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environmental regimes. That is, the theory may be
expressed in the limit of weak coupling by assuming
that nearly all particles are in the single-particle zero-
momentum state or, alternatively, the theory may be
expressed in such a way as to furnish a good representa-
tion for a strongly-coupled system in which the ele-
mentary excitations exist in a "collisionless" regime.
For the latter case, the theory gives a valid description
of the low-lying excited states only.

Other systems which can be considered by using this
formalism are those with He' ions in neutral He', or
n particles in neutral He', or neutral He' —He' systems.

For example, Severene' has shown that even for
minute concentrations of He' ions in He4, a fundamen-
tally new phenomenon appears in the presence of an
external magnetic field, namely the scattering mecha-
nism of magnetoresistance.

The intent of this work has been to develop tech-
niques which may point the way toward a more
sophisticated formalism, one which is capable of giving
satisfactory predictions about the behavior of complex
aggregates.

' G. Severene, Physica 27, 465 (1961).
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A theory of the low-temperature transport processes of thermal conduction and spin diffusion in Fermi
liquids near the ferromagnetic state is developed on the assumption that the predominant particle scatter-
ing at low temperatures occurs from persistent spin Quctuations, or "paramagnons, " of the type discussed
recently by Doniach and Engelsberg and by Berk and Schrieffer. A Boltzmann equation for this type
of scattering is set up and solved by the usual variational procedure to obtain expressions for the coefBcients
of thermal conductivity K and spin-diffusion D. The latter are evaluated by using a simple model ap-
proximation for the paramagnon spectral density function A, (&o), based on the correct RPA result at long
wavelengths. It is found that in the limit T—&0, E varies as T and D as T ~, in accordance with the pre-
dictions of the Landau theory. As T increases from absolute zero, however, E and D fall oB increasingly
less rapidly than T ' and T 2, respectively, and actually increase with increasing T after passing through
minima. The theory can therefore account for the observed temperature dependence of the thermal con-
ductivity and spin divison of liquid He . In particular, the theoretical predictions are in close agreement
with the low-pressure thermal-conductivity and diffusion data obtained by the Illinois group.

1. SYNOPSIS

i lHE concept of particle scattering from persistent..spin fluctuations, or "paramagnons, " in nearly
ferromagnetic Fermi liquids has been applied recently
by Doniach and Kngelsberg' to interpret the low-
temperature speciic heat of liquid He'. In this paper
the equilibrium theory' of Doniach and Kngelsberg is
extended to nonequilibrium' in order to discuss the
processes of thermal conduction and spin diffusion.
This is carried through by including fermion-para-
magnon scattering processes into the Soltzmann equa-

*U. K. Science Research Council Postdoctoral Fellow.
'S. Doniach and S. Engelsberg, Phys. Rev. Letters 17, 577

(1966); S. Doniach, S. Kngelsberg, and M. J.Rice, in Proceedings
of the 10th International Conference on Low Temperature
Physics, Moscow, 1966 (to be published); N. F. Berk and J. R.
Schriefl'er, Phys. Rev. Letters 17, 433 (1966); Proceedings of the
10th International Conference on Low Temperature Physics,
Moscow, 1966 (to be published).

2 Similar calculations have also been made in the latter ref-
erence at the T=O limit.

3 An analogous theory for the electrical resistivity of paramag-
netic transition metals has been discussed by D. L. Mills and P.
Lederer, J. Phys. Chem. Solids 2'7, 1805 (1966).

tion for the single particle distribution function fk,
As a first approximation to the description of trans-
port processes we formulate the Boltzmann equation
for bure fermion states, i.e., the fermions scattered
from paramagnons are considered to be bare fermions.
The treatment is therefore in contrast to the approach
of the Landau theory' ' where the relaxation of quasi-
particles is considered. Following standard variational
procedures' the Boltzmann equation is used to obtain
formal expressions for the coefBcients of thermal con-
ductivity E and spin di6usion D. In doing this we
assume that the paramagnetic excitations can be treated
as at equilibrium. The expressions for E and D are
evaluated by using a simple model approximation for
the paramagnon spectral density function Aa(a&), based
on the correct RPA result' ' at long wavelengths. The

4 A. A. Abrikosov and I.M. Khalatnikov, in Reports on Progress
in Physics (The Physical Society, London, 1959),Vol. 22, p. 329.

