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This is the first of two papers in which the high-density charged Bose gas at zero temperature is treated
by two independent and self-contained methods. In this paper, we are concerned with the excitation spec-
trum of the system. An analysis of the formal and physical aspects of the theory is followed by a simple
numerical calculation. We apply the usual Geld-theoretic formulation for a Bose system. The Green's
functions and other response functions, or propagators, are analyzed, emphasizing the role of the dielectric
constant. The general features of the excitation spectrum are described. To apply and to further illustrate
the formalism, the low-lying levels are numerically determined to the order of r sf' in units of co~i (the next
order beyond the Bogoliubov approximation). r, is the ratio of the average interparticle distance to the
Bohr radius and co» is the plasma frequency.

I. IN'TRODUCTIOÃ

t iHE theory of a high-density charged Bose gas was..first studied by Foldy' in the Bogoliubov approxi-
mation, which is the lowest-order approximation in.
the expansion parameter r,'t'4. The next order approxi-
mation has been studied by Brueckner' and by Lee
and Feenberg, ' who were only concerned with the
ground-state energy. Various aspects of the theory
have also been studied by other authors. '

The long-range force and the Bose-Einstein conden-
sation are the two outstanding features of the charged
Bose system. They give rise to divergent terms in the
usual perturbation calculation of the ground-state
energy. The difhculty was not resolved until Brueckner2
demonstrated that the divergent terms cancel and the
result is well behaved if one handles the perturbation
series consistently.

The appearance of canceling divergent terms implies
that an understanding of the formal structure and the
more qualitative aspects of the theory has been lacking.
While the Coulomb force has been studied extensively
for an electron gas, and the formal theory of a neutral
Bose system has also been investigated, "the charged
Bose system has not received sufhcient attention. This
paper is devoted to the exploration of the formal
structure of the theory in order to demonstrate the

*This research was supported by the Advanced Research
Projects Agency and was monitored by the U.S. Army Research
Ofhce, Durham, under Contract No. DA-31-124-ARO-D-257;
and the Atomic Energy Commission.' L. L. Foldy, Phys. Rev. 124, 649 (1961).
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physical implications of the long-range Coulomb inter-
action and the Bose-Einstein condensation. We shall
employ the usual field-theory method and focus our
attention on the excitation spectrum. The formal and
qualitative analysis provides us with a perturbation
calculation involving no divergent term at all.

In Sec. II, we introduce the Green's functions, the
density and current propagators, the dielectric constant,
and other related functions. By analyzing the structure
of the diagrams and through the conservation laws, we
derive exact relations among the functions and illustrate
the role of the dielectric constant. Following the formal
analysis, we give, in Sec. III, a qualitative description
of the excited states. The excitation spectrum, as a
function of the momentum k of the system, is found to
have the following features. For k larger than a certain
cgtog ettonsesttstm, there is a continuum of energy levels
starting from a finite threshold. For k less than the
cutoB momentum, there is, in addition, a discrete level
below the continuum (see Fig. 8). The relationship
between the discrete level and the threshold of the
continuum is discussed. The origin of the finite energy
gap and the absence of the low-lying transverse excit-
ations is also discussed. In Sec. IV, the perturbation
expansion in powers of r,'14 for the energy of the discrete
level is made. The zeroth-order approximation (i.e.,
the Bogoliubov approximation) and the first-order ap-
proximation are studied. The 6rst-order term is then
determined by evaluating the relevant diagrams nu-
merically. The formalism enables us to have a simple
numerical procedure involving no divergence or ill-
dedned integrals. Our results are thus exact to the
order r,314. A few comments are given in Sec. V.

H. FORMAL STRUCTURE OF THE THEORY

In this section, we set up the formalism and derive
a few exact relations which display the simple and
important physical features of the theory. Some of
these exact relations will be the basis for later calcu-
lations.
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A. The Hamiltonian

(2.2)

p, is the chemical potential and m is the total density,
which is a 6xed constant. The zero-momentum oscillator
is treated classically, i.e.,

Co =CO=~60 (2 3)

and mo is regarded as a c number. No is determined by
the condition that the free energy shall be minimum
at the correct value of eo..

(8/BNo) (H) =0. (2.4)

The brackets ( ~ ~ ) will always denote the ground-state
Rvclagc. Thc chemical potcntlR1 p ls dctclIDlncd by

—(8/Bp, ) (H) =n (2.5)

The total number of particles not in the condensate
is denoted by e':

S —S So (2.6)

Writing out ao and rot explicitly, the density Quctu-
ation pi, has the form

pi, =(V'rio) (ai,+a i')+g a, 'a,pi, . (2.7)

Henceforth, the zero-momentum subscript will always
be excluded. The current operator Ji, is defined as

Ji,= (k/2m) (+no) (ai,—a i,t) +m ' Q(p+-', Ir) a, t~i, .

