
The integral is computed to an accuracy hetter than 1%.
However, on. account of the extremely strong cancela-
tions within the curly brackets, numerical errors are
magn16ed for SIIlall p. Better accuracy Is attainable,
but only at the expense of greatly increasing the re-
quired computer time. We therefore limit our attempt
to a conhrmation of the results at medium and high
k calculated in the preceding paper. Both sets of results
are shown in I'ig. 5. The agreement is evident.

The procedure described in this section may be
extended to any desired order in r,st', with multiplying
algebraic complications. However, theoretical difI1-
culties imposed upon the charged-Bose-gas problem

by the simultaneous effects of the condensate and the
long-range interaction have now become resolved.

In conclusion, we have given in this and the preced-
ing paper two entirely different approaches to the
theory of the charged Bose gas. %'e have demonstrated,
in both approaches, that the perturbation theory is
free of divergence to the order calculated.
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The Wigner-Seitz model formerly used to calculate the adiabatic barrier to electron penetration of liquid
helium is applied to the study of the bubble model for a localized electron in liquid helium. Calculations
of the pressure dependence of the radius of the negative ion agree with the experimental results to within
an atomic radius in liquid helium. Comparison is made with other methods, and predictions regarding
further properties of the negative ion are presented.

I. INTRODUCTION

'HE bubble model for the negative ion in liquid
helium has recently been the subject of continued

experimentait ' and theoreticais ' ' "interest. A local-

~ G. Careri, F. Scaramuzzi, and J.O. Thomson, Nuovo Cimento
13, 186 (1959).

2 L. Meyer and P. Reif, Phys. Rev. 119. 11.64 (1960).' J.Levine and T. M. Sanders, Phys. Rev. Letters 8, 159 (1962).
4T. M. Sanders, Bull. Am. Phys. Soc. 1, 606 (1962).
J. L. Levine, Ph, D. thesis, University of Minnesota, 1964

(unpublished); Phys. Rev. 154, 138 (1967).' W. T. Sommer, Phys. Rev. Letters ll, 271 (1964).
7 M. A. Woolf and G. W. Ray6eld, Phys. Rev. Letters 15, 235

(1965).' K. R. Atkins, Phys. Rev. 116, 1339 (1959).
9 C. G. Kuper, Phys. Rev. 122, 1007 (1961)."L. Onsager, Modern Quantum Chemistry Istcnbu/ I.ectures,

edited by O. Sinanoglu (Academic Press Inc. , New York, 1966),
p. 12$."J.Jortner, N. R. Kestner, S. A. Rice, and M. H. Cohen, J.
Chem. Phys. 43, 2614 (1965); Modern Quantum Chemi stry
Istanbu/ L,ectures, edited by O. Sinanoglu (Academic Press Inc. ,
New York, 1966), p. 129."K.Hiroike, N. R. Kestner, S.A. Rice, and J.Jortner, $. Chem.
Phys. 43, 2625 (1965).

u 3.Burdick, Phys. Rev. Letters 14, 11 (1965).
'4 R. C. Clark, Phys. Letters 16, 42 (1965).

ized state of an excess electron in a nonpolar dense Quid
is expected to be stable provided. that the electron-atom
repulsion is suSciently strong. That there exists a
strong repulsion in liquid helium has been demonstrated
by the adiabatic electron-injection experiments of
Sornmer' and of Woolf and Rayfield. ' The electron-
atom repulsion in this system is so large that a local
Quid dilation leads to a localized state of the excess
electron characterized by a lower free energy than the
quasifree electron state. A stable configuration of the
localized, state is achieved by a balance between the
electron-atom short-range repulsions, the increased
kinetic energy of the electron, the contractible force on
the bubble resulting from surface tension, and the
pressure-volume work involved in the creation of the
bubble. Until recently the only direct evidence for the
formation of a localized negative ion was provided by
the mobility measurements of Sanders and. Levine. ' '
The direct determination of the radius of the negative
ion in liquid helium under varying conditions of pressure
and, temperature yields important information concern-
ing the structure of the negative ion and, in particular,
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TABLE I. Experimental and theoretical data for the size of the
negative ion in liquid He' at the vapor pressure.

