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Strain-Induced Zero-Field Splitting of d' and O' Ions in
Cubic Crystals

K. QDA.NSKY

Institute of Radho ErIgineerirlg aid Electrorucs, Czechoslovak Academy of Sck nces, Prague, Csechosloeakia

(Received 11 January 1967)

The zero-Geld splitting of ions with d3 and ds electron conGgurations is calculated by the perturbation
theory. Ke consider the ionic and covalent contributions and that of anisotropic spin —spin coupling due to
covalency effects. For comparison with experiment, the numerical values for V'+, Cr'+, and ¹i2+ions in
uniaxially stressed Mgo crystals are estimated.

1. INTRODUCTION

ECENTI.V, the effect of uniaxial stress on the
ground state of iron-group ions was investigated

by the EPR method. '2' The parameter measured on
ions with spin greater than ~ is the zero-6eld splitting
induced by uniaxial stress applied in diGerent directions
with respect to the cubic axes of the crystal. This
problem was treated theoretically within the framework
of point-charge model in the case of d' ions, e.g.,
Mn'+. 4 It is the purpose of this paper to discuss the
origins of the zero-6eld splitting of d' and d' ions in

tetragonal and trigonal 6elds. A uniaxially stressed
cubic crystal seems to us to be very attractive as a
model for this discussion. It has several advantages:
(I) The crystal fmld acting on the transition-metal ion
has an inversion symmetry. This is not true, for ex-

ample, in ruby, for which nevertheless many theoretical
treatments exist. The deviation of the metal ion from
the center of symmetry wouM involve complications
in the calculation, and therefore it is usually neglected,
though it might have a great e6ect on the zero-6eM
splitting. (2) The effect of the trigonal, as well as of the
tetragonal, distortion of -the octahedron can be in-

vestigated on the same crystal. (3) The strain-induced

crystal field is very small in comparison with other
terms in the Hamiltonian; consequently, it may be
considered as a perturbation without making any
obvious mistake. (4) The induced dipole moments of
the oxygen ions are zero because of the inversion sym-
metry of crystal Geld. ' It was shown that in corundum, 6

the induced dipole moments of the oxygens may have
a considerable eGect on the resulting crystal 6eM..

The calculation. of zero-Geld splitting has been per-
formed in the strong-6eld coupling scheme for the
trigonal and for the tetragonal crystal Geld. The main
mechanism leading to this splitting is a simultaneous

' G. D. %atkins and Eisa Feher, Bull. Am. Phys. Soc. 7, 29
(1962).' Eisa Feher, Phys. Rev. 136, A145 {1964).' Eisa Feher, Bull. Am. Phys. Soc. 10, 699 (1965).

4 M. Blume and R. Orbach, Phys. Rev. 12'7, 1587 (1962).
~ This is not true when an ion with diferent charge substitutes

the lattice ion, as e.g., a Cr'+ ion in MgO. Then the extra positive
charge of the Cr'+ as compared to the Mg2+ induces dipole mo-
ments on the surrounding oxygen ions. Nevertheless, the extra
cha~ge of the Cra+ is reduced, and the eGect of induced dipole
moments on the zero-Geld splitting is supposed to be small,
since the covalency of the trivalent ion is greater than that of
the divalent ion.

6 R. R. Sharma and T. P. Das, J. Chem. Phys. 41, 3581 (1964).
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action of low-symmetry crystal Geld and spin-orbit
coupling. The calculation is performed by a method 'of

perturbation theory up to the third order. In the
case of a tetragonal Geld, only diagonal matrix elements
of the crystal-Geld operator within the manifold of
excited T2 states lead to the zero-6eld splitting, ac-
cording to Pryce's mechanism. v In the case of a trigonal
Geld, there are also nondiagonal loops arising from the
nonzero matrix element of trigonal 6eld between the
ground state 422 and the excited state 4', leading also
to a third-order zero-field splitting. All these third-
order contributions to the zero-GeM splitting were cal-
culated by perturbation theory. The value of zero-
6eld splitting was parametrized by the well-known four
reduced elements of trigonal and tetragonal 6eld:
the one-electron matrix elements between the 3e and
3II2 orbitals of the transition-metal ion. This facilitates
comparison of the present results with optical measure-
ments of the excited-state splittings. '

Three contributions to the zero-6eld splitting mere
considered in the calculation: ionic and covalent con-
tributions, and an eGect of the anisotropy of spin-spin
coup1. ing due to the covalency e6ects in the distorted
octahedron. All these contributions to the zero-6eld
spli. tting were calculated by perturbation theory.
Numerical values were estimated for V'+, Cr'+, and
Ni'+ ions in stressed MgO crystals, and compared with
the experimental values.