(2 8)

Substituting (2.7) in (2.1), we see that there are
three kinds of interaction terms, proportional to mo,

iso'~', and eo', respectively. The corresponding diagrams
are shown in Fig. 1.A wavy line represents the Coulomb
potential and each dotted line represents a factor eo'~'.

The unperturbed ground state is then formally a
vacuum. We now have a well-dined held-theory model.

3. The Proyagators and the Dielectric Constant

The properties of the system of physical interest are
summarized in a few propagators; e.g., the singularities
of the Green's functions, the density, and the current
propagators will give us the energies of some of the
excited states. The long-range character of the Coulomb
force is most CGectively analyzed by introducing the

The Hamiltonian (the free energy) of the charged
Bose system in a unit volume is

&=+ ri~(oa —p)+Q &a(pi pi' —0)/2, (2.&)
h tre-'0

~here
oi,

——k'/2m,

=(G '—M) ', (2 9)

where Go is the unperturbed Green's function. From R

physical viewpoint, a great deal has been gained by

(c)

Fzc. 1. The three types of interactions.

dielectric constant. In the following we shall deduce,
from the structure of the diagrams, the connections
among the Green's functions, the density, and the
current propagators and the dielectric constant.

An important notion in the dielectric constant ap-
proach is that of the "irreducible diagram. " In this
paper, we shall call a function irreducible, if every one
of the diagrams contributing to it is an irreducible
diagram, i.e., a diagram which is not made of two
parts connected only by a single interaction line. In
this paper, we shall use the word proper to denote the
fact that a praper diagram is not made of two parts
joined by a single one-particle line. For example, the
self-energy diagrams are proper but may be reducible.

In the following analysis we shall define quite a few
functions and derive many formulas (mainly through
the summation of various geometric series). In order
to clarify the motivation of such an analysis so that
the physical meaning of these functions and formulas
will be transparent, let us review briefly some of the
well-known characteristics of a low-density system with
a short-range interaction, and compare them to those
for a charged Bose system.

A dilute system with a short-range interaction is
conveniently characterized by two length parameters,
the range of the force and. the mean free path. The
theory is usually concerned with the correlations or
the propagations of various fluctuations over a distance
comparable to or smaller than the mean free path
(for those over a distance much larger than the mean
free path, the macroscopic theory will take over).
These propagations of Quctuations are mainly due to
the motion of the particles; i.e., the energy and mo-

mentum generated. by the source of Quctuations are
carried by one or more particles to other parts of the
system and give rise to the correlations. The interaction
does not play a part directly in the correlations of
fluctuations unless the distance involved is within the
force range. Thus, the Green's function, which describes
the propagation of a particle through the medium,

plays the essential role in the theory. An analysis of
the structure of the Green's function will reveal much

physical characteristics of the system. The hrst step
in analyzing the structure of the Green's function G is
to express it in terms of the self-energy 3f by summing
the geometric series

G =Go+GoMGo+Go&Goilf Go+ ' ' '
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summing the geometric series, because, with formula
(2.9), one does not have to know much about M to
have a fairly clear picture of the single-particle propa-
gation. For example, if the imaginary part of M is
small, a Lorentzian-shape spectrum follows and a
rough estimate of many quantities of physical interest
such as the mean free path can be made. From a
mathematical viewpoint, the summing of the whole
geometric series is essential because any truncated series
expansion of 6 is meaningless in the region near the
singularities of G, which is often the region of interest.
While G becomes singular, M is often well behaved.
Then a truncated expansion for 6 ' will be useful and
the singularities of G may be studied approximately.
In short, the summation of the geometric series (2.9)
often allows one to construct a well-behaved pertur-
bation expansion as well as to gain much physical
insight to the problem. It is usually the only useful
exact relation one can derive by a straightforward
summation. The next step of the theory would be the
analysis of the self-energy M and the other propagators
constructed from G.

In contrast to a dilute system with a short-range
interaction, the mean free path is no longer a useful
concept for a charged system. The motion of a particle
is constantly affected by all other particles through
the instantaneous infinite-range Coulomb force. The
propagations of fluctuations over any distance are
mainly due to the long-range interaction instead of the
motion of the particles. Roughly speaking, the particles
now play the part which the interaction plays in the
short-range case discussed above. They disturb the
lines of force so that the "shielding length" plays the
part of the mean free path in the short-range case.
We want to emphasize that, unlike the mean free path
in the dilute system discussed above, the concept of
the shielding length in a charged system is not a con-
crete one. The modihed Coulomb-interaction line still
has an infinite range (i.e., proportional to 1/k' for a
small momentum transfer k) except at zero-energy
transfer. In other words, only the static Coulomb field
is shielded. The interaction with the modi6cation of the
medium is defined as the bare Coulomb potential
divided by the dielectric constant. Thus, the dielectric
constant is the fundamental concept in the theory.
The density Quctuation is the source of the fluctuation
of the Coulomb force. Thus the density propagator is
closely related to the dielectric constant. For a Bose
system, by (2.2), the density fluctuation is directly
related to the single-particle amplitude as well as the
two-particle amplitude. Therefore, the Green's function
is also closely related to the dielectric constant. It is
now clear that the dielectric constant plays the essential
role in the theory of the charged Bose system. As the
step equivalent to the summation of the geometric
series for the Green's function in (2.9), we have to sum
many geometiic series involving the dielectric constant
and the closely related propagators, Various proper

if p= —. {2.1O)

The Green's functions form a 2&(2 matrix.

