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Existence of Zero Sound in a Fermi Liquid, *
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Sufhcient conditions are derived for ordinary and for spin zero sound to exist in a Fermi liquid. In a
pure neutral Fermi liquid, one or the other of these conditions must hold.

r 1HE purpose of this paper is to point out that it..follows from the basic notions of canonical Fermi-
liquid theory' ' that at suKciently low temperatures
(i.e., in the collisionless regime) a Fermi liquid must
sustain zero sound either in the form of density or
spin-density oscillations.

Since the only candidate for a canonical Fermi hquid
is liquid Hea, in which zero sound density waves have
now been observed, 4' this conclusion should send no
one rushing to the laboratory. It is reported here for
three reasons:

(1) In the course of the proof simple sufficient con-
ditions are derived for the existence of ordinary and
spin zero sound, which are useful in studying the possi-
bility of zero sound in anisotropic charged Fermi liquids6
(i.e. metals) .

(2) Should people succeed in current effortsr s to find
a kinetic equation to describe dilute solutions of He3 in
He4, the method used to derive these sufFicient condi-
tions, if not the conditions themselves, should prove
useful.

(3) The result has a place in the lore of normal
Fermi systems, a self-sustaining body of knowledge
with a quiet dignity and austere beauty, the paucity of
examples notwithstanding.

The conclusion follows from these basic results:

(a) I.andau's demonstration" that at sufficiently
low temperatures a single-component spin- —,

' Fermi
liquid with short-range interactions (here called a
canonical Fermi liquid) will sustain collective oscil-
lations with phase velocity pe&, provided the kinetic
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equation
A f

(rf —cose) v, (n) =cos8 p F„(n n') v, (n') (1)4~,r

has a solution for real rf with
I rf I)1. Here v, (n) is

proportional to the deformation in the mode of the
Fermi surface of spin-s quasiparticles in the direction n;
8 is the angle between n and the direction of propa-
gation; and F„(n n') is related to the forward scatter-
ing amplitude a„(n n ) for two quasiparticles of spins
s and s' and momenta npr and n'p& by

F„(n n') =A„(n n')
A//

A--( ")F""("" ft') (2)
4m.

where A„(n n') =E(0)a„(n n'), X(0) being the den-
sity of states at the Fermi surface.

(b) The stability condition, '

dn«2 —Ix.( )I'
4

dn dn'+g — —x,*(~)F.. (~ n')x. (~'), (3)
4m kr

for any 7f, (ri).
(c) The exclusion principle, which requires that"

A„(1)=0.
We shall prove from (2) —(4) and the assumption

that A is continuous in the forward direction (n=n')
and bounded, that (1) has at least one solution for
some real q greater than one in magnitude. "

This is done by 6rst making the usual decomposition
of (1)—(3) into separate equations describing spin
symmetric and antisymmetric modes. If

~=a(~t+vl) ~ =s(» ~i),

F=F»+Flt =Ftl+F«,

8=A t (+A 1 t =A t (+A )i,

'P. Nozihres, Theory of Interacting Fermi Systems (W. A.
Benjamin, Inc. , New York, 1964), p. 16.

"A. A. Abrikosov and I. M. Khalatnikov, Rept. Progr. Phys.
22, 329 (1959); D. Hone, Phys. Rev. 125, 1494 {1962).

"There are some subtle points relating to the validity of (3)
and (4) and the continuity of A in the forward direction. These
are taken up in Appendices A and B,
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then (1)—(3) separate into two sets of equations: 1+F be positive-definite:
A/

(g —cos8) v(n) =cos8 —F(n n') v(n'), (1')
4x If we define

1+F&0.

r = (1+F)v,

F(n n') =B(n n')+ dA
B(n n")F(n" n'),

4x
(2~) then using (7) we can rewrite (6) as

r = (cos%)v+Bv = Irr„v.

Equation (1') describes modes in which the two spin
populations oscillate in phase (vi=vl=v), while (1")
gives modes with the spin populations 180' out of
phase (vi = —vl =v ) . The former type is called ordi-

nary zero sound, and the latter, spin zero sound, or
spin waves.