5 D. Hone, Phys. Rev. 121, 669 (1961).
6 J. M. Ziman, E/ectrons and Phonons (Clarendon Press,

Oxford, England, 1960), Chap. 7.' T. Izuyama, D. J. Kim, and R. Kubo, J. Phys. Soc. Japan
18, 1025 (1963).
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results, valid for temperatures T&&Tf, where Tf de-
notes the fermi temperature for the noninteracting
fermi gas, show that in the liInit T—+0, E varies as
T ' and D as T in agreement with the predictions
of the Landau theory. As T increases from zero, how-
ever, it is found that E and D fall OG increasingly less
rapidly than T ' and T ', respectively, and actually
increase with increasing Tafter passing through minima.
The theory can therefore account qualitatively for the
observed temperature variation of the thermal con-
ductivity and spin-diffusion of liquid He'.'' In par-
ticular the theoretical temperature dependence is found
to 6t closely the low-pressure therma1. -conductivity data
of Anderson ef ul."and the low-pressure diffusion data
of Hart and %heatley. '

particle and a hole as illustrated in Fig. 1.This approxi-
mation is formulated, following Kadanoff and Baym, "
in terms of the analytically continued retarded and
advanced fermion self-energy functions Z, &+(k, ~s) for
emission and I'eabsoI'ptlon of paramagnons taken oIl
the bare particle energy shell. This leads to the follow-
ing Boltzmann equation for the one-particle distri-
bution function fq, .

(~f~/@)+(5k/~) '& f~ =~f~/rtt I-» (23)

where

~f~./~t ~..ii = —f~.~.~(k, ei,.)+(1—f~.) &.&(k, e~.).
(2 4)

2. BOLTZMANN EQUATION AND
TRANSPORT COEFFICIENTS

In this section a Boltzmann equation is set up to
describe transport processes in a fermi liquid. This is
formulated in terms of an effective Hamiltonian for the
short-range repulsion between fermions which is taken
to have the form

Here erat = equi
=5'k'/2m denotes the bare fermion energy

and m its Iliass. The fermion-paramagnon scattering
processes of Fig. 1 are now taken into account in Eq.
(2.4) by using the self-energy formula given in DE
in which the one particle Green's function G,s(k, cs)
is replaced by a corresponding nonequilibrium Green's
function g,s(k, cs) defined in terms of the one-particle
distribution function kg by

K i=I dxdx'fit(x)it)(x)8(x —x')p&" (x')f&(x'),
(2.1)

III~~ —Im muk+q. t uk)uk-a~ uk ~

k, kI q

(2.2)

on transforming to momentum space. Here I is a
disposable parameter which will be fitted from the
measured paramagnetic susceptibility in the applica-
tion of the theory to liquid He'. The fermion creation
operators f,t(x) are related to the momentum-space
creation operators uk, t by

It,t(x) =0-'ts Q exp( —sk x) ag. t
k

g,~(k, a)) =2mb(ei„—cs) (1—fj„),

g,&(k, (u) =2xh(ei„—n)fj„,

where g, & (k, is) are defined by the relations

e'"'dtg. &&(k, t),

=g,&(k, t)

(2.5)

where 0 denotes the volume and the subscripts the
spin orientation ("t' "or "$ "). As in Ref. 1 (hereafter
referred to as DE) we make the assumption that the
dominant scattering processes in the fermi liquid close
to the ferromagnetic state at low temperatures is the
scattering of fermions from paramagnons, or persistent
spin Quctuations. In the present treatment this process
is assumed to be defined in terms of a transition rate
between bure ferInion states calculated in terms of a
Born approximation to the scattering of fermions from
spin fluctuations. That is, in calculating the transition
probability for particle-particle scattering we take ac-
count within RPA of the final-state interaction of a

8 H. R. Hart, Jr., and J. C. Kheatley, Phys. Rev. Letters 4,
1 {1960).' J. C. Wheatley, in Quuetlm Ii/uids, edited by D. P. Brewer
{North-Holland Publishing Company, Amsterdam, 1966).

"A. C. Anderson, J. I. Connolly, O. E. Vilches, and J, C.
Wheatley, Phys. Rev. 147, 86 {1966);J.I.Connolly, Ph. D. thesis,
University of Illinois, 1965 (unpublished).

g'(k oi) = e""'dtg, (k, t).
'

The paramagnon propagator" S~(t) which enters the
self-energy expression of DE is assumed to be dehned

pararnagr)orI

FiG. 1. Diagrams denoting the scattering of a fermion from a
paramagnon calculated within the random-phase approximation.