(2.11)

The density and current to single-particle amplitude
propagators are dehned as

8„= i dt e'"'(T—(pg(t) ag»)),

6"= i dt—e'"'(T(aj,&(t) p~t) )

6 '= —i dte'"' T Ji,' t gi,»

(2.12)

The density and current propagators are

&'(k o)) = i dt e'"—'(T(Jg'(t) pgt)),

The indices i, j will always label the components of

irreducible functions will play the part of M in (2.9).
Like (2.9), the results of summing these geometric
series will enable us to gain much physical insight and
to construct perturbation expansions which are well
behaved near the singularities of the modified inter-
action line and of various propagators. Like the singu-
larity of Go in (2.9), the 1/k' singularity of the bare
interaction line can cause no trouble after the geometric
series are summed. We comment here that, because of
the weakness (i.e., having no hard core) and the simple
form of the Coulomb force, these geometric sums, which
we now proceed to study, will display much more
physical features for a charged Bose system than (2.9)
does for a dilute system with a short-range interaction.

We now list our dehnitions of the propagators. Ke
shall use script letters to denote the propagators.
Irreducible functions will be denoted by capital letters.
Unless otherwise specified, the arguments of the func-
tions are always (k, ~). For simplicity, we introduce
the Greek indices, each assuming two values, + and —,
so that

if p=+,
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3~F + F + F + ~ ~ ~

V V

F F

V

F
F

I-YF

FIG. 2. The density propa-
gator. A heavy dot represents
a density vertex.

F=A G &A"+F. '

F'=A 'G ~A"+F'"

F*~=A„'G„~A,"+F'~". (2.19)

We further separate out the proper part of the p's
(see Fig. 4) and write

3 vectors. The function

i—df e' '(T(pj, (t)Jq't))

can be shown' to be the same as F'.
The following symmetry properties are easily deduced

from the space and the time-inversion invariance of the
system':

e."=O. =S-; (-h, —),
e„=e =e „(—lr, —~),
e '=e'=e '( —lt —~)

O:=O( —k, —(o) =P(—k, ce),

f'=O'( &-cv-) = -P'(-k re)

O' =O' (-it, —~) =S' (-lr, ~) =r '. (2.14)

(2.15)S=F/e.

Since 5 is obtained from p by summing a geometric
series (see Fig. 2), we see that

&=i—vp, (2.16)

Henceforth, all the propagators and the related irre-
ducible functions are regarded as functions of complex
~. For real ~ we let co approach from above the real
axis if ~&0, and from below, if co&0.

The irreducible functions corresponding to the above
propagators are G„&, C&, C» C,&, C„', p, p', and p'~.

They correspondingly satisfy the symmetry relations
(2.14) .

We now define the dielectric constant e (not to be
confused with the unperturbed single-particle energy
e&

——k'/2m) by

The P"'s are proper as well as irreducible.
The cylindrical symmetry about the momentum k

enables us to draw the following conclusions. Let the
indices i, 2 denote the transverse components of a
3 vector and 3 denote the longitudinal component.
Then we have

Q 1»—C 1»—p 1.,2 —pl, 2 —pl, 2r 0

+18 5'28 P18 P23 P13r P23p 0)

$'12 —P12 P12r 0

It follows from (2.17), (2.19), (2.20) that

pll $'22 Pll P22 P11r P22r

(2.20)

(2.21)

Thus the full transverse-current propagators are proper
and irreducible.

Let us now go back to the Green's functions. The
self-energy OR (a 2&&2 matrix) is defined through
Dyson's equation:

g '=Gs ' —OR, (2.22)

where Go is the unperturbed Green's function matrix:

G~+=(~—es+p) '

Go +=0. (2.23)

n=-det
~

8-i
~,

g=ol, /n. (2.24)

Clearly, 5K and X have the same symmetry properties
that g has, Lsee (2.14)j.Let

Let the numerator X and the denominator S be
defined as

where V=Vs=4ses/ks. It is easily seen from Fig. 2

that V/e is the modified interaction line and (2.15) is
equivalent to the previous definition of e. It follows that

cP F%/e

P"=F"+F'F' V/e (2.17)

Then

~2=5K o

K+ =(8+es—@+OR

S=-,'(OR,+yOR:), e=——,'(OR,+—OR:),
(2.25)

The vertex functions A„, A", A„', h.;" are defined as
(see Fig. 3)

C„=A„G„",

C„'=h.„'G„',

C~=G ~A."

X-+ 5E2

(& tt) (es ++3 ORs) (es p+3+ORs) .

