1]q,

Pb, n 1;a,n'(tO+T—) Pb, n+1;a,n'(tO) = [ 2(00 &) +Vab]&21 2[Vb,n+I;a, na'll 022,V'bn; +,Ia]nq

cl 4'T
Pb, n+I;b, n'+l(to+ T) Pbn+libn+1(tp) , Yb0, 22 ZL V be+1;a,no 12 (F21V, , &;b, u'+nI] ~n

(75b)

(75c)

As we are interested in times T))1/Y,b, the first term on the left-hand side of each of Eqs. (75a) —(75d} vanishes.
Also we note that

pu, n;a, n'(tO) =pa, n'(tO) y

while the other elements of the density matrix with argument tp vanish as the initial excitation is to state [ a}.



In matrr«o~ Eqs t (75a) -(75d) «e now

~b e'+i a n, '

+ (00—I ) I—'P,b

~b,n+I; a,~

0 I' —tP. , (to) )

(77)

Vb, „+i.,„—Va,„,„.+i I—V» (022J l 0

The problem has thus been reduced to solving four simultaneous algebraic equations with four unknowns,
which is easily accomplished by matrix techniques. Solving for fT» and o-» we 6nd, with relatively little effort,

y.oI, I——p„„(t0)—[(n+1)(R„,„+(n'+1)iR,„*]p„, (t0), (78a)

pbtr2. 2
——C(R„,„+$.„,„][(n+1)(n'+1) ]'t p„„(t,0), (78b)

yb (y.b+2'A) +g'(n n')—
6I.„,„=g'

y.yb (y.02+62) +2y.btg2 (n+1+n'+1) +g'(n' —n) [g'(n' —n)

+Id�

(y.—yb) ]
with A=tv —u.

We are now in a position to calculate p„,„(t0+T)
as given by Eq. (72). For reasons already mentioned,
the first two terms of (72) vanish. Using (74a), and

(74b) with n—+n —1 and n'—sn' —1, we have

Pn, n'(t0+T) 7 trl; Io+ tbtr2;2

(with n—sn —1 and n'-+n' —1). (80)

Thus we have aLL the ingredients needed to obtain the
change in the radiation-6eld-densitymatrix bp„,„.as given

by Eq. (58). From Eqs. (78a), (78b) and (80) we find

ttpnn' pnn' , (t0+ T, ) pn, n' (t0)

= —[(n+ 1)tR. ,„.+(n'+ 1)~R„,„*]p„„.
+C(R I,. I+(R„ I,„ I*](nn')ittp„ I,„. i. (81)

Just as in the classical theory where we have taken
the phase and amplitude of the field to be slowly

varying, in the quantum theory the density matrix
for the 6eld will not change much due to one atom.
Hence we note that for the time interval t0&t&t0+T,
We llaVe p , ~n(t0n) p~, ~n(tn) . To Obtain a IilaC1OSCoplC

change in the density matrix, we now multiply (81)
by the number of atoms entering the cavity in a time
6) which is long compared to an atomic lifetime but
short compared to times characterizing the growth or
decay of the radiation 6eld. The number of atoms in-

jected in the upper level in a time At is E =r„At, i.e.,
the rate r, of injection multiplied by the time ht.
Then the Inacroscopic change in p„,„due to many
atoms acting on the field is

~pm n' —~Apn e'

At[(n+—1)R„,„+(n'+1) R„,„]P„,n (t) +At[Ra I n —I+Ra —I,n—I ](nn') '
P I,„ i(t), (82)

where E„,„=r„S„,„.The coarse-grained time derivative due to many atoms interacting with the 6eld is then

[dpnn'/dt](stimu, 1ated aud spoutausouse mission) = [(n+1)Rn, n'+ ('n +1)Rn, ',n ]pn, n'(t)

+[R I, I+R I, i*](nn') '"p I, i(t) . (83)

A similar analysis follows for the dissipative inter-
action, but as mentioned earlier, the details are of
secondary interest and we relegate the calculation to
Appendix II. We find (to second order in the coupling)
from Eq. (II.5)

Cdpn, n'/dt]dissipation 2C(n+n )pn, n'

+CC(n+1) (n'+1) ]'"p.+I,-+I, (84)

where the quantity C=I/Q is the cavity band width.
Finally, we write the complete equations of motion

for the radiation-density matrix (in the interaction
picture) as

dp, /dt= —C(n+1) R„,„.+ (n'+1) 8„.„*]p„„.
+[R —i, i+R i, P](nn') I"p. I,. I

—-', c(n+n') p..+CC(n+1) (n'+1) ] t p„+I,„,+i. (85)

Equations (85) are the basic results of this section
and provide the quantum equivalent of the classical
amplitude and phase equations, with |„and S„deter-
mined by a self-consistent-6eld analysis.