"G. Baym and I. Kadano6, Quumtnm 5fahsfscaI Mechamcs
{gl.A. Benjamin, Inc. , New York, 1962), Chap. 9.

"Explicitly S~{t)=i(T{~,( t)o ~+(0)i), where 0.,+(s) de-
note the spin-density operators o~~=Zk uk+~~, ~~ak~, ~, taken at
time s in the Heisenberg representation; 1 denotes the time-
ordering operator and (A ) the equilibrium average of A.
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Z)~&(k, (u) =P Q

Z)~&(k, (o) =P Q
where

g)&(k+q, (u+(ai) S,&((ui),
exe 2%

(2.6)

dc'] )gt&(k —q, (v —(ui) S,&(&ui),
(2rr)

S,ee( )=(—i)f e'"S,ee(t)Ch

with

If we introduce the spectral density function

A, ((o) =S,~((v) -S,&((u),

for thermodynamic equilibrium as in Ref. 1. We then
have

for the interacting fermi liquid. It should be emphasized
that in this treatment we are considering the approach
to equilibrium of the one-particle distribution defined
for bare particle states. This is to be contrasted with
the Landau phenomenological treatment in which the
relaxation of quasiparticles is considered.

Expressions for the transport coefficients may now
be formulated from (2.3) and (2.8) by following
standard variational methods. Specifying the devia-
tion of fk, from its equilibrium value fk,o by the func-
tion it k„where

fke fke (~fke /&~ke) oker (2.10)

the collision integral (2.8a) may be linearized in irrrk,

to give

Bfk) , d'k'
=(k.r) V(k l, kt ) {yk&—4»j,(2~)'

(2.11)
where we have defined the transition rate

we may write'

S, ((o) =I rr(co)+1]A, (co),

S,~((o) =N((u) A, (a)), (2.7)

(2rr)'P
V(k' l; k 7 ) = Z d~A. (~)~(~)fkt'(1 —fk i')

q —co

X6(gk r,
—

Qk)
—$M) 8(k' —k —q) . (2.12)

where N(s&) =Lexp(PS~) —1] ' is the Planck function
involving Boltzmann's constant kir ——1/PT. On substi-
tuting (2.6) into (2.4) and making use of (2.5) and
(2.7) we obtain

k) g2
dcoA, ((u) i~ (ok+, )

—ek) —Ra))
coll ~ q

X {(1—fk~)fk+e iLri(~)+1]—fkt(1 fk+g i)'~(~) j,
(2.8a)

I
d(oAq((u) 8(ek, t

—ek)+fi(u)
coll ~ g

X {(1—fk~)fk ~ trr(~) —fk~(1 —fk ~ t) Ln(&v)+1]j.

(2.8b)

As in DE we use the RPA result7 to estimate the para-
magnon propagator leading to a spectral density for
paramagnons given in terms of the susceptibility re-
sponse function x~'(a&) for the noninteracting fermi gas
by' '

A, (~) =32& Imx.'(~)/I (1—»'(~) ) I'] (2 9)

with

In deriving (2.11) and (2.12) we have made use of
the detailed balancing condition

(1—fkto) fk+q /Le((v)+1] =fkp(1 fk+, ro) m(&u)—, (2.13)

which results from the vanishing of the left hand sides
of (2.8) at equilibrium. The equilibrium distribution

kB 1S

fk'=Lexp(P(~k. —~ ) )+1] '

with the chemical potential p, determined by the re-
quirement

d'k
& '=e

(2rr)" '

where n denotes the equilibrium concentration of
fermions of specified spin. Equation (2.8b) may also
be linearized to give

Bfkr, , d'k'
=(krrT) ', V(k'1'; k$) {itk t

—itkij.
at ,.u (2~)'

(2.14)

We note that the transition rate (2.12) is symmetrical
in the sense that

( ) g fk+er i fkt~

tk) —6k+q ~
—AGO —Z8

(~~0+), V(k's'; ks) = V(ks; k's') (sos') . (2.15)

where fk, denotes the equilibrium Fermi function.
The Boltzmann equation (2.3), together with the ap-
proximations (2.8) and (2.9), form the basis of the
calculations of this paper of the transport coefficients