T ('K)

4.2
3.0
1.7
1.7
1.9
4.2
0
0

R (L}

14.0
12.7
15.96
14.5
13+4
20
12.5
12.5

Method

& Mobility data in normal He4 (Ref. 15) calculated for Stokes law with
d =4~.

b Trapping lifetime for negative ions by vortex lines (Ref. 19).
e Trapping lifetime for negative ions corrected for the healing behavior

of the superfluid on the edge of the exclusion region (Ref. 19).
d Effective-mass method (Ref. 18).
e Theoretical calculation, variational method, and experimental surface

tension (Ref. 11).
f Same as e. Statistical model for the fluid (Ref. 12).
g b-function pseudopotential (Ref. 14),

the nature of the electron-helium interaction and. the
con6guration changes in the Quid. To date, several
experimental methods have been proposed and used to
determine the size of the negative ion in liquid helium:

(a) The mobility data' "in normal He' (above the X

point) and in He' above 0.4'K can be adequately de-
scribed in terms of classical hyd, rodynamics. This ap-
proach is quite reasonable, since the bubble size is con-
siderably larger than the interatomic separations and.
the mean free paths of the elementary excitations, so
that the bubble can be considered as a rigid sphere mov-
ing through the liquid. The bubble rad, ius can then be
estimated, from the mobility using Stokes law, so that
R=e/dqlii, where R is the bubble radius, p is the
mobility, p is the Quid viscosity, and d is a numerical
constant which for no slip conditions takes the conven-
tional form d =6~, while if there is a perfect slip between
the bubble and the surrounding Quid then d=4z.

(b) Mobility data in superfiuid He' below about
1.7'K cannot be interpreted in terms of viscous hyd, ro-
dynamics because the mean free path of the excitations
is comparable to the ion size. ' It was demonstrated by
Meyer and, Reif2 that under these conditions roton
scattering limits the ion-drift mobility above 1'K.
Application of kinetic theory leads to the following
expression for the mobility: p= e/3IInS, ~, where 3f is a
reduced mass calculated taking into account the per-
sistence of velocity, e is the relative velocity of ions and.
rotons, and 0 is the ion-roton collision cross section.
The roton density S„can be calculated from the
Landau model and 0 is taken as ~(R+4)' (A'), where
the effective radius of a roton is taken to be 4 A." '~

Because the effective mass which determines the mo-
mentum exchange in a collision is not known, this
method is limited to the determination of relative
changes of R at varying temperatures and pressures. '~

(c) Measurements of momentum relaxation times of
ions in superQuid He' by microwave techniques can be
combined. with the existing mobility data, leading to an
evaluation of the effective mass of the ions. ' The effec-
tive mass of the negative ion was reported to be
(110+100, —30) MH. . At temperatures near the X

point where the mean free path of the elementary exci-
tations is small compared. to the size of the negative ion,
the contribution to the effective mass HIE* of a sphere
oscillating at the microwave frequency co from viscous
Qow in the normal Quid can be related to the ionic
radius. '8

(d) Parks and Donnelly"" have shown that ionic
radii in He iI can be accurately determined from the
"lifetime edge" in the capture cross section for negative
ions trapped, by quantized vortex lines and rings. The
lifetime of a negative ion trapped. on a vortex line is
determined by the exponential factor exp(Di/k T), where
Di corresponds to the kinetic energy of the volume of the
rotating superQuid excluded by the ion. Hence the life-
time is a sensitive function of the ion radius.

To summarize, we have displayed. in Table I the
available experimental data for the radius of the nega-
tive ion at the vapor pressure of liquid helium. These
results are in semiquantitative agreement with some
previous theoretical calculations. ' """Now, it should
be noted that the bubble model implies that the nega-
tive ion should be characterized by a relatively high
compressibility. If the negative ion consists of an elec-
tron localized in a region from which the helium atoms
are essentially excluded, the radius of such a region
should be sensitive to the hydrostatic pressure on the
liquid. Unambiguous experimental evidence for the
localized state of the negative ion is available; however,
direct evidence for the bubble model of the localized
state was only very recently obtained. Springett and
Donnelly' determined the pressure dependence of the
radius of the negative ion in He n between 1.1 and 1.6'K
from measurements of trapping cross sections in
quantized vortex lines. It was found. that the negative
ion radius changes from 15.96 A at the vapor pressure
to 10.22 A at the pressure of 20 atm. In contrast, the
pressure dependence of the radius of the positive ion in
liquid. helium was found to be negligible. '

In the present work we consider the predictions of
the bubble model with respect to the pressure depend-
ence of the radius of the negative ion. The Wigner-
Seitz model, previously appliecV' in the calculation of
the energy of the quasifree electron state in a helium
lattice, is extended to deal with the localized state.
These results are then compared with the treatment
based on the variational method employed earlier. "
It is found that a simple bubble structure for the

1" L. Meyer, H. T. Davis, S. A. Rice, and R. J. Donnelly, Phys.
Rev. 126, 1927 (1962).