IV. DISCUSSION OF EQUATIONS OF MOTION
amD rHovom smnsTrcs

It will be noticed that the equations of motion (85)
couple only elements of the density matrix having equal
degree of oG-diagonality e—e', i.e., the coupling is
along lines parallel to the main diagonal. Taking ad-

vantage of this decoupling, we now investigate the
diagonal equations n=n' obtained from (85). For
simplicity, in the remainder of this paper we will

consider the laser to be tuned to atomic resonance.
Detuning and other complications will be discussed
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in a later paper of this series. These diagonal equations
are

'„,„=—A(n+1)L1+(n+1)(8/A)] 'p,

+Ang1+n(8/A) ] 'p

C—np„.+, C(n+1) p„~)„+),, (86)
where

A =2r. (g2/y. y.p),

8=8..(g'h. v ) (g'l/v. v ), (88)

FIG. 5. The laser distri-
bution, Eq. (96}, illustra-
ting the three operating
regions: (1) 20'Pz below
threshold, (2) threshold,
and {3} 20 jq above thres-
hold. Using Eq. (99) the
nonlinear parameter B has
been chosento give (e)=50
at 20/& above threshold.
The laser distribution (3)
should be compared to that
for coherent light in Fig.
3.
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C= /e (89)

p„,„=z, ll (A/C) t 1+(8/A) k] ',
k=p

(92)

where X is a normalization constant.
I.et us consider this distribution in three regions of

laser operation:

A&C (above threshold). The quantity p„„is the prod-
uct of n+1 factors of the form (A/C) L1+(8/A) k] '.
For k&(A/C) (A C)8 '=n„, the—se factors are each
greater than unity, while for 0&n„ the factors
(A/C) t 1+(8/A)k] ' are less than unity; hence p„,„
increases for n up to n„and goes monotonically to
zero for n&n„. Thus the distribution is peaked at n„.

A=C (threshold). The distribution p,„has a maxi-
mum at n=0 and decreases in a roughly Gaussian
fashion as n increases.

Equations (86) describe the flow of probability for
6nding n photons in the laser cavity. The separate
terms representing the time rates of change of proba-
bility have been grouped to make the physical inter-
pretation obvious as depicted in Fig. 4.

These equations for p„,„(t) have transient solutions
which would describe, for example, the buildup from
vacuum to a steady state. We will limit the discussion
here to the steady-state solution. By inspection of
Fig. 4 it is clear that detailed balance implies that
these second-order difference equations reduce to the
two equivalent systems of first-order difference equa-
tions

Ant 1+(8/A)n] 'p„),„2—Cnp, „=0, (90)

A (n+1) [1+(8/A) (n+1)] 'p-, -
—C(n —1)p„+2 „+2——0. (91)

The solution of these equations is clearly

A(C (bBI()2v )(kreskold). Now the distribution falls
more rapidly to zero. In this region the nonlinear terms
may be ignored and we write

p, =L1—(A/C)](A/C)" (93)

Hence, below threshold the steady-state solution is
essentially that of a black-body cavity

p„,„=t 1—exp( —Av/kB8) ] exp( —nkv/kB8), (94)

. where the effective temperature 8 is defined by

exp( —Av/kB8) =A/C. (95)

The photon distribution in these three regions is dis-

played in Fig. 5. The steady-state distribution (92)
with (n) =10' is compared with a coherent distribution
of the same mean value in Fig. 6.

We may write Eq. (92) in a more convenient form as

p„„=Z '(A'/BC) +"' —//Ln+(A/8)]!, (96)

where the normalization constant Z ' may be expressed
in terms of conQuent hypergeometric functions

co (A2/BC) n+(A/B)z=g
Ln+ (A/8) ]!

(A'/BC) "'B A A'
)F2 1; — 1; . 97

(A/8)!
' ' 8 ' BC

Calculating the average value of n, we find

co (A2/BC) n+(A/B)'"'="~"
C- (A/8)]

co A A (A2/BC) n+A/B

8 8 (n+A/8) !

co (A 2/BC) n+(A/B) —1 A 2

g—1
Pp, p

(n+A/8 —1) ! BC 8

n-I

C (n+ I ~ Pn+ I, n+I

CnPn n2

A (n+I)

I+ —(n+ I)8 Pn, n

A

An
8 Pn-I, n-l

I+—n
A

=t Z p-,-]———(1—po, p)
„=0

' BC 8
=(A/C) (A C)8 '+(A/8) p(), — (98)

For a laser appreciably above threshold, the (A/8) pp, p

term in (98) is clearly insignificant because pp, p«1,
and we have

FxG. 4. Flow of probability for finding n photons in the laser
cavity due to stimulated emission and damping. (n)=(A/C) (A —C)8 '. (99)
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I' n, n

4x IO

3x IO

For the diagonal elements, 0=0, the lowest eigenvalue
po(')=0 and the corresponding eigenfunction is the
steady-state solution (96). For the off-diagonal ele-
ments all of the eigenvalues p, &~' are positive. Conse-
quently, the only steady-state solution is

2 x 10

p„,„.=0, s/m'. (105)

I x lo

-3 -2 -I 0 I

hn xlO

It is planned to give a full discussion of these transient
solutions (104) in a later paper, but here we will con-
fine our attention to the slowest decay modes for n&n'.
Consequently, for many purposes we may write

FIG. 6. This figure compares the photon statistics for coherent
and laser radiation. The laser is here taken to be 20/0 above
threshold, with the parameter 8 chosen to give (n) =106.

e,= (A C)/B. — (103)

For a suKciently peaked distribution the average value
(e) obtained from (103) is

(linear pumping) —(damping)
S ~Sy

(nonlinear parameter)

We see that the average energy contained in the laser
(m)fiv corresponding to this (m) has a direct counter-
part in Eq. (16a) which expresses the energy ~~eeE AL
of the semiclassical theory.