This result follows from (2.12) with the use of (2.13)
and the observation from (2.9) that A~(or) = —A—
q( —+). With the symmetry property (2.15) the col-
lision integrals (2.11) and (2.14) are of the standard
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form of conventional transport theory. ' lt then follows
that the quantity

particle flux (for a given spin orientation) and energy
flux, given in terms of Pq, by

S=(2k~T') ' J Q v(lrY; ks) d'k 6'k Bfj„P
,
—4~8

(2s.)P ep Bpg,
' (2.19)

can be interpreted as the rate of irreversible entropy
production in terms of which the coefFicients of thermal
conductivity E and spin diffusion" D may be expressed
as14,6

1/E = (T'8/JIr'), (2.17)

1 TS T8
2.18

D 2J1vp(8p)/pie) 2J1p p(8p)/pie)
'

where J¹and Jrr are, respectively, the macroscopic

In obtaining the above expression for the diffusion
coefficient we have assumed zero net magnetization.
This will imply that pent=

—pK~. This is to be con-
trasted with the case of thermal conduction where by
symmetry we ha, ve Pz~=Pz~. Bearing in mind these
considerations, Eqs. (2.16)—(2.20) can be used to ex-

press K and D in terms of Pz~ (say) only:

I'

E '=
I

kI1 ' d'kd'k'U(k'f; kf){yg)—yg)I' (2.21)

D '=
I

(2k11T) ' d'kdpk'v(k' J, ; lr f ) Iyg t+yk(I'
BfgtP ' Bp)

d'keg)5$86g) Bs)
(2.22)

The standard method of evaluating these expressions
consists of introducing an explicit approximation, or
trial function, for p„,. For the calculation of the thermal
conductivity E we shall take the usual trial function"

where

=0 (q& Q), (3 2)

5~,= (4Kp'pr/~I) (q/k&) (0&q(Q),

and
/Kg= (pgg pg) lr. uXconstant, (2.23) n =7rIV (pr) IS'kg/2Kp'pr. (3.3)

which is close to the true solution for T&&T~. Here u
denotes a unit vector in the direction of the tempera-
ture gradient. The appropriate trial function for the
calculation of D is'

Qqt = k ut && constant

(2.24)

where u~ denotes a unit vector in the direction of the
concentration gradient of t'-spin fermions. Equations
(2.21)—(2.24) together with a simple model approxi-
mation for the spectral density Ap(p1) will be used to
estimate E and D in the following section.

3. MODEL CALCULATIONS

In order to obtain tractable results for the transport
coeKcients we propose the following model approxima-
tion for the spectral density Ap(&u):

Ap(~) =~&/q (0+
I

p1
I

+&p)

(I ~
I &~p), (3 1)

"Spin diffusion is sometimes referred to as "self-diffusion. "
'4 S. R. DeGroot, Thermodynamics of Irreversible I'rocesses

(North-Holland Publishing Company, Amsterdam, 195i), pp.
10i-i06.

In the above equations ~f denotes the fermi energy
5'kr'/2m, E(pr) the single particle density of states,

Q1, 8(pg, —py), I=1V (p1) I, and 1/Kp' ——1/(1 —I) the
RPA exchange enhancement factor ' ' for the inter-
acting fermi-liquid. Q, a cutoff wave vector, is to be
regarded as a disposable parameter and will be fitted
from the observed specific heat in the application of
the model to liquid He'. The model represents an ap-
proximation to the actual form of the RPA formula

(2.9) evaluated at T=O for small q/2k', '1P and serves

as a reasonable approximation for long-wavelength

paramagnons. Explicitly the model neglects the con-
tribution to Ap(p1), which is strongly peaked about ~,
fol Kp ((1, from the higher-frequency region

I
cu

I
&co,

while it extrapolates the correct low-frequency form
of Ap(&u) up to a maximum wave vector Q. We note
here that it is the scattering of fermions from long-

wavelength paramagnons (small-angle scattering) which

will give the predominant contribution to the thermal
conductivity I and spin diffusion D. This may be
seen generally by considering the distortion of f&,
about its equilibrium value f&P given by the solutions

