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A study is made of the Amati-Fubini-Stanghellini (AFS) type of approximation to the amplitudes asso-
ciated with the exchange of a single Regge pole and an elementary spinless particle, and with the exchange
of two Regge poles. The location, motion, and nature of the singularities in the complex-angular-momentum
plane of the s reaction which appear in these approximations, and their cancellation in the full diagram, are
considered in detail ; the singularities are found to be of two general types : branch points whose positions are
independent of, and dependent on, particle masses. Only the former singularities determine the asymptotic
behavior of the AFS amplitudes in the physical scattering region, while the latter appear only on the physical
sheet via the mass-independent branch points at unphysical momentum transfers. The same method used in
the study of the AFS approximation to the diagrams which do not have the AFS-type singularities is applied
to the analysis of the Mandelstam diagrams for which the above-mentioned cancellation of the cuts does not
occur; the analysis, although less rigorous, suggests that the location and nature of the singularities in the j
plane are the same as those found for the AFS type of approximations to the simpler versions of these
diagrams. With a number of approximations which, although plausible, are hard to justify rigorously, an
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estimate is made of the contribution to the amplitude coming from the angular-momentum cut.

I. INTRODUCTION

T was originally noticed by Amati, Fubini, and
Stanghellini (AFS) that if one combines two Regge
poles according to two-body unitarity in the ¢ channel,
and then disperses the resultant absorptive part in ¢
one arrives at an amplitude which exhibits moving
branch points in the angular-momentum plane of the s
reaction.! Although the cuts suggested by AFS were
later found by Mandelstam to be absent in the diagram
considered by them,? these cuts are nevertheless believed
to be present in more complicated diagrams such as the
ones shown in Figs. 10 and 11 (see Refs. 2-5); their
crucial feature is the appearance of the crossed lines.
The presence of the Mandelstam cuts is the result of
inelastic contributions to the unitarity relation, and is
particular to the relativistic problem (for potential
scattering the crossed graphs do not occur). If such
singularities indeed exist then they cannot be ignored,
since it was shown by the above authors that their
contribution to the amplitude at large #is similar to that
of a Regge pole (except for logarithmic factors), where
the trajectory function a(s) is replaced by \(s):

A(s)=2a(s/4)—1.
[Actually, AFS did not write it in this form; we shall
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see, however, that the above expression for A(s) is
rigorously true.] Thus if «(s) is the Pomeranchuk
trajectory, for example, then the branch point will
coincide with the position of the Pomeranchuk pole at
s=0 (i.e., in the forward direction), while for s<0 and
large ¢, the cut will dominate over the pole. If on the
other hand «(0)=1—¢, then there exists a region of
small momentum transfers where the pole will dominate
over the cut. For s sufficiently negative, however, the
situation might very well get turned around, with the
cut giving the dominant contribution. In addition it
was indicated by Mandelstam? and shown by Gribov
et al® that the generalization of \(s)=2a(s/4)—1 to the
case where we exchange # identical Regge poles is

M (8)=na(s/n?)—n+1,

which shows that the trajectories \,.(s) become flatter
as we increase #n. Thus, if a(s) is the Pomeranchuk
trajectory, for example, then for sufficiently large
energies the above singularities would dominate even
more strongly than the singularity at A\=2a/(s/4)—1 the
contribution from the Pomeranchuk pole. The above
discussion was concerned with angular-momentum
branch points that arise from the multiple exchange of
identical trajectories. In general one will, of course, have
to consider the contribution to the amplitude coming
from the exchange of different trajectories; the location
of the associated angular-momentum branch points,
however, can no longer be given by a simple formula such
as the one discussed above. In view of what has been
said, it is desirable to get as clear an understanding as
possible regarding the existence or nonexistence of these
cuts in various types of diagrams, the location and
nature of the various branch points one is dealing with,
and, if possible, the strength of the discontinuities
involved.