It will be noted that a consequence of the expansion
in (B/A) is that for very large values of m, i.e., e)A/B,
the distribution p,„goes negative; however, this is well

beyond the range of interest, e= (e)+0((e)'"), and
should cause no alarm. Furthermore the difhculty can
be avoided by merely letting A/B have an integral
value, as this will insure p„,„=0for e)A/B.

To investigate the electric field of the laser, we must
turn to the off-diagonal elements of the density matrix.

V. OFF-DIAGONAL ELEMENTS, CORRELATION
TIMES AND SPECTRAL PROFILE

Equations (85) have an infinite number of exponen-
tial decaying solutions corresponding to different decay
eigenvalues p, &@. These are of the form

p„,„+I,' y, (e, k) exp( —p, '"&t)——. (104)

A similar approximation for the variance of the dis-
tribution yields

a'= [A/(A —C) ](e). (100}

For a gas laser not too far above threshold, Eqs. (86)
may be adequately approximated by retaining only
the lowest-order terms in B/A and one finds

p„,„=—[A B(n+—1)](I+1)p„„+[A —
, Be]mp„q,„q

—Cmp„, „+C(m+1)p„+i,„+r. (101)

The steady-state solution for (101) is

A —Bk
p. ..=m' Q

It:=0

where X' is the normalization constant. This distribu-
tion has a peak at

p„,„+q——po(m, k) exp( —go&~&t) . (106)

In Appendix III it is shown that the desired eigen-
function for a laser sufFiciently above threshold is

and, to a good approximation, the corresponding eigen-
value is

(108)
where

(109)

From (106) and (108) we may then write

p-,.+ (t) =p-,.+ (o) exp( —l&'Dt). (11o)

The expectation value of the electric field for this
density matrix is given by

E(s, t)

=8 sin(sos/L) g (p„,„+q(t) (m+1) '~'+c.c.)

=8 sin(s~s/L) P (p~ ~y], (0) (x+1)'t'e '"'+c c )e. .

=Eo exp[ —-', Dt] cosvt.

To obtain the line shape we take the Fourier trans-
form (in the rotating wave approximation) of the
average E field.

&(~) = e '"'Eo exp[ ——,'Dt] cosvtCt (112)

=So[i((u —v) +-'D]—'

and the spectral profile is

I L(~) I'= &o'[(~—v) '+ (-'D) '] ' (114)

Thus the spectral profile for the laser oscillator is
I.orentzian with a width

D=l(/0)( )'",

which is the full-width at half-height, in circular fre-
quency units; see Fig. 7. The physical interpretation
of this linewidth and the associated decaying electric
field will be found in Sec. VI.

A comparison of the present expression for the
spectral width D and that derived previously by modify-
ing the semiclassical theory to include noise'~ indicates
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that we now have twice as much width. From the
structure of the calculation, it is apparent that the
doubling comes because the present treatment includes
the noise due to spontaneous emission of the active
atoms as well as thermal and zero-point fluctuations
in the cavity walls. The present linewidth is in agree-
ment with the independent results of Korenman and
I.ax."

VI. DISCUSSION

A. Nature of the Problem

Theoretical physics is most fully developed for treat-
ment of the behavior of isolated conservative dynamical
systems. The addition of a given conservative external
force 6eld does not present much difhculty, at least in
principle. As one attempts to make the discussion of a
problem more realistic, the system of interest may be
allowed to interact with a thermal reservoir, thereby
developing a thermodynamic or statistical mechanical
approach. After passage of a suf5eiently long time,
the system of interest settles down into a state of equi-
librium. In cooperative phenomena, the equilibrium
state may be one with a sigh degree of long-range spatial
order. Such theories predict that statistical Quctuations
should occur about the thermodynamic equilibrium
state.

An oscillating laser, on the other hand, is clearly
not in a state of random Quctuations about thermo-
dynamic equilibrium. It represents an "open" system
with a highly organized temporal behavior. The system
of interest is in contact with a steady but nonthermal
reservoir capable of supplying energy at at a low fre-
quency which is somehow converted into a nearly
monochromatic oscillatory behavior at an optical fre-
quency. Such problems push somewhat beyond the
range of present-day theoretical physics, and one can
make progress only by exploiting some special simplify-
ing feature of the problem. Only much later can one
expect to succeed with problems in which the openness
permits exchange of both energy and matter, as would
be necessary for a basic discussion of a biophysical
problem.

B. Model

There are two special features simplifying our
model. The first is that the electromagnetic field of
a high-Q optical resonator is dynamically equivalent
to a system with a single degree of freedom, in this
case, a simple harmonic oscillator. The second feature
is that under circumstances of interest in laser physics,
the density matrix describing the radiation does not
change very much during the lifetime of one atom.