(2.23) and (2.24) corresponding, respectively, to ther-

"$, Doniach, Proc. Phys. Soc, (I.ondon) (to be published),



mal conduction and spin diffusion. As discussed by
Ziman, " the discontinuity in sign of (2.23) as e„
passes through the fermi surface means that at low
temperatures, equilibrium is restored predominantly by
the relaxation of fermion-hole pairs that are narrowly
separated in k space at the Fermi surface. In the
present discussion such processes are animated by the
emission or absorption of long-wavelength (small q)
paramagnons. Thc saIIlc conclusion also results for Eq.
(2.24) where a discontinuity in sign occurs when the
direction of the spin is reversed at the fermi surface.
This seeIns a plausible explanation of the subsequent
success of the above approximations in fitting K and D '~

to experiment (to be discussed in Sec. 4) .
The expressions for the transport coefficients given

in Sec. 2 may now be evaluated by following essentially
the same procedure as used in electron-phonon theory. "
We first consider the thermal conductivity. Since we
have eq~ =&i,~

——Pk'/2m we shall from now on drop the
spin subscript from ei„and fj„'. Also since we are con-
cerned with the low-temperature region k~TQ&It„„we
put p~ =p~ =ef, where

kg ——(6m'e) "'.

Then with the trial function (2.23) and the transition

ra,te (2.12), the expression (2.21) for E becomes

I~aE '= — d'q d(oA, ((o)B,(co) N(ro)/A, (3.4}

whcI'e

B~((o) = d'kfg'(1 —fj,+,') 8(eg+, —eg —5o))

X I u L(&+a) ("+.—e) —&(~~—e)3}' (3 3)

(3 6)

The volume 0 appears as a factor in (3.4) as the result
of replacing the summation ovcl q by Rn integral. At
this point it is convenient to define the characteristic
temperatures kgTf =of and

(3.'/)

where a&, is defined by (3.2). In calculating (3.4) we
will consistently neglect terms of order (T/Tf) relative
to the others. The result is then the erst term in a
power series in (T/Tr), the coefficients of which are
functions of (T/0) . On eliminating the delta function
in the integrand of (3.5), B~(~) reduces to the integral

2m'' ~ - L2n '(e4-5~)+(e —ef)q'(e —e,y5 )&B,((o) = --,
l

— de
I «pEP(~ —e) j+1}I1+expC —P(~+~—~r) j} (3.8)

The lower limit @, which guarantees the vanishing of
the argument of the delta function, is given by ~0 ——

52ko'/2m, where

similarly calculated to yield

A = I (8~'/95} (AT)'kf'}'. (3.11)

ko
——

l q/2 m~/hq l. —

In view of (3.1) the wave vector p=~l~l/kq
never be greater than ye+~/Sq, which by (3.2) is xo'kf,
showing that p((kr for ~0'-+0. Then for the larger
part of the subsequent integration over + and q we
have &0 below the Fermi surface in the nearly ferro-
magnetic fermi liquid, so that the lower limit in (3.8)
may be cGectivcly set equal to zero. Following Wilson'8
we can then expand (3.8) to obtain

(2@i 'E COB.(~) =
I —, —(k~T)'

6q l 1-exp(-~) j

1/TE = Oixw~ (T/0), (3.12)

where 0.~ is the constant

27Wir (0) PQ5
tX~ = 0

Sx ef'~0'kf
(Q—=Q/kf), (3.13)

On inserting (3.10) iilto (3.4) aiid introducing the
approximation (3.1) and (3.2) for A~(&o), the inte-
grals over a& and q are easily formulated. Using (3.11)
and (3 3), formula (3.4) for 1/E can then be expressed
in the form

X {co'kr'+-,'m'q' —-,'co'q'}, (3.10)

where ~=Ace/ksT. The denominator of (3.4) can be
w~(T/0) =W~(T/0) /W~ (0), (3.14)

See Ref. 6 Chap. 9 p. 386
'7 We expect that a calculation of the viscosity coefficient on

the same model for A~(u) would break down quantitatively
since it can be sho~n that the viscosity would receive its dominant
contribution from the short-wavelength paramagnons.

8 A. Wilson, The Theory oj Me/a/s (Cambridge University
Press, New Vork, 1953), Chap. 9.

Wa (t) = [J(4i (t-') —tJ(5) (t-') j
+9 (Q'&') L~(2)(&') —"~&5)(~ ') 3
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The function J(„)(y) (v integer) is the definite integral

J(.)(y) = x"dx

(e' —1) (1—v *)
(3.16)

Formula (2.22) for 1/D may be similarly calculated
for our model (3.1)—(3.3). Using the appropriate trial
function (2.24) together with the transition rate (2.12)
we find

where

and

1/DT' =ni)tvi) (T/0),

nD 37rWD——(o)I'Qk)'kB%/ef KO)

(3.17)

(3.18)

with
wg) (T/0) = Wr) (T/0) /WD (0), (3.19)

WD(~) =LJ(.)(~ ') —~J(s)(&')j
—'sQ'LJ(s) (t ') —&'J(s) (& ') 7. (3 2O)

As in the previous calculation of E, we have neglected
terms of order (T/Tr) relative to others.