Let us now review in more detail the history of branch
points in the angular-momentum plane. Following the
suggestion of Amati, Fubini, and Stanghellini that the
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continued partial-wave amplitude is not a meromorphic
function of the angular momentum, Mandelstam ana-
lyzed a modified version of the AFS diagram (see Fig. 1),
and shown that the cuts suggested by the above authors
were merely the result of a poor approximation to the
unitarity relation. At the same time he was able to
show that in a certain approximation (to be discussed
below) the diagram of Fig. 10 does give rise to a branch
point in the angular-momentum plane whose location is
identical to that obtained from an AFS type of ap-
proximation to the corresponding diagram of Fig. 1.2
The essential features of Fig. 10 are its right- and left-
hand portions (i.e., the “crosses”) which when con-
sidered by themselves exhibit a third double spectral
function with respect to the s reaction. The proof of the
above result is rather involved. It seems worthwhile,
however, to give a brief summary of the general method
used, which leaves little to offer where ingenuity is
concerned. Rather than make an elastic unitarity ap-
proximation with respect to the ¢ reaction in the diagram
of Fig. 1 (which would be the analog of the AFS
procedure) Mandelstam applies three-body unitarity in
the s channel. By a clever choice of variables for the
three-body intermediate state, and equipped with the
knowledge of the singularity structure of each half of
the diagram, Mandelstam is able to show from the
large-t behavior of the amplitude that the AFS singu-
larity is absent from the diagram, at least in the three-
body unitarity approximation. The method used in the
proof depends strongly on the fact that the left- and
right-hand portions of the diagram do not possess a
third double spectral function in the above-mentioned
sense; the method therefore cannot be extended to the
diagram of Fig. 10. In order to establish the existence of
the singularity in the latter diagram, Mandelstam makes
use of the fact that if there exists a bound state or
resonance of spin ¢ lying on the Regge trajectory, then
the diagram will have a Gribov-Pomeranchuk singu-
larity at j=o¢—1, where j is the angular momentum in
the s reaction (the elementary exchange is taken to have
zero spin, for simplicity). He is then able to show, by a
number of ingenious tricks, that the singularity can be
made to disappear by moving the AFS cut past the
point j=o¢—1; such a phenomenon of course requires
that the angular-momentum plane exhibit a sheet
structure.®

This method, however, cannot be used to either prove
or disprove the existence of the angular-momentum cut
for diagrams whose right- or left-hand portions do not
have the above-mentioned double spectral functions,
since they do not possess the Gribov-Pomeranchuk
singularity. It was shown subsequently by Wilkin that

6 Mandelstam’s analysis of the diagram of Fig. 2 is still only
approximate, since he considered only the contribution to the
s-channel unitarity relation coming from the three-body inter-
mediate state in which one pair of particles interact to form a
Regge pole.
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if the cut is to exist, both the right- and left-hand
portions of the diagram must possess a third double
spectral function in the sense that we have mentioned
previously.? Wilkin’s method consisted in treating the
various diagrams as Feynman graphs, thus avoiding the
complications introduced by multiparticle unitarity. He
finds that unless both the right- and left-hand portions
of the diagram possess a third double spectral function,
one may distort the integration contours in such a
manner that the Regge pole never assumes its charac-
teristic asymptotic form anywhere along the path of
integration; with the amplitude vanishing like 1/# for
{— o, he then concludes that the AFS singularity must
be absent in such diagrams. Although this method is
quite general, it nevertheless does not provide us with a
deeper understanding of just how the AFS cut is
generated, and of the mechanism responsible for its
cancellation.

Several other authors have investigated the moving
branch points in the angular-momentum plane. Thus
Gribov ef al.t considered the possibility of establishing
these branch points directly from the structure of the
multiparticle unitarity condition for the partial-wave
amplitude continued to complex angular momenta j.
On the basis of a definite assumption regarding the form
of this analytic continuation, they are able to obtain,
among other results, the above singularity at j=2a(s/4)
—1 for the double Regge pole exchange case, and its
generalization to the exchange of #» Regge poles:
jn=mna(s/n*)—n+1. In addition they obtain a formula
for the discontinuity across the above-mentioned branch
point which has the general form of a unitarity relation
involving the amplitudes for the production of particles
with complex spin (that is, Regge poles).” The singu-
larities associated with the exchange of one or two Regge
poles have been further considered by Simonov® using
the form of the many-particle unitarity relation for
complex j proposed by Gribov ef al. An alternative
approach has been proposed by Polkinghorne,® who has
analyzed the diagram of Fig. 10 using the Feynman
representation of the amplitude; in this approach Regge
cuts result from pinches in the interior of the hyper-
contour of integration where the coefficient of the
asymptotic variable ¢ vanishes.® The absence of the
AFS-type singularities in the diagrams of Figs. 1 and 7,
and their presence in the diagrams of Figs. 10 and 11,
can, in all of the above approaches, be ultimately stated
in terms of the absence or presence of the already

7 The general form of the Regge-pole unitarity condition pro-
posed in Ref. 4 has been confirmed by Polkinghorne, using single
Regge-pole insertions in the Froissart-Gribov continuation, and
with the help of some results from perturbation-theory models;
see J. C. Polkinghorne, J. Math. Phys. 6, 1960 (1965).