' L. Landau and I.M. Khalatnikov, Zh. Eksperim. i Teor. Fiz.
19, 637 (1949)."B.E. Springett and R. J. Donnelly, Phys. Rev. Letters 17,
364 (1966).

i A. J. Dahm and T. M. Sanders, Phys. Rev. Letters 17, 126
(1966).' P. E. Parks and R. J. Donnelly, Phys. Rev. Letters 16, 45
(1966).

2 3.E.Springett, D. J.Tanner, and R. J. Donnelly, Phys. Rev.
Letters 14, 585 (1965}.
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negative ion is consistent with the experimental data,
providing further theoretical evidence in support of
this model.

II. THE BUBBLE

The bubble model for the negative ion rests on two
basic assumptions implying the localization of the excess
electron and the creation of a void in the Quid. Since
the electron is in a localized state, it is required that its
wave function tend, to zero for large distance from the
center of localization. We then consider the behavior
of an electron in a region of the Quid characterized, by
the density d,istribution

p=o, r&E,
p= po(P, T), r) R,

where po(P, T) is the Quid number density at pressure
P and temperature T, and R corresponds to the cavity
radius. Although more complicated forms"" of the
density distribution were applied, it was demonstrated
that for high densities (of the order of the liquid den-

sity) the thickness of the boundary layer is small and the
description in terms of a simple step function is ade-
quate. The total energy of the bubble may be written
in the form

Ei—E,+E~
where E, is the ground-state electronic energy and Ei, is
the energy required to form a cavity in the liquid. . This
latter energy consists of a surface term E,=4xE'y, y
being a surface tension, and a pressure-volume term
Er v= (4'/3)PR', so that

and a=1.135'/me' is the low-energy electron-helium
atom scattering length, taking polarization of the He
atom into account. To be completely consistent, the
scattering length should be evaluated at the energy VQ, a
correction of perhaps 10% in a which we have ignored.
This correction is cancelled to a large extent by the
long-range polarization of the medium by the quasifree
electron.

A numerical solution of Eq. (5) for ko at the appropri-
ate liquid density leads to the pressure dependence of
the barrier to penetration of liquid helium by an
electron.

We shall now apply these results for the calculation
of the energy of a localized state. We write the wave
function for the excess electron inside and outside the
cavity in the form

iP= f(r), r(R, (7a)

It = f(r)u(r), r) R, (7b)

where f(r) is the wave function of the electron confined
by a potential well and u(r) is the ground-state wave
function of an electron in the undisturbed, liquid helium.
The wave function satisfies the equation

(p2/2m) f(r) =E,f(r), r(R, (8a)

(p'/2m+ V)f(r)u(r) =E.f(r)u(r), r) R, (8b)

where V is the electron helium (repulsive) interaction
potential and E, is the electronic energy. Now u(r) is
taken to satisfy the equation

(p'/2m+ V)u(.) = V,u(r),

with the normalization conditions chosen so that
Ei,=4mR'y+ 34xPR'.-. 3

To find the equilibrium radius we set BE&/BR=0. In the
case when the electronic energy is determined. varia-
tionally, we also require that the electronic energy is
stable with respect to the variation of the parameters
$; determining the trial wave function, i.e., BE,/8$;=0.

tanko(r, —n) =kor, .
Here r, is the equivalent sphere size

r = (-'m pp(P T))'i' (6)

III. THE WIGNER-SEITZ MODEL

The interaction energy of an excess electron with the
unperturbed Quid cannot be adequately represented by
an optical approximation for this does not account for
the increase in the electronic kinetic energy associated
with multiple scattering. The Wigner-Seitz model can
be applied to an electron in a helium lattice leading to a
reliable estimate of the energy barrier the liquid, helium
presents to the electron. "The lowest energy state VQ

of an excess electron in a helium lattice is given by

Vo= k'ko~/2m

where the wave number ko is obtained from the relation

W. S. cell

d~r iu(r) i
2=1; (10)

that is, u(r) is the ground state in the absence of bubble
formation and dynamical polaron-like distortions of the
Quid, . It follows that

W. S. cell

d'ru*(r)yu(r) =0.

The integrations in (10) and (11) are performed over
Wigner-Seitz cell, characterized by the volume

~ = (4~/3) r,'. (12)

In order to simplify our eigenvalue equation, consider
again Eq. (8b):

f(r) [g/2m+ Vju(r)+ (1/m)yf(r) yu(r)
+u(r)(p'/2m)f(r)=u(r)E, f(r); r)R (13).