For a given value of the cutoff parameter Q=Q/kf
we note that wtr(T/0) and wD(T/0) are functions of
the variable (T/0) only. In Appendix B we have com-
puted these functions in the range 0&(T/8) &1 for
two values of Q which result from a subsequent fit
of the theory to liquid He'.

J(.)(~) =v Y(v) —=J(.)' (4.1)

For the particular values of v encountered in Sec. 3,
2&v&7, this will be legitimate for T &0/10. It then
follows from (3.12), (3.15), (3.17), and (3.20) that X
and D have temperature dependences of the form

1/TE =n P(T/0) +O((T—/0) '], (4.2)

1/DT = P(T/0)+O[(T/0)'j, — (4.3)

4. APPLICATION TO LIQUID He'

In this section we apply the theory of the two previous
sections to a discussion of liquid He'. Firstly we examine
the temperature dependences of E and D that are
predicted by the results of Sec. 3 at low temperatures.

At low temperatures T for which T/B((1 the inte-
grals J(„)(0/T) defined by (3.16) may be replaced by
constants J(„)(~) which may be expressed in terms of
Riemann zeta functions f(v) by"

the explicit formula for 0 is

0= (4/v ) (ass/I) QTf. (4.6)

obtained in DE for the interacting fermi liquid, where

x() ——2$(er) is the Pauli susceptibility for the non-

interacting fermi gas. As discussed by the latter, data
on the low-temperature susceptibility of He' at high
and low pressures given by Wheatley' lead to the
values of ~0' shown in Table I. The corresponding
values of Tf are also shown. In order to fit the values
of the cutoff parameter Q we use the model approxi-
mation of Sec. 3 for Au (e)) to calculate the renormalized
fermion mass m* which results from the virtual fermion-

paramagnon scattering processes discussed in DE. In
Appendix A we find that this is

nz*/I = 1+(Q'/2Ã) (I'/)(s') .

This result is to be contrasted with the result L(AS)
of Appendix A] established in DE, where a logarithmic
dependence on Q'/)(()' was found. The difference arises

because the latter authors used a more complete ap-
proximation for A~(e)), allowing for the higher fre-

quency region co&or, which we neglected. The result
(4.8) together with the appropriate finite temperature
corrections, is nevertheless suKciently good to account
for the observed low temperature variation of the

specific heat in liquid He'. This is demonstrated in

Thar, E I. Values of parameters for He'.

In the limit T~O it is seen from (4.2) and (4.3) that
1/TE and 1/DT' are constants independent of T in

agreement with the predictions of the Landau theory. 4 '
As T increases from zero, however, IC and D fall off
increasingly less rapidly than T ' and T ', respectively,
reach minima, and then increase with increasing T.
This qualitative prediction is in agreement with the
experimental work on liquid He'

YVe note that in the nearly ferromagnetic fermi liquid
e«& Tf. Thus there exists a special fermi-liquid region,
for example, 0 &T(&Tf, in which Landau theory will

fail. This point is most directly illustrated by the cal-
culation of the single-fermion self-energy given in DE.

In applying our theory to liquid He' we shall fit
the parameter I and hence f~o' from the observed
static paramagnetic susceptibility p by using the result

x =xs/(1 —I),

«/P~ =
IJ(4)'(I —Q'/18) +(~'Q'/9) J(s)'I/J(s)' (4 4)

n&/pD ——J(s)'(1—Q'/12) /J(3) (4.S)

with nor and nD defined as in Sec. 3. By (3.2) and (3.3)

where the coefficients of (T/0) on the left-hand sides
of (4.2) and (4.3) are constants given by

Pressure (atm)

Kfl

0.28

1/9

1.4
1.1'K
5, O'K

1/21

1.3
0.5'K
6.2'K
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Appendix A. The low-temperature measurements of
Abel ef al." give m*/m equals 3.1 and 5.8 at 0.28 and
27.0 atm, respectively. Using these values together
with the previously determined values of «ss, (4.8)
leads to values of Q of 1.4 and 1.3 at the lower and
higher pressures, respectively. By (4.6) we find 0=
1.1'K at 0.28 atm and 0=0.5'K at 27 atm. In using
(4.8) to fit Q we have made the extreme assumption
that all of the observed mass enhancement is due to
the mechanism considered here. The 6tted values of

Q do not vary significantly with pressure and corre-

spond to minimum wavelengths of the order of twice
the mean interparticle separation {3/(4rr2N) I'fs.