(2.26)

%e define W, D, 3f, 5, A, M2 as the irreducible functions

C;"=G "g.". (2.18)

Repeated Greek indices are summed. The A.'s satisfy
the symmetry relations for the C's in (2.14) .

& The syInlnetry properties of the propagators are discussed in
Ref, 5,

FIG. 3. The irreducible density (or current)
to single-particle amplitude propagator. The
heavy dots are density (or current) vertices.



We may not use the fu11 dielectric constant e here be-
cause the single isolated one-particle Hnes are excluded
from 9R.

Substituting (2.27) in (2.26), we obtain

m =D (V//3") A„N—„»h". .(2.28)

Since the dielectric constant is, by (2.16), (2.19),

corresponding to K, S, 9R, 8, 8„0R3.Equations (2.22),
(2.24), (2.25), and (2.26) remain valid with the script,
letters replaced by the corresponding capital letters.
The functions S, D, M, 5, 2, M~ are all both proper
and irreducibl.

Now it is a straightforward matter to combine
irreducible functions to obtain the functions repre-
sented by script letters. By Fig. 5, the self-energy 9R
may be written as

m„» =A»A„V/@+M;,

(2.27)

4=;.;F3'+ Fn. 5. The self-energy in terms of
irreducible functions.

are unique for a charged. Bose system. For a charged
Fermi system, the density or current does not couple
to the single-particle operators, i.e., A„=A„'=0. Thus,
speaking loosely, for a Fermi system, one would have

C. Some Consequences of the Continuity Equation

e=0, (2.35)

so that the Green's functions would be irreducible and
would not depend on the dielectric constant explicitly.
In the Bose system, as is shown by (2.31), the dielectric
constant plays an essential role in the structure of the
Green's functions, although it does not, according to
(2.34), affect the transverse propagators directly. We
shall discuss these points more fuOy in the next section.

=1—V(A„G„»A."+&"),

Eq. (2.28) becomes

(229)

The propagators involving the longitudinal current
Jq' are related to those involving the density Quctuation
pq through the continuity equation

3 (DPI,/Bt) =kJj,3.

X)= (3/3') D. (2.30)

8„»=3 '(3 G;+(V/-D) I »h»h, ), (2-. .31)

6„=cl„G„"/3,

e„3=(F3(V/.)A„+X„3)G;, (2.32)

We now summarize our results by expressing the
propagators in terms of the dielectric constant and the
irreducible functions. G)F =k$

3353=k[%3+(n/333) ].
By (2.15), (2.17), we see that

G0P=kF
p

a&F3 =k[F33+ (33/333) ].

(2.3'7)

(2.38)

By taking the time derivatives of the propagators and
keeping track of the discontinuity due to the time
ordering, one easily obtains from (2.13)

P3 P3/3

cP3 —F33+F3F3V/3

&= (k3/(u3) [5:33+(I/m) j,
F= (k'/~') [F"+(I/~) j.

(2.33)
F10111 (2.12) we obta1I1

(2.39)

+11 f'22 Pile F3& (2.34)

While (2.34) is a trivial identify for any system (with
no tensor force) and (2.33) holds for any charged
system, Fermi or Bose, the results (2.31) and (2.32)

(2.31) is obtained through Eqs. (2.24)-(2.29). The
Eqs. (2.32) are easily seen from Fig. 6. Equations
(233) are just (2.15), (2.17). The above propagators
involve the single-particle amplitude and the longi-
tudinal current. Both are invariant under the rotation
about k. The nonvanishing transverse-current propa-
gators are, by (2.21),

(V8» =k8»3+ (+333)P„,

fol' I3 = +~

fol p=—
T"e «rm (No) I p», comes from the commutator

"'j=( o)"'p..
Using (2.32) and (2.40), we obtain

cob,G»'=kA„3.G» "+(np) "'p„
Similarly,

~G„»A"=kG„»A,"+(33,) «3P»,

(2.40)

(2.41)

(2.43)

(2.44)

FIG. 4. The irreducible density I'or
current) propagator. The heavy dots
are density (or current) vertices.

F+ Q +: Ff
h

where p"=p» (243) and (2.44) are the same since
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Fto. 6. The fulI density (or current)
to single-particle amplitude propagator
in terms of irreducible functions.

From the definition of F", F'", F""
t see (2.19)j and

the Eqs. (2.38, 2,43, 2.44), we can express the relation-

ship among F" F " and F " as

rdF" =kF" (re)—"'P„A", (2.45)

ceFsr =k (Fssr+ (I/m) )—(rre) iisA sP& (2.46)

F"= (k'/oi') (F""+(I/m) )

The formulas (2.37)—(2.39) apply also to a Fermi
system while (2.43)—(2.47) are meaningful only for a
Bose system. These formulas derived above from the
continuity equation may be referred to as the %ard
identities.