Suppose now that f(r) is slowly varying over the
Wigner-Seitz cell. The term (1/m)y f(r)y u(r) may then
be considered a perturbation on the remaining terms in
(13) which contributes first in second order because of
(11). An effective-mass equation results in precisely
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fI.&R= fNI. &R,

&R= (~f'+I'f) I,&R,

(19a)

for a point on the boundary. However, because of the
microscopic structural details, the position of the
boundary is not well defined relative to the Wigner-
Seitz cells of the surrounding atoms. Though we may
regard f as well defined (19a) if we maintain the fiction
that the bubble has a sharp boundary at R, we must
then regard. I at R as a random variable which takes on
the values it would have at all the points in the Wigner-

2' G. H. Wannier, Elements of Solid State Theory (Cambridge
University Press, New York, 1959), p. 170 8., especially pp. 186,
187."J.Sardeen, J. Chem, Phys. 6, 367 (1938).

the same way as for the effective-mass theory of im-
purity states in semiconductors, "

I p'/2m*+Vo]f(r)=E, f(r), r)R. (14)

We have calculated. m* for liquid He by an application
of Bardeen's formula for the effective mass' appropriate
to the present case where the effect of the electron-atom
interaction on the wave function can be replaced, by s-
and p-wave scattering lengths with the result

m*/m =1.10.

On the other hand, we could have supposed that f(r)
varies extremely rapidly with r. In that case, pu(r)
vanishes in the only region where yf(r) is appreciable,
the outer regions of those Wigner-Seitz cells bordering
the cavity, so that f(r) satisfies

[p'/2ns+ Vojf(r) =E,f(r), r) R. (16)

The solution of (16) is proportional to e ""/r with
AK= (2m(VO —E,))'"; that of (14) is the same except
that m* replaces m in ~. For liquid helium at the vapor
pressure, we obtain 2m(Vp —E,)/k'=0. 48 A ' and
1/r, '= 0.24 A '. Thus, ~r, is 1.4, which puts us squarely
in between both the slowly and rapidly varying limits.
Because the equation satisfied by f(r) is the same in
both limits apart from an unimportant effective mass
correction of 10'/go, we are justified in taking (16) as the
equation actually satisfied by f(r). The equation to be
solved. for the ground state now takes the simple form

(p'/2m —E,)f(r) =0, r(R, (17)

(p2/2m+ Vp E,)f(r) =0, r—)R,
which corresponds to the eigenvalue problem of a
particle in a spherical well. The (unnormalized) solu-

tion is readily obtained in the form

f(r) = (1/r) sinkr, r(R, (18)

f(r) = (A/r) exp( ~r), r—)R,
where k = (2mE, /k')'~~ and tc= L2nz(VO —E )/k j'".

The boundary conditions imposed on the solution of
(18) are given in the conventional form

Seitz cell with equal probability. We therefore replace
(19a) by an averaged boundary condition obtained by
multiplying each I or I' as it occurs in (19a) by I,
averaging over the unit cell, and. then taking the square
root. The result is that

f Ir&R=f I ~&R1

f Ir&R= f Ir)R&

(19b)

as a consequence of (10) and (11), which is equivalent
to the average boundary condition

(d lnf/dr)„&R= (d lnf/dr)„&R. (2o)

It will be convenient at this stage to define k in terms
of the wave vector ko for the unperturbed. Quid, setting
k=Xko and a= (1—X')'"ko. The boundary condition
leads to the result

cotXkoR = —(1—X')'i'/X, (»)
and the ground-state electronic energy is now obtained
from the simple relation

E,=X'Vp. (22)

The only acceptable solutions for Eq. (21) are 0 ~& X~& 1,
so that the electronic energy of the bound. state is lower
than the total energy of the quasifree state. Equation
(21) can now be solved numerically for any fixed value
of R.

One might question whether the leaking of the elec-
tron outside the bubble causes a local decrease in the
Quid density through the electron-helium atom repul-
sion. To answer this, we note that the energy E,
depends only on k, Eq. (22), and that k depends on the
condition of the surrounding Quid only through the
entrance of the density at the surface of the bubble
into (21). Hence E, depends only on the density of the
Quid just outside the bubble once the step-function
approximation of Eq. (1) to the density is adopted.
This in turn implies that there are no body forces acting
on the Quid to cause density changes outside the bubble.
Thus the step-function approximation, Eq. (1), is self-

consistent, provided that the details of the surface
energy are ignored.