2. AXIAL-FIELD SPLITTING OF d'(tp) 4A2 STATE

The zero-field splitting induced by the uniaxial stress
applied in an arbitrary direction with respect to the
crystal cubic axes may be expressed by two parameters
called strain coefficients. '. To find the values of both
these strain coefGcients, it is advantageous to apply
the uniaxial stress in two specific directions: that of
the tetragonal and that of the trigonal axis. Then the
crystal field acting on the paramagnetic ion in crystal
is of axial symmetry.

The Hami1. tonian of paramagnetic ion in axially de-
formed crystalline surrounding is

~=~0+~so+~ss+I Bxisl&

' M. H. L Pryce, Proc. Phys. Soc. (London) A63, 25 (1950).
8 A. L. Schawlow, A. H. Piksis, and S. Sugano, Phys. Rev. 122,

1469 (1961).
-9 M. D. Sturge, Phys. Rev. 131, 1456 (1963).
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Hso

Pro. 1, Energy-level
diagram for dg ions in
the cubic crystalline
Geld.

mix any of the existing excited states into the 432
ground state. Thus only the diagonal matrix elements
of V464z witlliii tllc cxcitcd states f2 8, Tl and/or 4 &

'T2 take part in the third-order splitting. However, the
matrix elements of Vt,t, within the t2', 'T2 states are
zero. This means that only one loop exists that leads
to the third-order zero-field splitting by the tetragonal
Geld

where Xo represents the Hamiltonian of the ion in cubic
crystalline field. X,', is the spin-orbit coupling

X„=Q|(r;) l; s;. (2)

The zero-Geld splitting is equal to 2D, where D is the
coefficient at the term (5 '—i8') in the spin Hamil-
tonian of the ground state. After using the loop (4), the
D parameter in the case of tetragonal Geld is cal-
culRtcd:

a~4. =kfViLE(fl'c, 'T2) l'I (4N —~') (5)The third term on the right of Eq. (1) is the spin-spin
interaction:

where E(tile, 4T~) is the energy of the excited state, the
ground state having zero energy; and I and e' are one-
electron tetragonal Geld parameters deGned as follows:

N=(«l v44 I«&—(e~l v4.4 le&) (6)
I'= «1|.

I V~4, I isf &
—«1& I

V4.4, I is&), (7)

in w»ch
I «), I e+& and

I i2&&, I &2k» I &ln&»«an«4
sets of d orbitals of the paramagnetic ion quantized
along the tetragonal axis of the octahedron. " The
parameters u and I' represent the splitting of e and t2

orbitals by the tetragonal crystal field.

3
(s' e) (sl' e)

(3)
&j re'

where g and P are the g factor and the Bohr magneton,
respectively. The term V,„;,1 in (1) is the axial-sym-
metry component of the crystal Geld.

Low-energy states of the d' conGguration in a cubic
crystal 6eld (the eigenstates of the Hamiltonian Xo)
necessary for the calculation are given in Fig. 1 in the
strong-Geld coupling scheme. The ground state t2',
422 is an orbital singlet, The crystal Geld, being an
operator that acts only on orbital wave functions,
cannot itself split the spin degeneracy of the ground
state; thus the use of a spin-orbit coupling operator is
necessary. For reasons of symmetry, the X„operator is
able to mix only 'T2 or '72 excited states into the 'A2

ground state. However, the matrix elements between
the t2', 422 ground state and t2'e, 'T2 excited state are
zero, and only t2'e, 'T2 and t2', 'T2 excited states are
mixed into the ground state by spin-orbit coupling.
Then the ground state is split by the complex action of
3C„and p, ;,l. The spllttlng n1Ry bc CRlculRtcd by
perturbation theory, since the necessary condition
X„+V,„;,i((XO is fulfilled. The lowest order of the
nonvanishing splitting of the ground state is the third
order. In these third-order terms the matrix elements of
K„are to be used twice, since only the terms pro-
portional to the square of spin components may cause
zero-Geld splitting, on account of the time-inversion
symmetry of the Hamiltonian (1).

As pointed above, there are two directions of uniaxial
stress (the direction of the tetragonal axis and of the
trigonal axis) when the final crystal fmld is of axial
symmetry. Both these cases demand a special process of
calculation. %c shall therefore treat the two cases
separately.