So far we have been able to express the dielectric
constant and the full propagators in terms of the
functions A, M, E and etc.,- which are proper and
irreducible. In other words, we have analyzed the role
of the isolated single-interaction Hne and that of the
isolated single-particle line by summing a few geometric
series. The next step is then the study of the isolated
pair of lines and, instead of the geometric series, one
would encounter the Bethe —Salpeter-type equations.
The kernels of the integral equations and the vertex
functions will play the role of the irreducible functions
in the geometric sums. %C shall make no attempt to
analyze the structure of the Bethe —Salpeter equations
In th18 pRpcl.

III. QUALITATIVE FEATURES OF THE
EXCITED STATES

The qualitative features of the excited states are
easily understood in terms of the perturbation theory.
As in the case of an electron gas, there is only one
dimensionless parameter in the theory, i.e., r„ the ratio
of the average interparticle distance to the Bohr radius.

By choosing the appropriate system of units, as will

be seen in the- next section, the parameter of the
perturbation expansion becomes proportional to r, '~4.

Therefore, if the density is high enough so that the
perturbation expansion converges, we expect the physi-
cal picture to be tha, t given by the lowest-order ap-
proximation, i.e., the Bogoliubov approximation, with
some modifications which may be regarded as small.

%c can then apply the exact formal results derived in

the previous section to obtain a consistent description
of the excited states. The physical meaning of these
formal results then becomes more transparent. In this
section, a general description will be followed by a
brief discussion of the analytic behavior of the various

(e 2+re s) i/2=+ 8 (3 1)

where ce, i ——(4irtM'/m)"' is the plasma frequency. e~ is
the unperturbed single-particle energy k'/2ns [see
(2.2)], not to be confused with the dielectric constant
e. Thc quRslpal tlclc hRS zcI'0 hc11clty. Thc finite cncI'gy
gap co~~ is easily understood. The interference between
the particle amplitude and the amplitude of the zero-
momentum oscillator, the condensate, always produces
a density Auctuation, which implies a charge separation.
The electrostatic restoring force then comes in to play
and raises the energy,

Any excited state, in this approximation, is made of

Ch

0
0~ 2
C"

I I
t l

t i I ~~&2 .

K
1 2

in units Of (4~92nw)~~~

The energy levels
in the Bogoliubov approxima-
tion. The cutoQ momentum is
at 0=2.

functions defined in the previous section and of some
characteristic features of the excited states at small
momenta.

A. General Descriytion

In a Fermi. gas, transitions between a state with an
even number of particles and a state with an odd
number of particles are forbidden. The situation is
quite different for a Bose gas. The presence of the
condensate, which is a classical field in our model, in
the Bose system implies that the transition between a
one-partIcle state and a two-particle state Is allowed,
and hence that the transition between two states with
any number of particles is allowed unless it is forbidden
by symmetry.

Therefore, the singularities of the Green's functions
g„&(k, te) give the energies of al/ those excited states
with momentum k and zero angular momentum along
the vector k, i.e., zero helicity. The density propagator
and the longitudinal current propagator share the same
singularities with g, since they all have the same sym-
metry. This fact is already demonstrated to some
extent by our previous results (2.31)—(2.33). The
transverse-current propagator is singular at the energies
of those excited states with helicity +i. Similarly, one
can construct tensor operators with helicities ~2, ~3,
+4, and so on. The singularities of the corresponding
propagators will then give the excited-state energies of
the corresponding helicities.

In the Bogoliubov approximation (which will be
discussed more quantitatively later), a single quasi-
particle with momentum k has the energy
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FIG. 8. A rough sketch of the low-lying energy levels for r,~2.
The lowest-excited-state energy occurs at k=k0. C is the cutoB
momentum.

one or more of these noninteracting quasiparticles. The
energy levels versus the momentum is shown in Fig. 7.
We see that the lowest excited state is a single quasi-
particle state if k is less than 2, measured in units of
(4mmme')'~'. The two-particle continuum starts at the
threshold 2E~f~~, which corresponds to two quasiparti-
cles each having momentum k/2. The three-particle
continuum starts at the three particle threshold 381,fg,
and so on. For k larger than 2, which is the cutoff
momentum, beyond which no discrete level exists, the
two-particle threshold becomes lower than the single-
particle energy EP. For k larger than (12)'", the
three-particle threshoM becomes lower than the two-
particle threshold, and so on.

It is straightforward to construct a state of any
helicity and momentum from the states of two or more
quasiparticles by superposition. The important feature
is that the states with helicity greater or equal to 1
must be a state with at least two quasiparticles and
therefore have an energy greater than two times the
plasma frequency. There are no low-lying transverse
excitations. One might argue that there should be flow
patterns which involve no charge separation (i.e., purely
shear flow), and thus have lower energy than the plasma
frequency. However, such a flow pattern would mean
that the condensate flows also. This type of motion,
which is hydrodynamic in nature, is not included in the
present theory, which assumes a macroscopic occu-
pation of the zero-momentum state, i.e., a stationary
condensate. We shall not study the case of a moving
condensate here.