8 Yu. A. Simonov, Zh. Eksperim. i Teor. Fiz. 48, 242 (1965)
[English transl.: Soviet Phys.—JETP 21, 160 (1965)].

9 The methods of Refs. 7 and 5 have further been applied by
P. Osborne and J. C. Polkinghorne to the analysis of more general
type 05 Regge pole in insertions [Cambridge, 1966 (to be pub-
lished) ].
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F1c. 1. Box diagram in which
one of the elementary lines has
been replaced by a Regge pole
(denoted by the wiggly line).

mentioned third double spectral function, a fact which
had originally been suggested by Mandelstam.?

In this paper we shall mainly concentrate on the
detailed study of the branch points in the angular-mo-
mentum plane which occur for an AFS-type of ap-
proximation to the diagrams of Figs. 1 and 7. The
philosophy behind this approach is that we expect the
location of the j-plane singularities, as well as their
general nature (that is, square-root type, logarithmic
type, etc.) to be the same for the corresponding dia-
grams shown in Figs. 10 and 11. The organization of the
paper will be as follows : in Sec. IT we extract the leading
contribution at large ¢ to the Feynman amplitude as-
sociated with the diagram of Fig. 1, and show that the
AFS approximation corresponds to ignoring certain
singularities of the integrand. We then proceed to write
the amplitude as a contour integral in the energy plane
of the exchanged Regge pole and investigate the analytic
structure of the integrand in detail. The nature of the
branch points is established, and the discontinuities
across the various cuts evaluated; we then obtain the
correct form for the asymptotic behavior in ¢ of the
AFS amplitude, which in turn tells us the nature and
location of the leading branch point in the angular
momentum plane of the s reaction; we conclude the
section by exhibiting the mechanism which is respon-
sible for the cancellation of the cuts, and with some
general remarks.

In Sec. IIT we make a similar analysis of the diagram
involving the exchange of two Regge poles.

Finally, in Sec. IV, we consider the more complicated
diagrams of Figs. 10 and 11, which, as originally sug-
gested by Mandelstam, actually have the AFS-type
singularities. Their analysis is of course substantially
more complicated and we have to make a number of
approximations (which do not seem unreasonable) in
order to arrive at a numerical estimate of the large-¢
contribution to the amplitude coming from the leading
angular-momentum branch point.

II. THE SINGLE REGGE POLE EXCHANGE
DIAGRAM

A. The AFS Approximation

In this section we analyze the diagram of Fig. 1 which
in the elastic unitarity approximation gives rise to cuts
in the angular-momentum plane. Rather than start from
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the unitarity relation, as was done by Amati, Fubini,
and Stanghellini,! and also by Mandelstam,* we shall
follow Wilkin® and treat the diagram as a Feynman
graph. Our methods will, however, be adapted to the
specific purpose of exhibiting in as clear a way as
possible the moving singularities in the angular-mo-
mentum plane, and the mechanism which is responsible
for their cancellation.

Consider then the Feynman amplitude corresponding
to the diagram of Fig. 1:

1

As,)=C / dk2dk2dk2dk T (k.2 s,f)
k12— 1712+ 1€

1
R(kt; ket kdd), (2.1)
kt—m2+ie k@2—mP+ie

where C is an over-all constant, J(k.%;s,) is the
Jacobian for the transformation

4
d*ky— T1 dk.2,
n=l

and R(kgt; kot k) is the off-the-mass-shell amplitude
associated with the exchange of a Regge pole with
trajectory a(ks?); the invariants s and ¢ are defined by
s=(qg1—p1)% and t= (p1+p2). As we shall see later, we
do not require an explicit expression for the Regge pole
in order to prove the cancellation of the AFS cut; only
its general properties are needed.

Now the Jacobian, J(k.2; s,f), is given (we suppress
the arguments) by the following expression

J=6(D)/(D)"*, (2.2a)

where

= —16 det| 2k k;| - (2.2b)

Evaluation of the determinant yields, for s/#<1, and
m2/ K1,

D=16¢# { dsks?— (kP—s—ks?)?

+4<§>[(k32+m2—/e22) (ik-mo— )

+ (k12—s—— k32) (k32+m2— %kzZ— %kf)

s—8m?