Tl'lgoiial Field {V4; )
The trigonal field, transforming as the representation

T2 of the cubic group, gives nonzero matrix elements
between the 'A2 ground state and the 'Ti excited state.
The loop (4) gives, therefore, only one of the third-
order contributions to the zero-field splitting in the
case of trigonal Geld. There are some more contribu-
tions of loops, as follows:

Having used the loops (8) and (9) and the loop similar
to (4) for the trigonal field, we calculate the parameter
D in this case:

g7 . 2
2

9 PE(tge, 4T4) ]'
2%2 'V

3 E(t,'e 4T2)E(t, 'e, 'T,)

—V2 10
Tetragonal Fieid (V4,4,) E(tl', 'Ts) E(lp'e, 'Ti)

A te«agonal Geld having the «ansform«ion proper-
tlCS Of thC E repreSentatiOn Of thC CubiC group dOCS nOt bridge University Press, Nor York, 1961),p. 226.
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where E(tsse, 4Ts) and Z(tss, sTs) are the energies of
the excited states, the ground state having zero energy;
and e and e' are one-electron trigonal field parameters
defined as follows:

Hsa

ffg3 37

~ = (&,0
~
V„;,

~
i,O& —(&,.

~
V„;,

~

&ss &,

(12)

FrG. 2. Energy-level
diagram for d' ions in
the cubic crystalline
Geld.

Hsa
I.se33T

in which
~

tso& and
~

tre&,
~

tse) are fs orhitals of the
paramagnetic ion which span the representations A~
and E of the trigonal group. They are given by the
following relations:

Hso Hso frig

)6e2 34

I
~,0&=-;&(

I
~,~&+ I ~m&+~ ~,f &),

I ~s&) = a&6(2 I
~sf &

—
I ~s()—

I ~m)),

I
&se&=K~(l &sS&

—
I fsn&). (13)

3. AXIAL-FIELD SPLITTING OF d (t e'), 'As STATE

The calculation of the zero-field splitting of d' ion is
essentially the same as in the case of d' ion. The Hamil-
tonian of ion in a distorted crystal field is given in (1) .
Low energy levels of d' ion in a cubic crystal Geld are
plotted in Fig. 2. The ground state t2'e', 'A2 is an orbital
singlet. The excited states t2'e', 'T2 and t2'e', 'T2 are
mixed into the ground state by the spin-orbit coupling.

Dt.g, P(su u——') I LE(—ts'e', 'Ts) $
—'—(E(ts'e', 'Ts) j-'I,

where I and I' are the tetragonal-Geld parameters
defined in (6) and (7).

Trigonal Field

The trigonal field gives nonzero matrix elements
between the ground state and the t2'e', 'T~ excited
state. This means that some other loops leading to the
third-order zero-field splitting can be found. There are
two loops of that kind:

Vt„.g +80 %SO

t2'e' 'A2 -t2'e', 'T» -t25e', 'T2 -tg'e' 'A2

Tetragonal Field

As in the preceding section, the tetragonal field does
not mix any excited state into the ground state, so that
only Pryce's mechanism is effective. The axial-field
splitting D of the ground state is equal to

Summing all contributions, we get the following ex-
pression for axial-field splitting D:

't'f.n/L~(~ -"* 'T )]'
—3V2 n'/E(tges, s Ts) E(tssss, 'T,)
+3%2 n'/E(tsses, 'Ti) E(tsses, 'Ts)

—n/L~(f '", 'T.) O'I, (1~)

where e and v' are trigonal-field parameters defined in
(11) and (12).

4. CONTRIBUTION OF IONIC CRYSTAL FIELD TO
THE VALUES OF THE AXIAL-FIELD

PARAMETERS

The low-symmetry component of the crystal field
in the strain-induced cubic crystals may be con-
veniently expressed in the form

v= Q c,(r) v, (I') e,(r), (18)
F,y

where e~(r) are the strain-tensor components, having
the transformation properties of the y subvector of F
cubic-group representation. Only those strain com-
ponents which have E and T2 symmetry take part in
the case of axial distortions. They may be expressed as
linear combinations of the usual six strain components"
in the following way:

es(E) =2e„+e„+e„s,
e& (~) e» esse

e~(Ts) =e„„e„(Ts)=e„, er(Ts) =e,„. (19)

V~(r) in (18) is a function of electron coordinates
which has the same transformation properties as
e (r), and C (r) is a constant. If V„(r) is expanded
in a power series in the electron coordinates, it may
further be written as

c,(r) v, (r) = g c„,(r) v„,(r), (2o)

&trig XS0 XS0

t~ e, A2 -t2 e', Tj:. — —:$2&e','T2 -326e, 'A2.
where C ~(r) are constants, and V„~(r) are normalized

» C. Kittel, Introduction to Solid-State Physics (John Wiley
16 R Sons, Inc. , New York, 1959), 2nd ed. , Chap. 4, p. 86.
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cubic harmonics" with the FY symmetry, multiplied

by r". When the crystal field is acting on d electrons,
e in (20) runs over 2 and 4. The values of the coef-
ficients C ~(I') can be obtained by using the point-
charge model and summing the electrostatic field
coming from the positive and negative charges at all
the lattice points. Such a calculation had been done by
Kanamori" for the Mgo crystal, and Schawlow ef, al.s

have used it for determining the C„~(1').
We now use the crystal-field expansion (18) and (19)

to determine the axial-field parameters of tetragonal
and trigonal field. In the case of tetragonal distortion
the only nonvanishing term in (18) is that with the
eq(E) strain component. For the application of a
tetragonal field to 3d Hartree-I'ock wave functions of
the free paramagnetic ion, we get the tetragonal-
field parameters defined in (6) and (7) as follows:

according to (11) and (12):