To go beyond the Bogoliubov approximation, we
turn on the interaction between the quasiparticles.
The above-described features will be modified. The
single quasiparticle energy will be shifted and hence
the 2-particle, 3-particle, etc. , thresholds will be shifted.
The cuto8 momentum will be shifted. For k larger than
the cuto6 momentum, the single quasiparticle becomes
unstable and will decay into 2 or more quasiparticles
with momenta less than the cutoff momentum. Besides
the decay processes, there will be scattering processes.
The important question is whether the bound states

of two or more quasiparticles can occur. If they do
occur, the above description would have to be modified
to a great extent. One can easily verify that the inter-
action between two quasiparticles is repulsive. There-
fore, the bound states are likely to be absent.

Thus, the modified-excitation spectrum consists of a
single dispersion curve ~I„ the shifted quasiparticle
energy, below the cutoff momentum plus a continuum.
The boundary of the continuum, i.e., the threshold
energy as a function of k, will be denoted by Eih (k).
It will be shown later that the dispersion curve co~ will
have a minimum &ei, at a finite momentum ko(see
Fig. 8) . Thus, for k less than 2ko,

Eih, (k) =2~i, . (3 2)

For k greater than 2ko, Eih, (k) has to be obtained
from 2'~~~, or 3coI,~3,

~ ~ ~ whichever is the smallest.

B. Analytic Behavior

In view of the above discussion, the analytic behavior
of all the functions we have studied in the previous
section can be easily deduced.

Since the singularities of all the propagators are
located symmetrically about the origin, it is more
convenient to use the co' plane instead of the co plane.

Below the cutoR momentum, for all the zero-helicity
propagators, there is a pole at co~' and a cut starting
from the threshold E&h,'(k) to infinity, i.e., a branch
point at Eii„2(k). Above the cutoff momentum, there
is no simple pole, but a branch point at Eii„2(k) for
all the propagators. In both cases, there are additional
branch points above E,h,2(k) at the thresholds of multi-
particle states. We shall not be interested in them.

, The transverse current propagator 5"=522=5""and
the functions M, E A A' I"" I"" and Ii'&'" are con-
structed from diagrams involving at least two quasipar-
ticles. Since there is no bound state, these functions
have no simple pole. They all share the cut starting
from Eii,P(k).

It is now clear that, by Eqs. (2.31), (2.32), (2.33),
(2.39), and (2.40), the simple pole of the zero-helicity
propagators g, 6, O', 7, 5', and P' must be the zero
of the dielectric constant. The poles of G (i.e., the
zeroes of D), do not give rise to any pole of the full
propagators because they are also the poles of the
dielectric constant )see (2.29)j.

The branch point co'=E (ski )2is common to all the
functions we have studied although the nature of the
branch point may differ from one function to another.
We shall not study the precise threshold behavior of
the functions but only give the following estimate in
terms of the density of the two-particle states for a
two-particle threshold. A similar estimate may be made
for a many-particle threshold in terms of the density
of many-particle states. Consider a proper irreducible
function, e.g., I'"". Near the branch point the disconti-
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nuity across the cut is

F"((o+ig) F—"(a) i—q)

d p
2&~(~-~-v+~14-~u+~n)

(2x) '

)& (a slowly varying function of co)

-~(~—Kh. (k) )e(~) (3.3)

e( )-( *)'"( —2 i)"', (3.4)

1/m*= (d'~./dP') ~~n (3.5)

measures the curvature of the dispersion curve at -,'k.
For k less than 2ko,

(3.6)p =a constant.

Therefore, at the two-particle threshold, the branch
point for a proper irreducible function is either a square-
root singularity or a logarithmic singularity.

where p2 is the density of the two-particle states near
the threshold. For k greater than 2ko,

as k approaches zero. F' is the contribution from the
continuum. The dielectric constant is then

4 = 1—(4xe'/k') F
= (N —c k ) (Gl —c k —

Go&I +07&I 8

—(4me'F'/k') (co'—c'k') ). (3.11)

Now, 8)0, as required by the f sum rule and, for a& less
than the threshold, F'&0. Therefore, we have the
following inequality for coI„which is the zero of e.

Dpi ggk. (3.12)

This inequality will provide a check on any calculation
of the dispersion curve near k=0. Furthermore, we
see that in the limit of in6nitesimal momentum, coj,

must be precisely the plasma frequency. This fact is
well known for an electron gas. Since c' is less than zero,
the negative curvature of the dispersion curve implies
that a minimum exists for the dispersion curve at
k=ko. Thus, the two-particle states with the lowest
energy will be those made of two particles each having
a momentum of magnitude ko. Therefore, the threshold
ls Qat 'fol k+2ko i.e.

C. The Disyersioa Curve at Very Small Momenta
ah, (k) =2~4„ for k(2k, . (3.13)

Ke proceed to derive an inequality which must be
satisfied by ~q for small k. The irreducible functions
are all related to the thermodynamic derivatives as
m and k approach zero. Ke emphasize that, for a
charged system, the thermodynamic derivatives are
related to the irred44cible f44nctions, not the general

propagators. This is because the interaction line Vq

for k=0 is excluded owing to the uniform neutralizing
charge background so that any ground-state diagram
is irreducible. It can be shown that, for small + and k,

F= (nk2/m) ((u' —c'k') '. (3 7)

mc' =n (dI4/dn) .