+ (kzz'—k42)2]} . (2.3)

4¢

Now we are interested only in the leading contribution
to (2.1) for t—w ; we therefore may approximate the
right-hand side of (2.3) by the first two terms, since the
remainder becomes comparable in magnitude only when
ks* or k¢ (or both) become of the order of ¢, in which
case the contribution to the integral is already strongly
suppressed due to the presence of the Feynman propa-
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gators. Hence for { — 4 o, s<0, we expect the leading
contribution to (2.1) to be given by (notice that the
Jacobian is to be taken positive):

Cc
A (S,l) tiw Z; /dklzdkng (k12,k32,8)

k—mie
1
[kot—m2ie] ke —mi+ic]

XR(k\t; ket ks ,

X / dkodkd

(2.4)

where 7(ki%,ks?,s) is the usual triangle function defined
by

(2,0 ,%"")
0(—a2—x"2— &2+ 2w’ + 25’ + 22"x"")

(—a2—a/2— &2+ 2ax'+ 2005’ '+ 20 ") 112

(2.5)

Consider the amplitude (2.4); we notice that the
integrand associated with the k¢? and k.2 integrations has
poles at k2=rki2=m? as well as singularities in these
variables arising from the Regge pole amplitude; since
for k¢ fixed we expect that R~1/ks* for k22— (and
viceversa),d the integrals certainly converge and we
may evaluate them using Cauchy’s theorem; let us
separate the contributions to (2.4) coming from the
above-mentioned poles and the singularities of R; we
have

A(s,0) e [A(s,t) Jars+B(s,0)

where [4 (s,t) Jars is obtained by ignoring the singu-
larities of R in ko and k4,

C
[4 (S,t)]AFs=—7r27 / dk#R (a(ks),1)

1
X/dk127(k12,k32,3) T (2.6)

k1 —m

R(a(k#),t) being the on-the-mass-shell Regge pole
amplitude associated with the exchange of a Regge
trajectory a(ks?) [i.e., R(a(k:?),t)=R(ks,t; m*,m*)], and
B(s,t) is a remainder which we shall assume makes a
negligible contribution for large ¢ (we will see later that
this is actually not the case). If A(s,t) were in fact
dominated by (2.6) for t— o, then it would have angu-
lar-momentum branch points of the Amati-Fubini-
Stanghellini type; to emphasize this fact (which we shall
prove shortly) we have labeled the quantity (2.6) with
the subscript AFS, and shall refer to such amplitudes
-obtained via the above-described pole approximations
as “AFS-type” amplitudes. [It should be noticed that
(2.6) is not identical with the high-energy approxima-

10 See the Appendix of Ref. 2, p. 1141,
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tion obtained according to the AFS prescription; see
Ref. 1.] The advantage of our present systematic ap-
proach in extracting a specific part of the high-energy
contribution to (2.1) is that it will allow us to demon-
strate explicitly how the “remainder” B(s,f) is able to
account for the absence of the AFS singularities in the
full amplitude (2.1). It is also interesting to note that
for t — + o formula (2.6) is precisely the discontinuity
across the two-particle, f-channel, normal threshold cut
associated with a physical intermediate state formed by
the particles with four momenta ks and k4; the prescrip-
tion for computing this discontinuity has been given by
Cutkosky, and is seen to be equivalent to ours [except
that in the present approach (2.6) is an approximation
to the amplitude itself ]. One further remark seems ap-
propriate here since it will be relevant later on: The
above discussion has dealt with the limit {— + 0,
(s<0) of the amplitude (2.1), corresponding to large
energies in the physical region of the / reaction; to arrive
at a corresponding formula for ¢ — — o we can proceed
in two ways: we either continue formula (2.1) to the
domain { — — «, s<0 (which would certainly be a very
difficult task due to the presence of the § function in the
definition of the Jacobian), or we simply recognize that
t— — o, §<0, corresponds to the high-energy limit in
the # reaction ; now one may easily convince oneself that
in the physical region of the # reaction the Feynman
amplitude associated with the diagram of Fig. 1 is still
given by exactly the same formula (2.1), except that ¢is
negative. Since the Jacobian, J (k.?; s,), is, however, a
positive quantity, it follows that we must take the
positive determination of the square root of D [see Eq.
(2.3) ], and hence the positive square root of the over-all
factor 162 in (2.3). We hence conclude that in the limit
t— — o, A(s,t) approaches the negative of (2.4).

B. Representation of the AFS Amplitude as a Contour
Integral in the Energy Plane of the Exchanged
Regge Pole

We now wish to write (2.6) as a contour integral in
the energy plane of the exchanged Regge pole. To this
effect we change the integration variables in (2.6) from
k1% and k42, to x and k., where?

w=k2— (1/4s) (k2—s—ks)?,
kzz (1312"“.8"‘]232)/2(—'3)1,2 5
and substitute for R(a(ks?),t) the expression®

R(a(k?) )= (ks?)C (@) éx ()t /sinma (ks?) ,  (2.7)

1R, E. Cutkosky, J. Math. Phys. 1, 429 (1960); see also M.
Fowler, ibid. 3, 936 (1962).