Our model for the pumping mechanism is quite
realistic for a gaseous optical maser. The excitation of
atoms to the laser states

~
a) or

~
b) is, as far as the

system of interest is concerned, essentially an aet of
40 V. Korenman, Ref. 11,p. 748."M. Lax, Ref. 11, p. 735.
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FrG. 7. Spectral profile for a laser oscillator in units of the
full-width at half-height D, all frequencies are measured in
circular-frequency units.

creation as assumed in the model. In order to simplify
the following discussion the case of a excitation will
be considered. Assuming that the density matrix de-
scribing the radiation field just before the atom is
injected is p„,„(t,), we have calculated the time de-
velopment of the density matrix for the combined
system of atom and field. After several atomic life-
times, the atom is surely in one of the lower states,
c or d, and the only nonvanishing elements of the
density matrix are of the form p&„+&.&„+& Or p, „,„.
If one then asks for the statistical density matrix
describing the radiation field alone, irrespective of
whether the atom has ended up in state

~
d) or t c),

i.e., whether the atom did or did not emit a net laser
quantum before it decayed, the result is

This process of contraction is an essential feature of
the model. A consequence is that even if the radiation
field were initially described by a "pure" case density
matrix p, (to), after the injection and decay of one
reservoir atom, the density matrix p„,„(to+T) would
in general be "mixed. "One could, of course, in principle,
learn more about the combined system by observing
whether the atom ended in state

~
c) or in state

~ d),
but our object is to make a theory describing the
system of interest, which is the laser and not the pump-
ing reservoir.

In our theory of a laser, it is not necessary to postu-
late any noise sources either of a quantum or a classical
nature. The noise is automatically produced as a con-
sequence of the contraction process which is basic to
the physical problem and follows from the principles of
quantum mechanics applied to an open system. There
are, however, Quctuations of a shot-e6ect nature which
arise from the injection of pumping and damping
atoms. These will be treated in a subsequent paper.

After the change bp„,„of the density matrix is cal-
culated for one atom, we pass over to a coarse-grained
time derivative due to many atoms. It is thereby
implied that p,„(t) does not change much during the
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life of any one atom. This may or may not be the case
for any given laser. At a steady state, the changes
5p„„. represent fluctuations which would typically be
small fractions of p„,„.Our assumption might be less
valid in a transient problem. Thus, if initially we had
the vacuum radiation field (poo ——1, p„„=0for +&0),
the first atom would change poo and p~, ~ by small but
finite amounts.

The change in p„,„due to other atoms during the
life of the atom considered in the calculation of p„„
would involve an approximation in the derivation of
Sec. III. A corresponding simplification was made in
the semiclassical theory. Thus, in Eq. (37) of Ref. 1,
the amplitude E(t') in an integral

dfE(t') ~ ~ ~

is replaced by E(t). This assumes that E(/) is slowly

varying during an effective atomic lifetime. Except for
the earliest stages of buildup from the vacuum state,
the validity of our treatment depends on the smallness
of the quantity tA —(i/Q) I/y, z, which is 0.01 for the
numerical values A=1.1 MHz, (v/Q=1. 0 MHz and

y.g=10 MHz).

C. Ayyroach to Thermal Equilibrium

If we neglect all nonlinear terms involving satura-
tion of the atomic transitions [set B=O in Eq. (91)],
our model describes a harmonic-oscillator system of
interest in contact with two reservoirs. One of these
contains a large number of pumping atoms in the upper
laser state

~
a), and the other contains many damping

atoms in the lower state
~
P). One can assign tempera-

tures to each reservoir in the conventional manner. The
first reservoir is at T= —O'K (very hot) and the
second is at T=O'K (very cold). Both pumping and
damping atoms are separately injected in the optical
cavity, and it is assumed that the density matrix for
the radiation 6eld is not changed very much by any
one atom. In a steady state, the density matrix is

p„, ~ (A/C)".

If A (C=v/Q, this can be normalized and is a thermo-
dynamic distribution

p. ..= (A/C) "[1—(A/C) j
corresponding to a temperature 0 given by

exp[ —(av/k, e) 7 =A/C&1.

The situation is somewhat different from that usually
considered, in that the effects of two reservoirs, one
hot and one cold, are combined in order to keep the
system of interest at an intermediate temperature 0
which depends on the strengths 2 and C of the coupling
between the radiation oscillator and the two reservoirs.
For the system of interest, the steady-state thermo-
dynamic equilibrium at temperature 0 is the same

whether one conventional reservoir is involved or the
two reservoirs of our model. If the system of interest
is not initially in thermal equilibrium, its approach to
this state can be determined by solving the equations
of motion (91).

This calculation adds another example to a short
list of solvable problems where approach to thermal
equilibrium is considered in a basic manner. It is
similar to the Rayleigh4' problem of a massive particle
sent into a gas of light atoms. Even closer to the laser
problem is the generalization of Uhlenbeck and Chang, 4'

where a forced simple harmonic oscillator is brought
to steady state through collisions with such a gas.