It should be pointed. out that the Wigner-Seitz
method is also extremely useful for the calculation of the
electronic energies of excited states. The general solu-
tions are given by

f(r) =j i(kr), r(R,
f(r) =Ak((ar), r) R,

where j& is the spherical Bessel function of the first
kind and k~ is the modified spherical Bessel function of
the third, kind. l corresponds to the angular-momentum
quantum number of the electron. The electronic energy
is determined from the boundary conditions

dlnj, (kr)q dink, ( r))
~

~

dr /g dr
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Turning our attention to the ground state of the
system, the total bubble energy can now be written
using Eqs. (2), (3), and (22):

A'&o'
E&= X'+4sR'y+ srrR'-P.

2m
(23)

The stable condguration is obtained from the relation.

BEg fz'ko' Bx BE,
X + +4&rR'P =0.

BR m BE. BR
(24)

Application of Eq. (21) leads to the result

ksX (1—X')

ksR (I—X') '"+1 (25)

The ground-state energy of the system is then obtained
from Eqs. (19b), (25), and (22). We have thus obtained
a simple manageable approximation which will prove to
be no worse than the variational methods previously
app] ied 11

&
12

IV. THE PRESSURE DEPENDENCE OF
THE BUBBLE RADIUS

To determine the pressure dependence of Uo from
Eqs. (4) and (5), use has been made of the density meas-
urements of Keesom and Keesom. 23 These results, col-
lected in Table II, are in good agreement (at P=0) with
the calculation of Burdick" and the experimental data
of Sommer' and of Woolf and Rayfield. ' Now, to deter-
mine the bubble radius, the surface tension has to be
specihed. Two difhculties immediately arise: The experi-
mental surface tension along the liquid, -vapor interface
provides only a lower limit for the estimate of the surface
work expended on the formation of a microscopic cavity
in the liquid because the electron-atom repulsion
tightens the surface, increasing the kinetic-energy
contribution, and the pressure dependence of the sur-
face tension is not known. The calculation of Reiss et a/. '4

of the energy expended on the introduction of a spherical
cavity in a classical rigid-sphere Quid is not applicable
for liquid helium below the boiling point because it
predicts that the surface energy is proportional to T.
Hiroike et a/. ' provided a calculation of the surface
tension determining the energy for bubble formation in
liquid helium by making use of the forrnal similarity

~ W. H. Keesom and A. P. Keesom, Leiden Commun. 224d
(1933).

24 H. Reiss, H. L. Frisch, E. Helfand, and J. L. Lebowitz, $.
Chem. Phys. 32, 119 (1960)&.

so that the stability criterion (23) can be written in the
simple form

BEs
+ +4~R'P =0.

m(R~+ I) BR

TABLE II. The pressure dependence of the interaction energy of
an excess electron with the unperturbed Quid.

I' (atm)

0
4
8

12
16
20

ps (giem')

0.1452
0.1508
0.1562
0.1607
0.1648
0.1685

2.219
2.191
2.166
2.145
2.128
2.112

u, {L-I)

0.540
0.553
0.564
0.575
0.583
0.592

V, (eV)

1.111
1.165
1.212
1.259
1.295
1.335

&~G =0.7&Cpo, (27)

where C is the velocity of 6rst sound, . This result is
valid at T=O'K. The sound measurements of Atkins
and Stasior" have been used to compute y~G.

In view of these ambiguities in the determination of
the surface tension, an attempt was hrst made to com-
bine the experimental results of Springett and Donnelly'
on the pressure dependence of R with the predictions of
the Wigner-Seitz model to derive a set of pressure-
dependent values for the surface tension. From Eq.
(24) we get the values of BE,/BR as a function of the
pressure (Table III). Assuming that all the variation
of E, arises from structural changes on the surface of
the bubble, and that the surface tension is independent
of the bubble radius, we get BE,/BR=8&ryR. The pres-
sure depend. ence of the surface tension thus obtained
is d.isplayed in Table III. The value at P=O is in agree-
ment with the model of Hiroike et ul. The effective sur-
face tension of the bubble increases by about a factor of
3 in the pressure range of 0—20 atm. These results show
the same trend as the estimate based on the Amit-Gross
theory" of the free surface, which predicts a factor of 2.
An alternative theoretical estimate based on the Wigner-
Seitz model was carried out for the pressure dependence
of R. Here the surface tension at the vapor pressure was
htted to give the experimental E value and y was varied
with pressure according to the Amit-Gross formula.
The energy curves thus obtained are presented in Fig. 1.
As it is apparent from Fig. 2, the agreement with the

s& D. Amit and E. P. Gross, Phys. Rev. 145, 130 (1966).
s& K. R. Atkins and R. A. Stasior, Can. J.Phys. 31, 1156 (1953).