~ -'=&4«2
I I

V-(2')
I I

s&C.(l's)~(T's) (27)

C.(7'~) =C.t(2'~) =C"(2'2) =C-r(2'2)

and double-harried matrices'4 have the following
values:

«2I! V-(T) I I
f~&=v'«&m

I
V. r( 22) I ~2&&

= (3+10)/(14+m) &r'), for ii=2

(28)

for e=4,

{29)

I;..= &e I I
V.(E) I I e)C„y(E)eg(E),

I;.„'=-,'43&82
I I

V„(E) I I f2&C„p{E)ey(E). (22)

(21) « I I
V-(2')

I I
s&=v3«~

I
V.r(2')

I e»
= —(+15)/(7+ir) &r'& for n =2

The double-barred matrices'4 have the following values:

&& I I v-(E) I I ~& = —2 &~ I
v-. (E) I ~»

= —(2&5)/(7+ir) (r'), for e =2

= —{3+5)/(7+3ir) &r4&, for m=4,

«2II V.(E) II& &=~~«2~I V-~(E) I&2i&

= —(+15)/(7+ir) &r'&, for I=2
= (2V'5)/(7&~) (r'&,

where E3„(r) is the Hartree-Fock radial wave function
of the 3d orbital of the paramagnetic ion.

In the case of trigonal distortion, only those strain
components with T2 symmetry are nonzero and they are
of equal magnitude. We de6ne the following linear
combination of strain components

~(Ts) =«(2'2) +~.(T~) +e(T2)

under the condition

Using the crystal 6eld defined in (18) with nonvarush-

ing strain components (25) only and Hartree-Fock
solutions for one-electron 3d orbitals of the paramag-
netic ion, we get the following trigonal-field parameters

» H. A. Bethe, Ann. Physik 3, 133 (1929).
» J. Kanamori, Progr. Theoret. Phys. (Kyoto} 1'7, 197 (1956).
14 g. Tanabe and H. Kamimura, J. Phys. Soc. Japan 13, 394

(1958).

(30)

= (3+5)/(14+~) &r4&, for v=4.

(31)

S. COVALENT CONTRIBUTIONS TO THE
CRYSTAL-FIELD PARAMETERS

According to the generally accepted mechanism of
covalency of the paramagnetic-ion complex, the elec-
tron-occupied ligand orbitals are mixed into the 3d
orbitals of the paramagnetic ion by the one-electron
self-consistent Hamiltonian of the complex". Then the
cubic-field splitting of d orbitals into the sets of e
and t~ orbitals, calculated up to the second order, is
given by

~--= Z E' 'I &~II If'~&I' —Z E -'I « II If'& )I'*

(32)

where h is the one-electron self-consistent Hamiltonian
of the complex, and

I
f;e& and

I
li, t2& are linear combi-

nations of ligand orbitals having the same transforma-
tion properties as the paramagnetic ion orbitals e
and t, , being orthogonahzed to these orbitals. E; {E~)
is the energy difference between the e (fn) orbital and
the appropriate ligand orbital. Now the e and t2 states
are split by the action of the self-consistent Hamiltonian
of the axially distorted octahedral complex. The
orbitals of split states span the representations of the
tetragonal or trigonal subgroups of the cubic group.
In the case of tetragonal distortion, the e orbitals span
A~ and 8& representations and the t2 orbitals span

I'R. G. Shulman and S. Sugano, Phys. Rev. 130, 506 (1963);
K. Knox, R. 6. Shulman, and S. Sugano, ibid. 130, 512 (1963);
3. Sugano and R. G. Shulman, ibid. , 130, 517 (1963); R. E.
Watson and A. J. Freeman, ibid. , 134, A1526 (1964); F. Simkne'~
and Z. Sroubekp Phys. Status Solidi 4) 251 (1964).
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82 and E representations of the tetragonal subgroup.
Then the axial-field parameters defined in (6) and (7),
up to the second order, are given by

N--= 2&' '1(«(~i) I7zz Ii'(~i).& I'

—2 ~i '
I

&e~(~i) I
~z z I i.(~i) &

I' (33)

N...'= p z,-'
I

(~,t. (a,) I
a,.„I

i,(a,) ) l~

—2 ~i 'I «2((&) I ~zi li*(~)& I' (34&

where i;(F) are linear combinations of ligand orbitals
which span the F representation of tetragonal subgroup
and h&, t,, is self-consistent Hamiltonian of tetragonally
distorted octahedral complex.