The next step is to demonstrate that (1') has a
solution for real q greater than one in magnitude, pro-
vided that B(1))0. The identical reasoning evidently
will also require that (1") has an appropriate solution
provided C(1))0. But (5) requires that precisely one
of these conditions is met, " and hence one must have
either ordinary or spin zero sound. LNothing excludes
the possibility of both, since the conditions B(1)&0
and C(1))0 are only sufficient conditions. ]

To show that a sufFicient condition for the existence
of ordinary zero sound is that 8 be positive in the
forward direction, " we adopt a compact operator no-

tation:

dn'—F(n n') v(n') —&Fv,
4n.

dn"
F(n n") F(n" n') —+F') etc.

4

The kinetic equation (1') becomes

rlv =cos8(1+F)v; (6)

the relation between P and the forward scattering
amplitude, (2') is

O'8 „ GA dA
0& —

I ~(n) I'+ — —x*(n)F(n n') x(n'),
4m 4x 4m.

(3')

and a set (1")—(3") differing from (1')—(3') only in
the replacements v—+v, F +G/4, —and B &C/4. —Con-
dition (4) becomes

B(1)+4C(1)=o.

The condition for zero sound is that H„have the eigen-
value unity for some real ri between 1 and ~ (the range
—~ to —1 need not be considered, since the spectrum
of the kinetic equation is symmetric about 0) .

Now since II„is Hermitian when rl is real and B(n n )
is assumed to be bounded, the maximum eigenvalue
P „, of H„ is a continuous real function of q. Furthermore
since H =8, all the eigenvalues of which are less than
1 as a result of (7) and (8), X must be less than 1.
Therefore, if for some qp& 1,

then X„, will equal 1 for some qi between qp and ~,
and zero sound will propagate with velocity gyp.

When B(1))0, (10) is established by a variational
calculation:

ds
P,„)(x, II„x) =ri ' —

I x(n) I'cos8

A/—x*(n)B(n n') x(n'), (11)
4m

for arbitrary x satisfying the normalization condition

dn—
I x(n) I'=1.

4m

As a trial function for H„ take

x(8, P)=, 0(8(8e
g —cose'

=0, 8o&8(~, (12)

where A is a normalization constant and Op is a small

enough angle that

B(x)&B„&o, cos20p& x& 1. (13)

The possibility of (13) is insured by the assumption
that 8 is positive and continuous in the forward di-
rection.

With this trial function the inequality becomes

x,)1+q-' f [dx/(g —x)]
and the stability condition is the requirement that co880

'~ Barring, of course, the possibility that B(1)= C(1) =0,
which, being an accidental degeneracy, slight changes in pressure
could eliminate.

"Landau pointed out tin a remark following Eq. (15) in
Ref. (2)1 that in the weak-coupling limit, zero sound exists
provided F is positive in the forward direction. Our result re-
duces to his in this limit, since when F((1 8=F.

dx
)& Bg;2rrl —1 . (14)

co89p 'g

The coefficient of the bracket exceeds zero for every
q&1, while the coefficient of Bgp within the brackets
becomes arbitrarily large as q approaches 1 from above.
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This establishes (10) for some vg&1, and hence that
B(1))0 is a suflicient condition for the existence of
zero sound. '4

If
B(x) =Q BiPi{x),

F(2:) = Q FiPi (2r),

then B in the forward direction (B(1)) is just Q~Bt.
Since (7) has Bi=Fi/L1+Fi/(21+1) $, a sufficient con-
dition for ordinary zero-sound waves is

0&
Fl

i 1+Fi/(2~+1)
15

Evidently the corresponding condition for zero-sound
spin wRvcs ls

0
1+-,'Gi/(21+1)

16

By virtue of the exclusion principle (5), one and only
one of these conditions must hold, and therefore at least
one type of zero sound exists."

APPENDIX A

The stability condition (3) has a rather different
nature from the other results on which our conclusion
rests. Derived Fermi-squid properties fall into two
categories: microscopic and phenomenological. The
former follow rigorously for normal Fermi systems as-
suming only the validity of the appropriate pertur-
bation expansions and the smoothness of quantities
one has no reason to consider other than smooth;
the latter follow from simple kinetic and thermodynamic
arguments, always allowing for a change in the quasi-
particle energies as a consequence of changes in their
distribution function. The difference in the two ap-
proaches is that between Landau's first two papers, ''
presenting the phenomenological theory, and his third, '
which glvcs its ITllcI'oscoplc )usti6cation.