between the pair distribution function of a boson system
with the wave function expressed as a product of pair
wave functions and the pair distribution function of a
classical Quid. The calculated surface tension was

plr ——0.53 dyn/cm at T=O'K and the surface energy
was found to be linear in R' for the range R=5—50 A.
The surface tension was found to vary approximately
as po', provided that the radial distribution function was
not a6ected by the increase of pressure. Another source
of information for the pressure dependence of the surface
tension is provided from the computations of Amit and
Gross" for the surface tension at a plane surface using
a 6 function pseudopotential for helium-helium interac-
tion within the Hartree approximation. The free-surface
tension was expressed in the form
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TABLE III. Estimated values of the pressure dependence
by the Wigner-Seitz method.

17.0

I6.0

I l I I I I I

~o'
(atm) (expt) BE,/BZ

0 15.96 2.3X10
4 13.30+0.5 2.8X10 6

8 12.15+0.5 3.2X 10
12 11.39~0.5 3.6X10 '
16 10.77~0.5 4.2X10 6

20 10.22+0.5 5.1X10 '

7
(dyn/cm)

0.57"
0.85+0.04
1.06+0.11
1.27&0.19
1.56+0.13
1.97+0.39

0.38
0.44
0.50
0.55
0.60
0.65

0.53

v~G =o.7 va
(dyn/cm) (dyn/cm) 15.0

14,0
R{A)

15.0

12.0

a Experimental values from Ref. 17.
b The error in this value is quite small. Springett and Donnelly (Ref. 17)

take the radius at I' =0 as known independently of their calculation of the
pressure dependence of R. The other errors quoted arise from the experi-
mental uncertainty in the R values.

experimental data is satisfactory, the discrepancy being
of the order of the radius of the helium atom.

Some variational calculations were also performed
applying the variational method. ""Using the value of
&=0.53 dyn/cm obtained by Hiroike ef al. 's for I'=0,
the surface tension at different pressures was scaled
again according to the Amit-Gross formula. The results
for the pressure dependence of E. are of the same quality
as obtained by the Wigner-Seitz model. For the sake
of comparison we have also performed a calculation for
the primitive model of a particle in a box using the
same scaling procedure for the surface tension. These
results are presented in Fig. 2, while in Fig. 3 we present
the pressure dependence of the electronic ground-state
energy calculated by the different techniques. Finally,
we have also performed a calculation using Clark's
modeP4 based on a 8 function pseudopotential for the
helium-electron and helium-helium interactions. This
treatment leads to the result 8=1 5(8 rrap )s'~s. This
equation does not predict the proper pressure depend-
ence of R.

From these results we conclude that somewhat more
sophisticated models than that of the particle in the box,
which take into account properly the bubble energy,

I I.O

I I I I I I I I I0' 0 2 4 6 8 10 12 14 16 18 20
P {atm�)

Fro. 2. The pressure dependence of the radius of the negative
ion: (1) Experimental data (Ref. 17); (2) the Wigner-Seitz model
with the surface tension fitted (y=0.57 dyn/cm) at P=0 and
scaled by Cpo,'(3) the particle in the box model Gtted and scaled
as in 2. (4) Clark's formula (Ref. 14};(5) the variational method
with the surface tension, y=0.53 dyn/cm at P=O and y scaled
according to po' at higher pressures. (6) the variational method with
7=0.53 dyn/cm at P=O and scaled by Cps at higher pressures.

give a reasonable account of the pressure dependence
of the size of the negative ion in liquid helium.

V. DISCUSSION

We have presented a treatment based on the Wigner-
Seitz model of the localized state of an excess electron
in a nonpolar dense Quid characterized by a positive
scattering length. The predictions of this model."regard-
ing the radius of the negative ion in liquid helium and
its pressure dependence are similar to the results of the
more elaborate calculations based on the variational
method. From these results we conclude that:

(a) The remarkable compressibility ot the negative
ion in liquid helium arises from the pressure dependence
of the bubble energy E&. The pressure-volume term
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the ground-state po-
tential curves for the
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Fio. 3. The pressure dependence of the electronic energy of the
negative ion: (1) Fitting of experimental data; (2) Wigner-Seitz
model with the surface tension fitted (p=0.57 dyn/cm) at P =0
and scaled by Cpa,. {3) the particle in box model 6tted as in 2;
(4a) kinetic energy for the variational method fitted as in 2; (4)
total electronic energy for the variational method 6tted as in 2.
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and the surface term each contributes about equally
to the pressure depend. ence of R.