D. The Case of Nonthermal Equilibrium A)C
It is perfectly possible for a two-level system to have

a negative temperature if p, , )pt, ,p, but it is meaning-
less for a system, such as a harmonic oscillator, whose
energy spectrum has no upper limit to have a negative
temperature. Formally, one may try to make 0 negative
in Eq. (91) with B=O by setting A)C, but p„,„
would then be a steeply increasing function of e, and
the photon statistical distribution could not be norma-
lized. To avoid this diffi.culty, it is necessary to retain
the nonlinear 8 terms in the steady-state solution for
p„„. Above threshoM, the laser photon distribution
does rise with increasing m to a peak at n=e„beyond
which saturation effects play an essential role, and
bring the distribution down again.

E. Measurement

Quantum electrodynamics is based on a generaliza-
tion of nonrelativistic quantum mechanics. Despite the
analysis given by Bohr and Rosenfeld, it is probably
safe to say that the theory of measurement is even less
well developed for quantum electrodynamics than for
nonrelativistic quantum mechanics. '4 Some of the dif-
ficulty, no doubt, arises from the infinite number of
degrees of freedom of quantum electrodynamics. In
the particular case of a single high-Q cavity mode, how-

ever, it seems possible to regard the analogy between
a radiation oscillator and a mechanical oscillator as so
close that the measurement problems become equiv-
alent. The following discussion is based on this as-
sumption.

The most that can possibly be known about the
radiation oscillator at 3=0 is its wave function, say
P(E, 0) in the electric field E "coordinate" representa-
tion. %e assume that this state has been "prepared"
somehow. Under the guidance of a definite Hamiltonian,
this wave function will evolve into P(E, t) at time t.
Any Hermitian operator F(E, —NB/BE) can, or so
the theory contends, be "measured. " Each measure-
ment gives as a result one of the eigenvalues F„of

42 Lord Rayleigh, Phil. Mag. 32, 424 (1891).
4' G. K. Uhlenbeck and C. S. W. Chang, in Proceedings of the

International Synposiun on Transport Processes in Statistical JI/Ie-

chanics, edited by I. Prigogine (Interscience Publishers, Inc. , New
York, 1958), pp. 161-168.
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the operator F. The probability of finding a particular
value F„when a series of measurements is made on an
ensemble of similarly prepared systems is

co

dE y„(E)*f(E,t)

where p (E) is the eigenfunction belonging to the
eigenvalue F„of the operator F. The measurements
under discussion here are the best permitted. If carried
out well, a measurement so disturbs the system of
interest that it is pointless to even think of any subse-
quent measurement of any other operator. The pure
case will become a hopeless mixture, even if the system
is not physically destroyed. In most physical research,
one is not concerned with measurement in this extreme
form. Certain scattering experiments are sometimes
called measurements, but they do not represent meas-
urement of a Hermitian operator in the strict sense,
so we would prefer to call them observations or "bad"
measurements. Sometimes, especially when a nearly
classical system is under study, one attempts to follow
the time development between t= 0 and t = t by making
a series of observations. In our opinion, there is cur-
rently no satisfactory theory44 of "bad" measurements.
We do recognize the possibility of "watching" the bob
of a pendulum clock swing back and forth. In a similar
manner, at least in principle, the temporal oscillations
of the intense and highly classical electric field in a
laser could be followed by recording on a moving film
the deflection of a stream of high-velocity electrons sent
across a narrow laser beam.

We have noted in Eq. (109) that the ensemble
average of E(t) is a damped oscillating function of time.
This damping comes from phase diffusion of the fields
for an ensemble of lasers which represents various pos-
sible histories of any one laser. An electron-beam probe
of any one continuous wave laser would, of course, not
show such a dampling, but only a very slight amount of
phase irregularity. The average of many similar film
records wouM naturally show the damping phenomenon.

F. Syectrum

In Eq. (112) we have calculated the spectrum
associated with the damped oscillating electric field
(109) and have found a Lorentzian of full-width at
half-maximum just equal to the phase-diffusion con-
stant D. If one had a laser described by a purely diago-
nal density matrix p„,„, the average (E(t) ) would be
zero, and it might seem that a spectrum could not be
defined. It is clear that there is no real difficulty here.
Any reasonable operational procedure for determining
a spectrum would give the desired result. One could,
for example, make a Fourier analysis of a very long
stretch of the film record mentioned above. The phase
information available on the early part of the tracing
would, in egect, represent preparation of an ensemble
with a nonvanishing off-diagonal density matrix.

4' W. E. Lamb, Jr. and Y. Aharanov (to be published).

H. Absence of Coupling between Elements of the
Density Matrix having Different Degrees

of "Off Diagonality"

As seen from Eq. (90) the differential equations for
p„„(t) separate into systems of equations connecting
elements p„,„+& of equal "off-diagonality" k=e' —e.
For example, if p is diagonal initially, it will remain so
forever. Similarly, off-diagonal elements like p„,„+~
evolve completely independently of the diagonal ele-
ments p„,„and vice versa. This separability is a neces-
sary corollary of the fact that p can represent our state
of knowledge of any ensemble of lasers. Some restric-
tions on possible initial values of p„„are imposed by
general properties of density matrices. Among these
are

0&p,„&1, all e

0& all eigenvalues of
~~ p„,„~~ &1.

"Presented at the Second Rochester Conference on the
Quantum Theory of Optical Coherence, June, 1966 (unpublished) .