If P is greater than zero, c may be interpreted as the
speed of sound. In the present case, c' is less than zero,
as will be seen in the next section.

Equation (3.7) is in fact valid for all ~ because it
has exhausted the f sum rule, which states that the
total weight of the spectrum of P (and hence that of

F) is nk'/m Thus, fo.r any co, we have

F= (1—b) (nk'/m) (M' —c'k') '+F', (3.9)
where

F'/k'4+0, -(3.10)

7PJthough their analysis is for a neutral Bose system, it is
completely applicable (and, in fact, more rigorously here because
of the 6nite energy gap) to the irreducible functions.

The proof of (3.7) is given in Ref. 5.' The quantity
c' is de6ned by

(3.8)

The energy 2~I„must be greater than the plasma
frequency, because otherwise the small-momentum
quasiparticles would be unstable and hence would not
have a precisely defined frequency.

IV. CALCULATIONS

A. Umts

g = (4x) 414(e'm'/n) "=4~r,4~4/3'14

In the new system of units, we have

(4 1)

4xe'=m '=g. (4.2)

Here g is the parameter of the perturbation expansion.
The orders of magnitude of the quantities concerning

us are listed in the following: The number of particles
excluding the condensate, n'=0(1), the chemical po-
tential y, =O(g), the dielectric constant 4=0(1), the
irreducible Green's functions 6++=0(1), G +=0(g),
tllc llrcduclblc self-cllcl'gy M=O(g) thc lllcduclblc
density and current propagators F=0(g '), F"=0(1),
and the vertex function 4 =0(g "').

In this section, we shall determine the dispersion
curve below the cutoE momentum to the next order
beyond the Sogoliubov approximation.

YVe shall use the system of units in which the mo-
mentum or the inverse length is measured in (4xnme') '~4

and the energy is measured in the plasma frequency
~,I ——(4wne'/m)"'. Let the coupling constant g be de-
fined as
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The task is to solve the equation

e(k, ») =1—(4n.e'/k') F(k, ») =0 (4.3)
(a) (b) (c)

for ~~. It turns out that it is more convenient for
computation to express Ii in terms of F33. Substituting
(2.39) in (4.3), we have, in the new system of units,

FIG. 10. The i-ring diagr ams. (a) The longitudina1-current
vertex A,'. (b) The self-energy 3f. (c) The proper irreduci-
ble F33".

e(&, ») =1—(1/»') (1+gP"(&, ») )=0 (4 4)
(4.5), one has

Equation (2.19) gives

F88 g 3G pP v+P33t' (4 5)
Thus

F"=g '4k'(G~++G:) =g 'ea'/(oP ea') —(4 g)

The perturbation expansion of the dispersion curve has
the form e = 1—(1/~2) (1+(ea2/(g2 earn) ) 1 (oP eaa) -1

»=»"'+g& a"'+g'»&"+" .

Substituting (4.6) in (4.4), expanding in powers of g,
and setting the coeKcients to zero, one then obtains
the equations for ~I,&", co&"&, and so on. However, the
expansion is not meaningful unless ~I, is away from
the singularities of e (k, ~) .As was shown in the previous
section, every function involved in (4.5) has a branch
point at &v' =E~a,'(k) . Thus, the expansion is not mean-
ingful when» is close to E~a, (k), i.e., when k is close
to the cutoG momentum. Above the cutoff momentum,
e(k, &a) has no zero. However, one can analytically
continue e across the cut and solve (4.3) for a complex
+I„which may be interpreted as the energy of an
unstable quasiparticle. Besides the branch point, e also
has a pole located at the pole of G. This singularity is
always far away from co& and causes no difBculty.

»(0) —
L1+e„2]l/2 —E„B (4.9)

The full Green's functions in this approximation are,
by (2.31),

(4.10)g„l'=e ~(G„"+(/av/Dka) )

A little algebra shows that

8++=3(1+na) /(~ —Ea') ]—I:na/(~+E') j

where

na= (aa aa) =(2')—'(ea —EP+ (1/km) )

(4.11)

(4.6) The lowest-order» is then given by &(]r, ») =0, i e

B. The Bogoliubov Approximation

In this approximation, only the lowest-order quan-
tities are kept. (See Fig. 9.) We have

N()=S=g 1

A„=+no ——g-"',

/a„'=+no(k/2m) p„=g alap„p,

G~+=(~—ea) ',

6 +=0,

@=0, e'=0,

P33r 0 (4./)

F33

k
~~no —g

Go

'~n —g2 IYl

FIG. 9. The irreducible longitudinal
current propagator in the lowest-order
approximation.

where p„ is de6ned by (2.41). Substituting (4.7) in

Aa2=1+na, ' ~k +kg AaBa =na. (4.13)

C. First-Order Approximations

In this approximation, we also keep those diagrams
with one "ring, " the 6rst-order chemical potential, and
the zeroth-order n'. The one-ring diagrams are shown
in Fig. 10, (a) is for A.', (b) for the self-energy 3II,
and (c) for Faa'. The solid lines in the diagrams are the
full zeroth-order Green's functions given by (4.11).
The one-ring diagrams exhaust all the erst-order contri-
butions to e.