(b) The pressure dependence of the surface tension
required to account for the change in the radius of the
negative ion amounts to an increase of the surface
tension by a factor of 2—3 over the pressure range of
0—20 atm, and, is roughly consistent with the theory of
Amit and Gross.

(c) Once the bubble model for electron localization in
liquid helium is accepted, the details of the electron-
helium interaction potential are not very important in
accounting for the pressure depend. ence of the bubble
radius.

(d) The energy of the quasifree electron state in
unperturbed liquid helium increases by about 20% in
the pressure range of 0—20 atm. On the other hand, the
energy of the localized electron state increases by about
50'Po in this pressure range. However, even at higher
pressures the energy of the localized. state is still lower
than the free-state energy, and the bubble is the
energetically stable configuration. This conclusion is
consistent with previous calculations" based on the
variational method which indicate that the pressure
necessary to induce a transition from the localized to
the delocalized. state in liquid helium is higher than the
melting pressure of the liquid.

We shall now turn our attention to a detailed com-
parison of the Wigner —Seitz and, the variational methods
which were used to account for the electron —liquid-
helium interactions. It should be pointed out that the
variational method, does not lead to a reliable descrip-
tion of the electron-helium interactions in the limit
E—+ 0, so that this treatment d.oes not account properly
for the energy of a quasifree electron state in the un-
perturbed Quid. . In this case, the variational method.
leads to an electronic energy which can be expressed
in the form" (Us) „=4rrppf (V+Ug)r'dr corresponding
to the product of the number density and the Fourier
transform of the electron-helium atom pseudopotential,
evaluated at k=0. This result, in effect, inserts the
Born approximation, which is not applicable for the
strongly interacting electron-helium atom system and
therefore leads to an overestimate of the interaction
energy, into the optical model, which does not account
for multiple-scattering sects and thus underestimates
the interaction energy. Although the result obtained
by the pseudopotential method (Ue) „=1.32 eV for
liquid He at 1'K is in reasonable agreement with the
energy calculated by the Wigner —Seitz mod. el Vo= 1.11
eV and with the experimental resultr (Us),„~=1.02
&0.08 eV, it should be noted. that the agreement is a
consequence of the mutual cancellation of somewhat
serious errors. Besides, the variational method predicts
a wrong density dependence of Vo at high densities,
while the signer —Seitz mod. el pred, icts the same linear
dependence of Us on pe (of the form Us ——(h'/m)2s. petr)
at low d,ensities and a superlinear increase of Vo with

ps at densities comparable to that of the liquid. As far
as the localized state of an excess electron in liquid
helium is concerned, the variational method leads to
somewhat higher electronic energy than the Wigner-
Seitz model. A direct experimental determination of the
ground-state electronic energy will involve the ob-
servation of the threshold for photo-ionization of the
electron from the ground state in the cavity to the
continuum quasifree state, as in the experiment of
Northby and Sanders. ' Since the continuum state is
located at 1.04 eV, while the ground. -electronic state
(at P=O) is located either at 0.12 eV (according to the
Wigner —Seitz model) or at 0.24 eV (according to the
variational treatment), the photo-ionization thresholds
predicted by the two models are 0.92 eV (Wigner-
Seitz) and 0.80 eV (variational). A direct experimental
determination of the photo-ionization threshold, will
therefore be of considerable interest. '7

Regarding the relative merits of the two methods,
it should be pointed, out that in view of the simplicity
of the Wigner —Seitz model it will prove to be extremely
useful for the treatment of bound and free excited
electronic states of an excess electron in a dense non-
polar Quid. . In this case, the variational method. will be
fraught with difhculties in view of the orthogonality
restrictions imposed on the pseudo-wave function for
the excited state which has to be orthogonal to all the
lower unoccupied states. The simple mathematical
structure of the equations derived by the Wigner —Seitz
method makes it also possible" to derive some general
stability conditions for a localized, state of an excess
electron in a nonpolar Quid characterized by a positive
scattering length. We are also hopeful that the Wigner-
Seitz method. can be made to yield aa improvement
over existing models, of solvated electrons in polar
Qulds.

We now turn our attention to some predictions of
the model employed in the present work which will
help to provide further information concerning the
properties of the free and. bound electrons in liquid
helium.

(a) The barrier of liquid He4 to adiabatic penetration
by an electron is expected, to increase by about 20% in
the pressure range 0—20 atm at 1'K. This effect is
amenable to experimental observation. In this context
it is also interesting to point out that the energy barrier
of He' for electron injection should be considerably
lower, because of the lower density of this Quid. The
calculated energy of the free-electron state in liquid, He'
is V0=0.59 eV at 3'K and, V0=0.74 eV at 1'K. An
experimental observation of this lower barrier for elec-
tron injection into He' will be of considerable interest.