6 In this context, see especially: L. Mandel, in Progress in
Optics, edited by E. Wolf (North-Holland, Publishing Company,
Amsterdam, 1963), Vol. II; P. L. Kelley and W. H. Kleiner,
Phys. Rev. 136, A316 (1964); R. J. Glauber, Ref. 36.

In a subsequent paper, we will work out in detail
the theory of a model spectrum analyzer coupled to
the laser which does not involve a "bad" rneasure-
ment of E(t) .

6. Photon Statistics

In principle, according to the assumed quantum
theory of measurement, one could measure the total
amount of energy in the single-mode optical cavity
since this is represented by the Hermitian Hamiltonian
operator. The result of such a measurement would be
an integer multiple e of tv, apart from the zero-point
energy —',fiv. Each time the measurement was repeated
on a similarly prepared system, the e value could
change. The statistical distribution of e values after
many measurements would be given by the diagonal ele-
ments p„,„of the density matrix.

In practice, it would not be easy to determine p„,„
in this manner. As a partial substitute one might count
the number of photoelectrons emitted in a certain time
interval. In the usual observations, the photoelectron
counting is done with the detector located outside the
laser cavity and the relationship of the results to p„,„
is further complicated by diffraction of the radiation
escaping from the laser cavity. It would not be very
practical, but simpler in principle, to place the photo-
electric surface inside the laser cavity. Even here, the
photoelectron counting statistics would give a some-
what blurred image of the photon statistical distribu-
tion p„,„.A theory of this process has been given by
the authors, " and a fuller account is in preparation.
The problem of photoelectron counting statistics has
also been discussed elsewhere. '
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Since these properties must be satisfied initially, they
will continue to be satisfied as the ensemble evolves
in time.

I. Symmetry Breaking

In the statistical mechanics of a magnetic substance,
the average magnetization at temperature 0 is given
by an expression like

(t{f*)=»L~*p(0) j,
where p(e) is the density matrix at equilibrium for the
magnetic system.

In the absence of an external magnetic field, the
above magnetization is zero on grounds of inversion
symmetry. This would seem to rule out the possibility
of permanent magnets with a nonzero value of (M, ).
The resolution of this paradox is well known. The
spontaneously magnetized sample is not really in
thermodynamic equilibrium, and has to be described
by a nonthermodynamic ensemble. Left in contact with
a thermal reservoir for a sufficiently long time, the
average magnetism of the ensemble would decay to
zero, although with a very slow decay rate.

Similar considerations apply to the ensemble average
for the quantum laser. General symmetry arguments
would lead one falsely to the conclusion that (E(t) )
should always be zero, but a properly biased ensemble
could easily have (Z(t) ) nonzero. The decay time 1/D
for a typical gas laser is of the order 10' sec, which is
enormous compared to the period of oscillation 10 "sec.

VII. SUMMARY

This paper develops the quantum theory of a laser
oscillator. The radiation field in the cavity resonator
is described by a density matrix p„,„(t) in the n
representation. A system of differential-difference equa-
tions (85) determines the time development of p„,„(t)
due to the combined effects of pumping and damping.
These are the quantum analog of the amplitude and
phase equations (4) in the semiclassical theory, with
S„(t) and C„(t) determined by a self-consistent Geld
approximation. A steady-state solution for p„,„(m) is
given by Eq. (96), while the off-diagonal elements
p„, .(eo) =0 fOr }b&e'.

In the case of a laser oscillator operating well above
threshold, the steady-state photon probability distri-
bution p„„(eo) is a sharply peaked distribution sorne-
what broader than a corresponding Poisson distribu-
tion. It should be emphasized that the peaked nature
of the photon statistical distribution, which is a mani-
festation of laser coherence, is a result of the nonlinear
aspects of the problem. In this case, the off-diagonal
elements p„,„e/e' decay to their steady state in
approximately exponential manner exp( ——,'k'Dt) where
the decay rate D is given by Eq. (109) and k is the
degree of offdiagonality.

The temporal development of the photon statistical
distribution p„,„has not been discussed in this paper,
but has been analyzed by a numerical calculation and

where a~, a; a,t, a, ; a,t, a, are the emission and ab-

~ Os Q c, ls

FIG. 8. Level scheme indicating the decay of state
I

ua {0 ~ 0, ~ ~
I ) to

I c, {0.~ 1, ~ ~
I ) and state

I
b {0 ~ 0,.~ ~

I l
to

I d, {0.~ ~ 1, ~ ~ l l.
47 M. Scully, %. E. Lamb, Jr., and M. Sargent III, in Proceed-

ings of the Fourth International Conference on Quantum Elec-
tronics, Phoenix, Arizona, 1966 (unpublished), See also Ref. 45.

"M. Lax has given a nice discussion of this point in Appendix
A of Phys. Rev. 145, 110 (1966).Our equations (I.14) correspond
to Eqs. (A.10) of that paper.

the results have been presented in the form of a moving
picture. 4' A fuller account of the temporal behavior of
p„,„(t) predicted from Eqs. (85) will be presented in
a future publication.