In the case of trigonal distortion the e orbitals span
the E representation and t2 orbitals span the A& and E
representations of the trigonal subgroup. Then the
trigonal-field parameters defined in (11) and (12)
are given by

o.„=Q 2, 'I (t~p(A—i) I
hz, ;z I

l, (Ai)) I'

—2 & -'
I « ~(&) I

7 ~ I
f'(~) &

I' (»)

.. ' = P z;-'("(z)
I
a„;, I

i, (z) )

X(&,(&)
I
h„;. I

&.(&) ). (36)

To simplify the expressions for the crystal-held param-
eters, we introduce the matrix elements of the self-
consistent Hamiltonian between the paramagnetic-ion
wave functions and wave functions of one ligand ion.
These matrix elements we shall call one-bond integrals.
In the octahedral complex there are two types of one-
bond integrals, that between 0. functions and that
between s functions. Using the p and s functions of the
ligand ion, we have the following three one-bond
integrals:

H,~=(da Ihl po),

H:= «o I
I

I e)

H„=(dm.
I foal ps), (37)

where da. and dh are the 0 and x 3d orbitals of the
paramagnetic ion, po and ps. are the o. and m 2p orbitals
of the ligand ion, and s is the 2s function of the ligand
ion. Now the covalent contributions to the crystal-
6eld parameters 6, N, N', e, and ~' can be written in
terms of the one bond-integrals (37). To compute 6
it is possible to neglect the distortion of the complex,
giving

~--=3 2 (I H. ' I'/&'. ) —4(I H- I'/&-) (3g)
'4=8, p

The N, N', v, and v' parameters may be calculated from
the geometry of the distorted complex. In the case of
tetragonal distortion, the distances between para-
magnetic ion and ligand ions are changed, and thy

o„=(4
I
H I2/E ) e„,

"-'=- P (3~2I H.'I'/~'. )"
'4= p, S

(41)

(42)

5. THE CONTRIBUTION OF ANISOTROPIC
SPIN-SPIN COUPLING TO THE

ZERO-FIELD SPLITTING

The distortions of wave functions by the low-sym-
metry component of the crystalline field make the
spin-spin coupling anisotropic. The more impozrtant
mechanism that distorts the wave functions is the
covalency eGect. In order to take account of the eBect
of this distortion, we adopt the molecular-orbital
(MO) model to describe the one-electron d functions.
The Hamiltonian of the. spin-spin interaction H„ is
given in (3) . This Hamiltonian can be expanded in a
power series in the coordinates of electrons i and j.'
If we keep only those members which give nonvanishing
matrix elements between d-electron wave functions, we
can write

Vi2= gal Lg (S+jS j+$ jS+—j) SzjSzj]—
&& t (1/&5"') 1'o'() 1'" (Z)

+(r&'/r&')L3v3(l'2'(i) l'4 '(J)+1'2 '(i) ~4'(i))
+~(l"(i) 1'r'( J) +1'2-'(i) 1'4'(i) )

+o~5~2'(i) l'"(i)]}, (43)

where s+,, s; are the ladder spin operators of electron
i; r~ and r& are the greater and the smaller radius vec-
tors of electrons i and j; and F& (i) are spherical
harmonics of the coordinates of electron i.

Using the MO approach with linear combinations of
atomic orbitals (LCAO), we can write three t2 anti-
bonding molecular orbitals in the following form:

$(t2n) =E~(l 4n) ~,~ I lt2n)), —(44)

where
I t2n& refer to the t2 wave functions of the para, -

magnetic ion,
I

lt2n) are linear combinations of ligand
orbitals, and X„are normalization factors. Now the
'A& ground-state wave functions a,re three antisym-
metric electron wave functions given by the Slater

. determinants constructed from the molecular orbitals

"R. E. Watson and M. Blume, Phys. Rev. 139, A1209 (1965),

angles between bonds are preserved. After the detailed
calculation we obtain the following results:

u.. = —Q (12H.'/E;, ) (dH '/de. .) e... (39)

N., '= —(12H /E ) (dH /de„) e„. (40)

In the case of the trigonal distortion, the angles
between bonds are changed, the distances between
ligands and paramagnetic ion being preserved. After
the detailed calculation we obtain the following
expressions for the trigonal-field parameters:
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TABLE I. The values of various constants for V'+, Cr'+, and
Ni'+ ions needed in the calculations. f is the reduced one-electron
spin-orbit coupling parameter, J3 is the linear combination of
radial integrals over the interelectronic distance in Racah's
notation, 6=10Dg is the splitting of the d-electron level in the
cubic crysta11ine field, (r2) and (r ) are the radial integrals
de6ned in (24), and Mo and jlI2 are the radial integrals defIned
in (46).