"J.A. Northby and T. M. Sanders, Bull. Am. Phys. Soc. 11,
36i (1966)."B.E. Springett, J. jortner, and M. H. Cohen, Bull. Am.
Phys. Soc. II, 12, 97 {1967)

2' J. Jortner, J. Chem. Phys. 30, 839 (1959).
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(b) It has been already mentioned that the photo-
ionization experiments of negative ions in liquid helium
of Northby and Sanders'~ are of considerable interest
in determining the ground-state energy of the negative
ion.

(c) The effective inertial mass of the negative ion in
liquid helium can be obtained by microwave measure-
ments of momentum relaxation times. " The inertial
mass M* of a sphere oscillating at frequency ~ due to
viscous Qow in the normal Quid just below the X point
can be estimated as

M~=-,ss-poR'(1+-,'(p 8/psR)),

where p„ is the normal fiuid density (so that at
++Txp (Ps/Po)~1], ti ls the normal Auld vtscoslty, and
8= (2sr)/cop )'~' is the penetration depth. Since M* is
approximately proportional to E.', our results imply
that the internal effective mass should d.ecrease by
about a factor of 2 in the pressure range 0—20 atm.

(d) The vibration frequency for the symmetric
stretching mode of the negative ion can be determined
from Fig. 1 in the form r = (1/2s. ) (f//3II)t~', where the
force constant f is given by f= s (O'E~/r)r')„=rr. Taking
the oscillator mass to be equal to the experimental
inertial mass M=M*= (110+100, —30)Mn, the sym-
metric vibration frequency is found to be surprisingly
low: r=4)&10" sec ' at p=0 and r =10" sec ' at

p= 20 atm. Because other (asymmetric) vibration modes
of the negative ion should be characterized by compar-
able frequencies, microwave absorption measurements
(in the frequency range of 10 GHz) on negative ions in
liquid helium will determine these low-frequency
modes. These low-vibration frequencies of the negative
ion are probably not related to the periodic discontinui-
ties in the mobilities of ions in liquid He II observed by
Careri et al. ,so" since the same effect is also experi-
mentally observed in the case of the positive ion.
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errata

Relativistic Self-Consistent-Field Theory for
Closed-Shell Atoms, YoNo-Kr KrM LPhys. Rev. 154,
17 (1967)].The right-hand side of Eq. (128) should be
multiplied by —',. The "experimental" energy of the He
atom in the Concluding Remarks should be E, p~=
—2.903387 (&1.1X10—') atomic units. Also in the
same section, the relativistic correction calculated by
Pekeris (Ref. 36) corresponding to ours should be

E' 2A

(gs+g~) in Eq. (3.6) should be replaced by (gs —gsr),
and the right-hand sides of all of the six equations
denoted by Eq. (3.9) should be multiplied by a factor
-',

t which is the ratio (gs —gsr)/(gs+grr)]. The gpol's

(and. consequently the gs's), which were obtained
through Eq. (3.9) and which were listed in Table I
should be replaced by a set of new values. The new
values are given in the following Table I and they show
better agreement with the experimental values.

Hyperfine Splittings and g& Values of Metastable
Hs, LUE YUrrc-CHow CHrU LPhys. Rev. 145, 1 (1966)].
A phase factor (—1)~+~' has been neglected in evalua-
ting the matrix element for the term Ht(hfs). The
right-hand side of the 6rst two equations in the right
column of p. 3 should be multiplied by a factor
(—1)~+~'. So whenever J'—5=+1, a negative sign
will appear before the coupling constant a. Consequently
a in Eqs. (2.8a), (2.8b), (3.4) (for both P and I'),
and (3.8) should be replaced by —a. Et and Es which
are obtained through Eq. (3.8) should now read

Et——1097.70 Mc/sec, Es= 1053.42 Mc/sec. (4.2)

Owing to the same phase-factor error, the quantity

TAsLz L Calculated gr&'& and gr (=gr&'&+grt'&) values for X=1
rotational level of the c'7f.„state of ortho-H2.

—0.003
~ ~ ~

+0.624
+0.62411.878
+1.042
+0.833

—0.211
~ ~ 0

+0.257
+0.028-0.046—0.028

0

—0.214
~ 0 ~

+0.881
+0.652
+1.832
+1.014
+0.833

The author wishes to thank Dr A. N. Jette for. calling
her attention to a sign error which led to the above
coI'l ections.