APPENDIX I: WIGNER-WEISSKOPF THEORY
FOR A FOUR-LEVEL INTERACTING

WITH THE LASER FIELD

In the analysis of Sec. III we represented the effect
of certain nonlaser modes of the field on our atoms by
introducing the radiative damping coefficients y, and yb.
In this appendix we will derive the working relations
Eqs. (65) in the Wigner —Weisskopf approximation.
We are really interested in the two atomic levels a
and b, but in order to consider their radiative decay
it is necessary to introduce two more levels c and d.
State { u) may decay to

~ c) with the emission of
radiation of frequency v„while { b) goes to

{ d) with
the emission of a photon of frequency v„as shown in
Fig. 8. The concept of an unobserved coordinate or
reservoir is nicely illustrated by this example. "That
the decay radiation is unobserved is clear when we
recall that we are looking for p„„(t), which is the
trace over all indices except those referring to the laser
radiation, i.e.,

pn, n'(t) =Tra Tr }s,s }pa, }s}s, an, fs,s},n's (1 1)

where o.=g, b, c, d is the atomic index and fs, al de-
notes the decay radiation.

Let us consider the interaction of a four-level atom
with the laser mode of frequency s and the continuum
of decay modes of frequencies v, and v, . The Hamil-
tonian for this system is

H=vata+ gv, a, tu, +gv, a,ta,+ g e,A tA,
S 0' n=a, b, c, d

+gLatAb"A. +aA. }'Abj
+gg, t a,tA.tA. +a,A, tA,]
+ggs[as Ag Ab+asAb Ad j

=Hp+Hp'+Hp'+ QEIs +V+ QV'+ QV'
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(I.6a)

(I.6b)

(I.6c)

(1.6d)
ce the notationLet us introduce

(a, e, 0.) =n,

(c, n, 1)=y,

(b, n+1, 0,) =P,

(d, I+1, 1.) =b,

.. .= —iLV, p ZL

(I.Sa)

iZ p,», — .~V~,s"7~ (ISb)Pp, ~ p~,s Pp.~~~,s—ppp ~L,
tF

Pp, v ~v,-"iL ZVs.—3'p~. pp, v-= —iLV p7p &s.—' . —
pp, vPp, a'

(I.5c)

or 8 meansa rime one, P, or

ntial equationsbe the diGeren i ns

, V, ,s7

o ey

pa, y' y', a'a,y py, ap

, ,a7dt'.ppa~ a iV

t') ~~paa, aa'

f decay modes»her if the number

po, o(t') po, o

a,~(t') =e,~(to) =o.
(I.9a)

(I.9b)

Then Eqs. (I.6) become

p, , ~ = —'
dt'V„, '(t') pp~ '(t) =. i— (I.ioa)

s,p ta'+~(t ) ~ (I 10b)ps, p
= —'

dt'Vs, p (t') p~.+L +ipg, p (t) = i —
g,p(I.Sd)

(I.5e)

iLVv, a Pa,v' Pv, a' a,v'

s,p pp, s,s
—

p~, p ~p, ' .ps, s =—
d 'Vg ~ (t ) pga+g, aa„. t'),(t) = —z t gp (I.10c)

o esonects of the decay mo e
b oliour our-

the differentia~ obeysetc For ex.ample, p~

,.= —iLV(t'), .p(t). ...—p
'i,,„' ', . p(t'), ,;-py, a' Z

„(t'). (I.10d)dt'V- "(t')p~.+~..- t .

( 5) d tracmg

.(t) = i—
E s. (I.10) into Eqs. I. anSubstituting Eqs.

I.Sf) over (s} an nand 0} we n

,
' t' p. „„(t')dt'+etc. ,.„.„.—Tr,„, gV. ,;(t) V, ,:(t')p....„.= —iLV(t), p7.„,„.—Trt„)ptJn, an' =

t
~ g

t' +etc. ,Vp g(t) s,pdt'V (t ) Pt a+i,~a+~,—Trt. ..)
= —t V(t), P7|.~g, ga ~g—, p, sPbn+1, bn'+1 =. —Z

(I.11a)

(I.11b)

Vp. ~'(t)Tl (s,p )iPV(t), P7s.+-~...—pbn+l pan' V ~ a"(t) dt'Va, pga+g, aa

t

~ t')+ V„,.dt'V~, p (t') pa.+i,.;
(I.11c)

„. t')+etc. ,'(t) '(t)p:; (=Tr(s, ~ ) y,apcn, cn' (I.i id)

(I.11e)
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teraction with a two-level atomic system, etc. As we
have developed a machinery for dealing with the latter
type of interaction, we will consider the dissipative sub-
system to consist of nonresonant two-level atoms,

injected at random times tg in the lower of the two
states

~
a) and

~
P). The calculation will then follow

along the lines of Sec. III.
For an atom injected in the P state

8p„„.=v.oii+vporit e—ni 1—, n'~' —1]—p.„(to),

27-7-pg'((n+ 1) (n'+ 1) )'"p.+i;+i(to)
7 vp(7 p'+b, ') +2g'7 p'(n+1+n'+1) +g'(e' —e) { g'(n' —e) +id(7 vp) ]—' (II.2a)

ivp—[~7-(A'+7-p') +g'(e'+ 1) (A+iv-p) g'(—n+1) (A iv-p—) ]p-+i.-+i(to)