8 6 (r') (r') Mg DER

(cm ') (cm ') (cm ') (a.u.) (a.u.) (cm ') (cm ')

7'. COMPARISON WITH EXPERIMENT

The zero-6eld splitting in strained cubic crystals is
usually expressed in terms of parameters G» and G44,
called the spin-lattice coefficients. ' The axial-field
splittings in the cases of the tetragonal and trigonal
distortions are in simple linear relations to these spin-
lattice coefficients, The parameters Dt,&, and Dt,„.g
are given by

P2+

Cr'+
Ni'+

120 755 14 000 2.063 9.425 0.915 0.499
200 918 18 000 1.446 4.340 1.41 0.776
500 1030 8 600 1.127 3.017 2.375 1.295

D~~.= 4Giiee (&)

Dt .=«~Mt(7s)+e~(7's)+et(7'a)],

(50)

(44) . The ground-state levels were calculated by using
the spin-spin interaction operator in the form (43)
and the above-mentioned determinant wave functions.
The one-center integrals between ligand wave functions
arid the two-center integrals between ligand and
paramagnetic-ion wave functions were omitted. This
approximation does not affect the results too much in
in the case of small covalency. After the detailed
calculation we obtained the following contributions to
the parameter D in the case of the tetragonal as well
as of the trigonal distortion:

(i) Tetragonal distortion:

Dt,.s, = —(I/7) Ess (/r/ts /trrr) (Ms —4—M,), (45)

where M„are radial parameters

CO CX)

„RM'(i) R„s(J)r,~;dr,dr, . (46)
0 0

Aa(r;) in (46) are Hartree-Pock radial wave functions
of 3d electrons. 1V in (45) are normalization constants
defined by Eq. (44) . The admixture of hgand orbitals
in the antibonding molecular orbitals was calculated
and. the normalization constants were determined.
By the same procedure as used in the preceding section,
the normalization constants F can be written in terms
of one-bond integrals. Then the parameter Dt~, is
given by

M k-(g='P')

Dt tr =Y (Mo —4Ms) (II~/E~') (dH /de„) e„. (47)

(ii) In the case of the trigonal distortion the contri-
bution to the parameter D is

under the condition et(Ts) =e„(T,) =er(T,).
The magnitudes of G» and G44 for the V'+, Cr'+ and

Ni'+ ions have been measured by electron spin reso-
nance. "%e have estimated the numerical values of G»
and G44 given by the three mechanisms introduced in
the preceding sections. For that purpose a number of
empirical constants were used. The energies of excited
states were determined according to the calculations of
Tanabe and Sugano" for known values of 6 and B.
The value of the spin-orbit constant f' in a crystal
may be reduced to as little as 80% of the free-ion value.
The values of (r') and (r4) were calculated using
Watson's analytical Hartree-Fock wave functions for
free ions. ' The values of all parameters mentioned are
shown in Table I. The value of the lattice constant of
MgO is 3.97 atomic units (a.u.) .

The estimation of covalent contribution to the axial-
6eld parameters I, I', e, and v' was performed by fitting
to the value of 6„.Since there is good reason to
suppose that the only essential parts of 6 are the ionic
and the covalent parts, we combine the observed value
of 6 with that calculated by using the point-charge
model to obtain the value of 6„,. Besides, we assume
tha, t the values of the transfer integrals are pro-
portional to the appropriate overlap integrals with one
constant of proportionality in the ra, nge of distortions
induced by experimentally available pressures. To
determine the derivatives of the overlap integrals, it is
necessary to know their values at two distances close
to one another. Because the diGerence between these
two distances is small compared to their magnitudes,

Thm. z II. The values of the overlap integrals and their deriva-
tives between d orbitals of a Mn+ ion and p orbitals of a F
ion at the internuclear distance 3.97 a.u. for the normal as well
as the expanded wave functions of the Mn'+ ion.

D„;s (1/'/) X,s(/t'/, s —Ess) (Ms———(8//) Ms), (48)

where Ms and Ms are again radial parameters (46).
Dt,„g calculated in terms of the one bond integrals is

D„;a ,'(Ms ',Ms) (H.——'/—Z.') e—.,—
0.85
0.90
1.00

10'(d)u)

9.345
8.605
7.124

~(~l )
102

d8-g

16.9

17.5

10'(d~w )

6.135
5.455
4.094

20.7
18.8
15.0

Finally we must note that the contribution to the
zero-6eld splitting of the 'A2 state of the d' conhgura-
tion is equal to zero when calculated in the framework

. of this approximation.