All of Eqs. (1)—(4) can be extracted from the tangle
of vertex parts and Ward identities except for (3)
which has so far been derived only in the phenomeno-
logical theory, as a consequence of the statement that
the free energy is minimum in equilibrium. It would
be surprising if condition (3) did not hold for the
microscopic F, but it has not yet been proved.

One might hope to bypass the microscopic theory
'4 It is not, however, a necessary condition. If 8 has a small

negative value in a small region about the forward direction, and
somewhat less than one everywhere else, then this is consistent
with the requirement that the eigenvalues of 8 be less than unity.
For this J3 the right side of 11 will exceed unity for q near one,
with a trial function that is constant in the forward direction and
zero in the backward direction."It follows from the form of the trial function that the type
of mode that must exist is the m=o kind I p(0, @)=—~(0) j, and
hence the mode is either a density wave or a spin density wave.
The condition tells us nothing about the transverse (m=1)
modes (although with Ii1 greater than 6 in He', the spin symmetric
transverse mode is very likely to exist there, especially at higher
pressures) or the more subtle m&2 modes.

by deriving (3) directly from the kinetic equation (1),,
cspeclally slncc onc fccls thRt R stRtlc lnstRblllty shouM
be rejected in a dynamic one, and hence in a nonreal
root g, which is ruled out on microscopic grounds.
Howevel' altllough it is easy to sliow that {3) is suffi-

cient for the stability of (1), it is not by itself necessary.
Equation (3) is sufhcient becausem

(q —cos8) i =cos8Fv

requires that

g- (2, (1+F)v)/(i, sec8i),

which since F is real is only possible for nonreal p if
numerator and denominator both vanish, contradicting
the assumption that 1+F is positive definite. It is
trivially rot necessary for stability, however, since the
same argument works if 1+F is negative definite.
We do know, however, that 1+F is certainly not
negative definite, since 1+F2 and 1+F,/3 have been-

proved microscopically to be positive as consequences
of thc posltlvcncss of thc spcclfic hcRt Rnd compressi-
bility. Conceivably a proof could be found deriving an
instability when some but not all of the eigenvalues of
1+F were negative, but I have been unable to do so.
Nor does a direct proof exploiting Ward identities
seem likely, since the perturbations one must consider
are of a much more general sort than the gauge trans-
formations, constant potentials, and such that go into
deriving other Fermi-liquid relations.

On the other hand, the conventionaI de6nition of a
normal Fermi system is barely consistent with (3)
being violated. As the interaction is slowly turned up
to fuH strength, any F~ growing from 0 to a value
violating (3) will pass through —(2l+1) en route,
leading for this value of the coupling constant to an
in6nite value of B~, and a zero-frequency solution
Lnamely v=Pi(cos8) j to the kinetic equation. Both
phenomena suggest that at this point a phase tran-
sition to something other than a normal Fermi system
will set in, so that the value Fi( —(21+1) is never
reached.

APPENDIX 3
Condition (4) though apparently a direct conse-

quence of the exclusion principle actually involves
some rather subtle considerations. '~ The exclusion prin-
ciple tells us that the vertex function" is antisymmetric
in its 6rst two arguments".

I I
~8182ial 82 (pit p2j pi y p2 ) r82si;8i 82 (p2 plj pi p2 )

and hence, in particular,

r„.„,(P, P; P+&, p &) =0. (1g—)
(We use the customary 4-vector notation in which p

'8 As in the text it is simplest here to deal separately with the
spin symmetric and antisymmetric cases.

"The analysis in this Appendix grew out of some very stimu-
lating conversations with H. Wagner.

"We use the notation of Ref. 3.



N. D. M ERM IN

I

FIG. I. A diagram
contributing to the
vertex function I',

However, subtraction of (20) from (21) yields

FI'/(2i+1) (-'«)'/(2I+1)
1+FI/(2l+1) 1+~IGI/(21+1)

which is inconsistent with the stability condition (3)
Lthe eigenvalues of F are FI/(21+1)j"

The trouble is that to conclude either (20) or (21),
or for the validity of the analysis in the body of this
papcI', wc I'cql1lrc Ilot

r (II II)=o, (23)

lim I'&(n n') =0. (24)
nt n

While (23) does indeed follow directly from (18) and
(19), Eq. (24) is false unless q =0.