Let no'I'(&e')'I 1'„be de6ned as the 1-ring contri-
bution to A„3, then

A&a=+nozkp„+1'„(no) ~12(4~e2) &/2 (4 14)

na= —(Gag a)= —(aatg J,t)=(2Epka)-& (412)

eI, and n~ are related to the original Bogoliubov trans-
formation

~k ~ko'k ~ko'—k

through
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l
k in (4e'nme2) 1~&

FIG. j.I. ThC 6I'St-Ol de C1MI'gP ShlA'. T0 tblS 01'dCI"& tI1C dlS-
PCISiOQ CQIVC lS glVCQ bg uI, = (EI, +grog( «) m~l. ThC PR1'MDCtCX' g lS
related to r. by g=4sr.~'/3"4 Notic. e that (os&'& is negative.

Substituting (4.15), (4.16) in (4.5) and (4.4), and notic-
1ng that

D«i(k, EP) =EP' —es'=1,

vre obtain

ces' —EP'= (g/EP') $—I'ess+ ,'O'P„N-, "»P"

+-', k (P„N„«»r"+r„N„«»P")

Do)~ksp„N„(s)sp~+pssrj {417)

The explicit expressions for N, D are given by (2.26)
vrith the script letters replaced by the corresponding
capital letters. Keeping terms to the erst order, vm And

The factor +ms(4s.e')'is takes care of the interaction
line and the condensate line in Fig. 10(a). Recall that
4~@'=e '=g, and No=a —e'; thus D(u — 2~+ iu 2e (go) ~o))

Substituting (4.18) in (4.17), we have

(4 15) «s' E"'=—(g/E"') i I'"'+—es(~ "(+~ '"—i i")

fhe irreducible Gleen s functions are given by; to the
6rst order,

G(k, o)s) =N/D

—(N(m+gN(t)) /{D«i+gD(u)

=G'"(» )+{g/D"') (N"' —(D'"/D"')N"').

(4.16)

+kgb(r++r )+;(r,—r }j
+2e"LE ~~0&+e (~o)-oui) j+Pssr j

=2jv~&g~~o) (4.19)

It is a straightforward matter to a&rite down the contri-
blltlons of the diagrams shove 1n Fig. 10. %e 6M.
after some algebra,

(4.20)
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{b)

where

Q+= (gP g P g B) &~(g B+g— B+g B) r-
The quantity c', defined by (3.12), is, to order g,

c'=n(d/4/dn) =e(d/de) Ie&'&go&, I

—
e /g B—r ps (

r p4+ 1)
—1/s

and Vs= 1/ps. The n' is given by

(4.21)
= —/. 58"/X 10 'g.

We see that the inequality (3.12) is satisfied.

(4.26)

dp e„=2.2&39X10-2
(24r) ' (4.22)

p, &'& = Si'& (0, 0) —Msi'& (0, 0) . (423)

In either way, one finds

1 d'p 1p(j)— ()~„-1)—
2 (21I)' p'

= —3.0349X10 ' (4.24)

and the chemical potential p =gp, (') can be obtained by
differentiating the lowest-order ground. -state energy
with respect to e, or from the Hugenholtz —Pines
theorem4:

V. DISCUSSION

In the above analysis we have shown that a di-
electric-constant formulation is quite effective in treat-
ing a charged Bose system. In fact, the difhculty due to
the interaction at small-momentum transfers never
appears. In contrast to the case of an electron gas, the
1-ring diagrams in Fig. 10 are mof equivalent to a
random-phase approximation, in which only Fig. 10(c)
would survive. Thus, if one introduced the Bohm-Pines
plasmon coordinates and made a random-phase ap-
proximation, one would get incorrect results.

The second-order correction to the dispersion curve
is enormously more complicated. Since there have been
no experimental data on a high-density charged Bose
system at zero temperature, we feel that the calculation
to the second order would not be worthwhile.The integrals (4.20) are well defined and have been

evaluated numerically for 20 values of k below the ACKNOWLEDGMENT
cutoff momentum 4=2. The results are shown in Fig.
11. For small k Mk2 M 12 is found to be proportional %e would like to thanl Professor Keith A. Brueckner
to P (see F; 12) We g d that for suggesting the Problem and for many helPful dis-

cussions.

lim(o&ss —o& Is) /k'= —9.359X10-4 g. (4.25) W. S. Chow, S. C. Lo, and K. W. Wong, Nuovo Cimento 43,
316 (1966).