We note that on the basis of (4.2), valid for T«e,
a plot of 1/TE against T gives a straight line which
intercepts the 1/TE axis at nrc and the T axis at
(nrr/P~) e. By (4.4) the latter intercept can yield a
value for 8 if Q is known. These considerations are
applied to fit formula (3.12) for 1/TEto the lo'w-pres-

sure data of Anderson ef al."Plotting 1/TE against T
and using the previously determined value of 1..4 for

Q, a straight line drawn through the low-temperature
points gives 0=1.04'K and n~ ——2.5&(10 ' c.g.s. units.
These values of are and 8 were used in (3.12) to fit
the higher-temperature points. The resulting fit is
shown in Fig. 2. Agreement is remarkable. The value
0=1.04'K found here is close to the value 0=1.1'K
which we calculated from (4.6) using the fitted values
of Q and zo'. The magnitude of nor which results from
using the low-pressure parameters of Table I in the
theoretical formula (3.13) is 6.2&&10 s c.g.s. units, in
reasonable agreement with the value just obtained
from drawing the straight line through the low-tem-
perature points. We point out here that use of the
single-trial function (2.23) for the calculation of the
thermal conductivity actually serves only to place an
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upper bound on a~ ' and likewise on 0.~ in the calcula-
tion of 1/DT' with (2.24) .

We have also fitted formula (3.17) for 1/DT' to
the low-pressure diffusion data of Hart and Wheatley. '
Here we used a value for O.D equal to 6.5)&10' c.g.s.
units, obtained independently from the ultra-low-tem-
perature measurements" of Abel ef al ""while Q was
fixed as before at 1.4."It was then found necessary to
use a value for 0 equal to 0.5'K, this being somewhat
lower than the value used for the thermal conductivity
data. The 6t obtained in this way is shown in Fig. 3.
The value nD ——6.5)&10' c.g.s. units is close to the
theoretical value which may be calculated from (3.18)
and Table I to be n~ =8.3)(10' c.g.s. units.

We conclude, therefore, that it is the paramagnetic
scattering of fermions which account for the low-

temperature processes of thermal conduction and spin
diffusion in liquid He'.

FIG. 3. 1/DT' versus T for liquid He at low pressure. The
open circles denote the data of Hart and Wheatley (Ref. 8).
The triangular point drawn on the 1/DT' axis represents the
value of 1/DT' at T=0 as determined from the ultra-low-tempera-
ture measurements of Abel et al. (Ref. 21). The full line is the
theoretical curve computed from (3.17).
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0

I

%70
7 moK

Fzo. 2. 1/TX versus T for liquid He at low pressure. The broken
line is the continuation of the straight line which was drawn
through the lowest-temperature points in order to fit a~ and 0 on
the basis of (4.2). The points were taken from the published
data of Anderson e1 al. (Ref. 10). The full line is the theoretical
curve computed from (3.12).

"W.R. Abel, A. C. Anderson, W. C. Black, and J.C. Wheatley,
Phys. Rev. 147, 111 (1966).
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"In this temperature range, which extended down to a few
millidegrees, it was found that the temperature dependence of
the diffusion coe%cient could be represented by a T' law, that is
D =1/(n 2')o

"W.R. Abel, A. C. Anderson, W. C. Black, and J.C. Wheatley,
Phys. Rev. Letters 14, 129 (1965); Physics 1, 337 (1965).

"Our calculation of C,/C„o includes a contribution of order
(T/8)' Lsee Eq. (A3) j which was neglected in the corresponding
calculation performed in DE. The neglect of this term probably
accounts for the breakdown of the latter authors' fit to the high-
pressure specific-heat data above 20 m'K.
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Fro 4. Heat capacity of
liquid He' at low pressure
after Abel et al. (Ref. 19).
The theoretical curve was
computed from (A.3) with
m'/m=3. 1 aiid e=1.4'K.

where fP denotes the equilibrium fermi function
pi, =k'/2m —pi(5=—1) and hp, the shift in the single
fermion energy which within the model (2.1), is given
in terms of A, (pi) by

IPm @ " " Bfi,'
hp(k, p&) = dq g da,A, ((pi) dpi,

(2m-) 'k, , '
Bpg.