'7 Y. Tanabe and S, Sugano, J. Phys. Soc. Japan g"R. E. Watson, MIT Solid-State and Molecular Theory
Group, Technical Report No. 12, 1959 (unpublished).
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TA'BLE III. The contributions to the spin-lattice strain coeKcients G» and G44 (tetragonal and trigonal Geld splitting) for V'+, Crs+,

and Ni'+ ions in MgO crystals due to the three mechanisms discussed in the paper. In the last row are the experimental values measured
by EPR (Refs. 1 and 2).

P2+
G» (cm ') G44 (cm ')

Cr'+
G» (cm ') G44 (cm ')

Nj2+
G» (cm ') G44 (cm ')

Ionic
Covalency
Spin-spin. Anisotropy
Sum
Experiment

0.51
—0.07

0.12
0.56
0.42

2.16
0.97
0.00
3.13
3.0

0.40
0.13
0.08
0.61
0.6

2.64
2.32
0.00
4.96
4.2

15
28

~ ~ ~

43
57

49
9

~ ~ ~

58
36

the integrals must be calculated very exactly. The
tables of overlap integrals between p and d orbitals
published by Jaffe et al."have a very coarse interval,
so that the derivatives cannot be estimated with satis-
factory exactness. Therefore we have used a table of
overlap integrals between Mn'+ and P ions published
by Marshall and Stuart. "This table is calculated quite
exactly and has a sufEciently 6ne interval. Further,
this table also covers overlap integrals between radially-
expanded wave functions, which are necessary for our
calculations. This radial expansion of wave functions is
represented by a, simple scaling of 10% with ap-
propriate renormalization. Using this table, we derived
values of overlap integrals for scaling parameter m=
0.85 by linear extrapolation. The 3d wave functions of
the Ni'+ ion are more radially contracted than those
of the Mn'+ ion, but in contrast the 2p wave functions
of 0' ion are more expanded than those of F ion.
Expecting these opposing effects on the size of integrals
to cancel, we may use the integrals calculated by
Marshall and Stuart with the scaling factor m =1 for
Ni'+ ion in an oxygen complex. For integrals of Cr'+
and V'+ ions, the wave functions of which are more
expanded than that of Ni'+, we use the values of the
integrals with the scaling factor +=0.9 and 0.85,
respectively. The values of the overlap integrals and
their derivatives for the distance between nuclei
3.91 a.u. are given in Table II.The estimated numerical
contributions to the parameters GU and G44 are shown
in Table III together with the experimental values. The
constant of proportionality between transfer and over-
lap integrals, needed only in the calculation of the
contribution of anisotropic spin-spin coupling, is
estimated to equal 4. The values of the radial param-
eters Mo and Ms defined in (44) for V'+ and Cr'+ ions
have been calculated by Blume and Watson" and
are shown in Table I.

8. DISCUSSION

As is evident from Table III, the agreement between
the calculated and the observed values is relatively

H. H. Ja66 and G. O. Daak, J. Chem, Phys. 21, 966 (1953);
H. H. Ja66, ibid. 21, 258 (1953).

~ W. Marshall and R. Stuart, Phys. Rev. 123, 2048 (1961)."M. Bi»me and R. E. Watson, Proc. Roy. Soc. (London)
2'71, $68 (1963).

good. We must stress that the purpose of this paper is
not an exact calculation of the zero-field splitting, but
only an approximate estimation of the contributions of
individual mechanisms and their trend for different
ions in comparison with the experimental values. This
purpose was, as it seems to us, suKciently fulfilled. It
is evident from the results that the main mechanisms
giving contributions to the zero-field splitting are the
ionic and the covalent crystal fields with the spin-
orbit interaction. The effect of the anisotropic spin-spin
coupling within the ground state due to covalency
effects is small for d' ions, and it vanishes for d' ions.
We may assume, however, that the effects of this
mechanism should be more important for the ions
containing more unpaired electrons in a shell, as in the
d' configuration. From Table III it is evident that for
d' ions the experimental values of G44 are greater than
those of Gi~, whereas for d' ions the values of G44 are
smaller than those of G~~. The calculated ionic contribu-
tions have the same trend for d' ions and d' ions (they
are greater for G44 than for G»); this means that they
worsen the agreement with experiment for d' ions. But
the covalency contributions improve the agreement
with experiment both for d' and for d' ions. What is the
reason for the covalency mechanism's having a trend
for d' ions opposite to that for d' ions, even though the
ionic mechanism has the same trend for both con6gura-
tionsP In the expressions (5) and (14), two tetragonal-
6eld parameters I and I' contribute to the zero-field
splitting. The covalent contributions to these two
parameters have the same sign, and their magnitudes
are close to the ratio -', u'/u, so that the contribution
to the zero-field splitting is nearly cancelled. This
cancellation is more effective for ions with more ex-
panded wave functions, like Cr'+ and V'+, and less
effective for the more contracted Ni'+ ion wave func-
tions. That is the reason why d' ions have a greater
covalent contribution to the tetragonal-6eld splitting
than d' ions. In the contributions to trigonal-field
splittings (parameter G44) no similar cancellation takes
place. Thus the d' ions, having more contracted wave
functions and smaller transfer integrals, have smaller
covalent contributions to G44 value than d' ions.