This can be seen by considering the contribution to
P(PI, pg, pi+&, pg —k) colilillg floIII a diagram sucll as
tllat plctilled III Fig. 1. Hei'e P I(PI, pg', pi+i, p2 —k)
is as defined in Ref. 3, and has the property that, as
far as its contribution to the q integrations is concerned,
its value as k and k ~0, is independent of their ratio,
k'/I Ir

I
=rIIp. The rI dependence of this contribution to

I' in the limit of small k comes entirely from the two
G lines connecting the two I'&'&'s, and is contained in a
factor

q Ir/m' (»)
k' —q Ir/m*

' In the weak coupling limit one need not appeal to the stability
condition to reject (22).

2' We suppress the spin"indices which do not play an important
role in the analysis.

stands for p, p', etc.) If we define

P&(n n') = lim
tie(-+0
jgo~o

M/)kj peg

&& f P-;-(PI, P~; PI+k, P~ —k) I. ='n. ,.-".I, (19)
m0=uS0~

then A (n n') is proportional to P(n n) (I'~ in the
notation of Ref. 3), while F„(n n') is proportional to
1'"(n n') (I""in the notation of Ref. 3) .

Superficially, condition {4) would appear to follow
from (19) with g =0, and (18). That this by itself is
inadequate is best seen by noting that the same level
of analysis entitles one to conclude that F„(1)=0.
Thus we would have not only

FI —,'GI

1+FI/(2l+1) 1+-',GI/{2l+1)
but also

Z I FI+-'GI3=o.

The diagram in F(p„p,; p,+k, p2 —k) that cancels
that shown in Fig. 1, when PI ——P,, appears in Fig. 2.
This diagram does not depend on the ratio of k' to h,
exceP) in the case PI ——P2, when it obviously must, since
it is then identical to the diagram of Fig. 1. Thus the

p, =p~ and k =0 limits do not commute for the diagram
of Fig. 2, as a result of which our naive conclusions
from thc exclusion pl lQclplc must bc vlcwcd with,

suspicion.
Suppose then we consider the case in which PIO=

pp=0, and k', lr, and p, —pm are all very small. If the
order in which these quantities vanish does not affect
the contribution of I'&'& to the integral, then the total
contribution of Figs. 1 and 2 will coQtain a factoI'

q Ir/m* q (lr+pi —p2) /m*

k0—q Z/m* k' —q. (&+pI—p.)/m*
(26)

Now when yi ——p2 this does indeed vanish as required

by (18), but if the limit ko lr~0 ko/I lr I=g~I is tak
first, it becomes

q k/m* +
gv, —q. k/m*

which vanishes only when q =0. Thus

lim P&{n n')
n~~n

(27)

will not in general vanish unless g =0.
It is not dificult to construct from the special cases

of Figs. 1 and 2 an argument that one can still apply
the exclusion principle to lim„- „-F (n n ) . The point is
that if, in a diagram that cancels any singular2' diagram
in I' when pi ——p2, the limit pI ——p~ follows the limit

k—+0, the result is always a contribution to I', regard-
less of the ratio of k' to

I
lr I, while the original diagram

is contributing to I'&. Hence the cancellation occurs

only when q =0.
Pote added in proof: A. J.I.eggett (private communi-

cation) has pointed out that a microscopic proof of
the stability condition can be constructed out of his

analysis in Phys. Rev. 140, A1869 (1965) . If one com-

pares Kq. (18) of that paper with the usual spectral
representation for EI, one can show that if 1+F has
a negative eigenvalue with eigenfunction x(n), then
the positivity of the long-wavelength spectral function
will be violated when ${p) =x(n), y =npF.

FIG. 2. YlM dla-

P
gram contributin~ to
I' that cancels the
diagram ln Flg.
vfhen p1 =po. The
sign assigned to the
diagram of Fig. 2
is opposite to that
of F1g. i.

"One in vrhich, like Fig. j., the part of the diagram containing
the incoming and outgoing lines for particle j, can be separated
from the part containing these lines for particle 2 by cutting just
tv' 6 lines. Such diagrams depend on q.