M —6k& —M]

Using (3.1)—(33) for A~(~p) and the well-known ex-
pansion

CO 0

y(pi, ) dpi'
—CO 86k

=4 (o)+6~'(ksT) V(0)+ "
valid for T((T~, (A.1) and (A.2) may be evaluated
in powers of (T/8) to give a specific heat C„at low

temperatures of the form

5 X

(6&,. T't' T '
X I+-', in~ —

~

—H~P —
~

+O —,(A.3)
&r&

'
er e

where the effective fermion mass m* at 1"=0 is

APPENDIX A

Here we apply our model approximation (3.1)—(3.3)
for Ap(p~) to calculate the corrections to the bare
fermion mass, and hence specific heat, that arise from
fermion-paramagnon interaction. To do this it is con-
venient to use the formula derived in DE for the
entropy shift AS(TWO) caused by this interaction:

d S= 2+(—Bfj,'/BT) Ep(k& pg) q (A.1)

TAm.z II. Values of the function m~ for different values of
T/B and Q.

r/e
Q=1.4

ipx (~/e) i' (I /B)
Q=1.3

ip (T/e) wD(T/B)

0.00
0.02
0.04
0.06
0.08
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1.0000
0.9177
0.8359
0.7550
0.6757
0.5998
0.3282
0.2064
0.1477
0.1147
0.0938
0.0893
0.0688
0.0608
0.0545

1.0000
0.9476
0.8956
0.8444
0.7942
0.7454
0.5397
0.4050
0.3190
0.2616
0.2211
0.1912
0.1680
0.1499
0.1355

1.0000
0.9160
0.8325
0.7499
0.6686
0.5908
0.3132
0.1917
0.1349
0.1036
0.0841
0.0708
0.0612
0.0540
0.0483

1.0000
0.9490
0.8983
0.8482
0.7990
0.7511
0.5465
0.4109
0.3241
0.2659
0.2284
0.1944
0.1710
0.1527
0.1378

refined approximation for Ap(ip). We stress, however,
that (A.3) exhibits the same temperature dependence
for C„as found in DE. Thus the effective mass C„/C„'
falls o8 as (T/0)' ln(0/T) in the vicinity of T=O.
In order to check the plausibility of the result (A.3)
we have applied it to 6t the low-temperature data on
the specific hea, t of liquid He', obtained by Abel et al."
at 0.28 atm. Taking m*/m=3. 1 " formula (A.3) gives
the fit shown in Fig. 4 on using a value for 8 equal to
1.4'K. This value of 0 is in fair agreement with the
theoretical value 0= 1.1'K obtained in Sec. 4 (Table I)
from the fitted values of Q and i~p'. We conclude, there-
fore, that the approximations of the present paper are
also sufFiciently good to account for the observed low-
temperature variation of the specific heat in liquid He'."

APPENDIX 3
In this Appendix we tabulate values of the functions

wx(T/0) and wo(T/0) in the range 0&T/0&1 for
two values of Q, Q=1.3 and Q=1.4, these values of Q
being representative of liquid He' at high and low
pressures, respectively (see Sec. 4). By (3.14), (3.15),
(3.19), and (3.20) wx(T/0) and wo(T/0) involve the
definite integrals Ji„&(x) defined by (3.16). In the
range 0&T/0&1, we have x)1 so that we may
employ the series expansion

oo $ g8
J(,)(x) =v! p ——

s=i S"

and
m*/m = 1+(Q'/2s ) (IP/i~p')

C„'= ', m'N (er) kgPT-
(A.4)

s'8 (p —1)x—n~ Q 1+sr+ ~ +, (B.1)
s=l S (s-1)!

As mentioned in Sec. 4, (A.4) does not contain the
logarithmic dependence obtained in the corresponding
result of DE,

m*/m =1+3I lnL1+ (Q'I/12~pP) j, (A.S)

which was derived from (A.1) on the basis of a more

due to Sondheimer. "This expansion has been used to
evaluate wa(T/0) and wD(T/0) correct to four places
of decimals. The results for the two values of Q are
shown in Table II.

~ E. H. Sondheimer, Proc. Roy. Soc. (London) A203, 75
(1950); see also Ref. 18, p. 336,