To verify the results of our calculation, it should be
suitable to perform the measurements of zero-field
splitting of d' and g ions on stressed nonoxide cubic
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crystals. The fluoride cubic crystals with perovskite
structure seem to be advantageous for that purpose.
It is evident that both ionic and covalent contribu-
tions to the zero-field splitting are smaller in Auorides
than in oxides. But from our calculations it appears
that the covalent contribution to the ratio G»/G4~
should be different for Quorides than for oxides. From
the considerations given above, the ratio G»/G44
should be greater for Quorides than for oxides because
of more contracted fluorine 2p wave functions.

Note added irt proof Rec. ently the values of G» and
644 for Ci~+ and Ni'+ in MgO were computed by
Tucker"" using the point-charge model. These values
differ greatly from the point-charge contributions
estimated in this paper for the following reasons: (i)
Tucker's values are obtained from a fit to the experi-
mental value of the cubic field splitting"; thus they

» E. B. Tucker, Proc. IEEE, 53, 1547 (1965)."E.B. Tucker, Phys. Rev. 143, 264 (1966).

are three or four times greater than the values com-
puted from the first principles. (ii) The expression
for G44 used by Tucker is smaller by a factor of 3 than
in our expressions (10) or (17), in which the terms
caused by the excited states t2', 'T2 or t2V, 'l2 are
truncated and near-neighbor model is used. (iii) The
effect of further neighbors is not negligible, and some
terms diRer by as much as 50% when Kanamori sums
are used instead of the near-neighbor model. (iv) The
effect of the excited states fs', 'Ts and/or ts'e', 'Ts was
not considered in Altshuler e) ut. 's" expression for 644

used by Tucker, though their effect is substantial.
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A quantum statistical analysis of an optical maser is presented in generalization of the recent semiclassical
theory of Lamb. Equations of motion for the density matrix of the quantized electromagnetic field

are derived. These equations describe the irreversible dynamics of the laser radiation in all regions of opera-
tion {above, below, and at threshold). Nonlinearities play an essential role in this problem. The diagonal
equations of motion for the radiation are found to have an apparent physical interpretation. At steady
state, these equations may be solved via detailed-balance considerations to yield the photon statistical
distribution p„,„.The resulting'distribution has a variance which is significantly larger than that for co-
herent light. The off-diagonal elements of the radiation density matrix describe the eBects of phase diftusion
in general and provide the spectral pro61e

~
E(a&) P as a special case. A detailed discussion of the physics

involved in this paper is given in the concluding sections. The theory of the laser adds another example
to the short list of solved problems in irreversible quantum statistical mechanics.

I. INTRODUCTION

1HE theory of an optical maser due to Lamb'
- .treats the atoms quantum-mechanically while con-

sidering the radiation as a classical electromagnetic
field. This theory has provided a basis for understanding
a wide range of observed laser phenomena and has
been extensively tested by Java» and Szoke s Fork and

* This work was supported in part by the National Aeronautics
and Space Administration and in part by the U.S. Air Force
Once of Scientific Research. The main results of the paper were
reported at the International Conference on the Physics of
Quantum Electronics, Puerto Rico, July 1965.

f This paper is based on a thesis submitted by M. Scully to
Yale University in partial fulfillment of the requirements for
the Ph. D degree.' W. E. Lamb, Jr. , Phys. Rev. 134, A1429 (1964).

'A. Szoke and A. Javan, Phys. Rev. Letters 10, 521 (1965),

Pollack, and others. Extensions of the theory to allow

for the presence of a magnetic field4 ' or cavity anisot-
ropy6 have been made by several authors, and there
is no doubt that remarkable fits are being obtained
with experimental data. The ring laser has been
analyzed by Aronowitz, ' and by Gyorffy and Lamb, '
again in good agreement with observations. Various
forms of modulation can be discussed, as in the work
of Harris. ' The buildup in time of oscillations from a

3 R. L. Fork and M. A. Pollack, Phys. Rev. 139, A1408 (1965).
4 R. L. Fork and M. Sargent, III, Phys. Rev. 139, A617 (1965).
5 M. Sargent, III, W. E. Lamb, Jr., and R. L. Fork (to be

published) .
6 W. M. Doyle and M. B. White, Phys. Rev. 147', 359 {1966}.
7 F. Aronowitz, Phys. Rev. 139, A635 (1965).
8 S. L. Gyorffy and W. E. Lamb, Jr. (to be published).
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