7 vp(7 p'+6')+2g'7 p'(n+1+n'+1)+g'(e' —n) Lg'(n' —n)+id(7, vp—)]

Sp~ =—

From Eq. (III.1) and (III.2), we find

g'Lv 7 p(n+n') +iv A(e' n)—+g'(e' n) ']—p„„.(tp),

v-vp(v. v'+A') +27-pY(n+n') +g'(n' n) L—g'(n' n) +—iA(7- vp) ]—

(II.2b)

2g'Iv v.p{ (n+1) (n'+1) ]' '}p.„.i,.+i(to) II.3
7 vp(7 p'+iV) +27 p'g'(n+1+n'+1) +g'(n, ' —n) { g'(n' —e) +i A(7 —vp) ]

+ {2g'(rp/V p) 7-pL(n+1) (n'+1) ]'"
XL .7'p+&'] '}P.+i,.+i(t). (II.4)

Now we replace p„(to)~p „(t) and multiply 8p„„by
r~ to obtain the coarse-grained time derivative repre-
senting the effects of damping (cavity Q).

Since dissipation, unlike the laser-atom interaction,
is a linear process, we will keep only the lowest-order
damping terms. We find that the decay of the laser
radiation is described by the expression

Ppnm'/dt]damping

—{g'(rp/vp) 7.,(n+e') [y.p'+A']-'} p„,„.(t)

We define C=v/Q=2rp(g'/vp)7 ptv p'+6'] 'and—write
the damping equation in the form appearing in Sec. III.
dp, ;/dt = —-', C(e+n') p„,„.

+CL(n+1) (e'+1) ]ii'p„d.i,„.+i. (II.S)

APPENDIX III: SOLUTION OF THE
OFF-DIAGONAL EQUATIONS

If the laser is far enough above threshold, we expect
that the lowest eigenvalue will be small and that the
eigenfunction will be similar to that found for the
steady-state diagonal equation (102) . Guided by these
physical considerations we propose to look for solu-
tions of the oG-diagonal equations in the form

A —BI, "+~ A —Bm
p. ..„(t)=e„(k, t) =X. g C m-p C

exp ( —tio'"'t), (III.1)

where E& is a constant determined by the initial conditions. We will use for E„,„not the complicated expression
corresponding to (79), but an expression to second order in g',

~-,"=r.(g'/7. 7.~) I1—(g'/7-7~) (7-(n'+1+n'+1) +7~(n+1+n'+1) )/7. ~]. (III.2)

The use of this approximate form for E„,„ is the analog of the third-order perturbation expansion of the semi-
classical theory. Inserting (III.1) and (III.2) into (85) we find, after some algebra,

e„(k, t) = ——,'k'(7./7. ,)Be.(k, t) —
{ A —B(n+ iy-,'k) ](n+1+-,'k) e.(k, t)

+{A B(n+~~k—) 5{e(n+k)]''ie i(k, t) C(n+2k—) C'„(k, t) +CP(n+1) (n+1+k) ]'~ e„+i(2k, t) . (III.3)

From Eqs. (III.1) we may write

e+i(» t) = {CA B(e+1)]i~'LA —B(n+1+k)]'~'/C}e (k t)

e„ i(k, t) = {{A Bn] "'{A——B(n+ k) ] '"}CC„(k, t) .

(III.4a)

(III.4b)
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Since n&)k, we may write (III.4) to a very good approximation as

C.+&(k, t) =[{ (A —B(n+1) )/C} —',(Bk/C) ]C„(k, t),

C„,(k, t) =[{C/(A —Bn) }+,'IBk-C/(A Bn—)'}]e„(k,t);

likewise the radicals [n(n+k)]"', etc. appearing in Eq. (III.3) may be approximated by

[n (n+k) ]"' n+-', k ——', (k'/n),

[(n+1) (n+1+k)]'"~n+1+g~k '—{k-'/(n+1) }.
Making use of (III.S) and (III.6), (III.3) becomes

C„(k, t) = —-', k'(y. /y. b)BC„(k, t) —[-'Ck'C ~/(n+1)+g'[A —B(n+-,'k)]k'4 )/n]

—[A —B(n+1+-,'k) ](n+1+-',k) C.+C[(A —B(n+1) )/C —-', Bk/C](n+1+-', k) C„

(III.Sa)

(III.Sb)

(III.6a)

(III.6b)

+{[A—B(n+x2k)](n+~~k) [C/(A Bn)+ ',—BkC/(A——Bn)']}O'„—C(n+~~k) C„. (III.7)

Neglecting terms involving (n) ', Eqs. (III.7) become

4„(k, t) = —tbb&b&4„= —pbCk'/(n)+b(A —B(n)) k2/(n)+-'k'[(A C)/C]B—+ 'k'(y /y, b)-B}C„(11.1.8)

Noting that (A —B(n)) is C and that

we may write go&~') as

kby B/y b
—xk2B $2ybB/y b

Pb"' = 4 (Ck'/(n))+4k'BL(1 —
2 (vb/V. b) +(A —C) /C)].

(III.9)

(III.10)

The leading term corresponds to

as given in Sec. V.
D=k(~/0) &n) ', (III.11)