12 For small scattering angles the quantity k. is the 2 component
of ks in the cm system of the ¢ reaction, with the z axis taken
perpendicular to the direction of the incident momentum p; in
the plane formed by the vectors p; and q.

13'Whenever there is no confusion possible, we suppress the
argument of the trajectory function «(x); we also omit all (&)
signature labels if they are not pertinent to the discussion.
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kz plane
k,,_E
{a) {}k'
/
a k, plane

(b)

U,

B

I"16. 2. (a) The new integration contour of (2.8) in the k, plane
as it appears when s>m2—, for the case where (—s)V2 has been
continued to s>0 according to (—s)¥2=4s2; only the singu-
larities at k=524 (m?—x)1” are shown ; the shaded portions on
the imaginary axis are cuts associated with the branch points that
arise from the normal threshold singularities in k3? of the Regge-
pole amplitude (they extend to +:x). (b) Same as in Fig. 2a,

except that (—s)2 has been continued to s>0 according to
(=)= —isil2,

+

k

where C(a) is the coefficient of z* in the asymptotic
expansion of the Legendre function P,(z), and where
v(k:?) is a reduced residue function which is related to
the full residue 8(k5?) of the Regge pole by

V() = —3rQat DBRA/ 2P, @=—mibi/4.
Finally, £, (e) is the usual signature factor
£y (@) =exp(—ima)=£1.
We then obtain for the AFS amplitude, valid for s<0,
v(x—k2)

LA (s,0) Jaws
0 d 0
i / "o,
—o ('—x)llz —o0 x_[kz~\/(_—s)]2_m2
X C (o) (@) te=+d=1 fsin[ra(x— kD], (2.8)

=—nC

Consider the integrand of the k. integration; it is singu-
lar at

ko= (—s)24 4 (m2— x) 12 (2.9a)
and also at

Bo= =i (s— )12, (2.9b)

where the latter singularities arise from the normal
threshold branch points of the Regge trajectory, a(ks?),
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and reduced residue, vy (ks?), and from the vanishing of
sinma(k3?) at the bound states and resonances which lie
on the trajectory (the resonance poles are reached by
going through the normal threshold cuts); %, gives the
position of these singularities in the %;? plane. So far the
integral (2.8) is valid for s<0. As we increase s through
negative values, the complex singularities (2.9a) move
towards the imaginary axis, which they reach for s=0.
For s>0 the singularities remain on the imaginary axis,
both moving either up or down depending on the
continuation chosen for the function (—s)Y2; as s
becomes larger than m?—x, one of the singularities will
cross the real k. axis and drag the integration contour
along the imaginary axis, as is shown in Figs. 2a and 2b.
We now make a final change of variables from %, and «,
to u=x—£k.? and x. The above discussion in the &, plane
was only intended to serve as a crutch for a better
understanding of the analysis that follows, as well as of
the similarity existing between the single and double
Regge pole exchange diagrams. With the above change
of variables, (2.8) becomes!

du c(u,s)

[4 (S,t)]AFs‘—‘%i/

Cu

exp(—ima)+=1
|:——————-——:|t"(“)“1 , (2.10a)

sinmo (1)

where

c(u,5) = —112Cy (u)C(a)I (u,s) (2.10b)
and
s 0 dx

(u,s)—/_w —__———_(-—x)”? e
1
(2.10¢)

X .
uts—m?4-2(— )2 (x—u)\?

The contour C, is shown in Fig. 3. It is clear from (2.10c)
that I(w,s) will have a branch point at #=0 which

u plane

|

¥16. 3. The contour C,, of the integral (2.10a) ; only the singularity
of ¢(u,s) at #=0 is shown.

1“4 To obtain the form (2.10a) we have replaced the original
contour in the # plane, which extends along the negative x axis
and encircles the branch point at #=x, by a fixed contour that
encloses the point #=0. This is always possible, since nowhere in
the integration region are we forced to distort this contour from
its fixed position. Subsequent interchange of the x and # integra-
tions results in formula (2.10a).
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arises from the collision of the square-root singularity at
x=u with the upper limit of integration; if we cut the »
plane from #=0 along the negative % axis, then the
contour C, is seen to extend around this cut ; the branch
of the square-root function, (x—u%)"2, to be taken is
evidently given by

(x—u)2=+1| (x—u)2|, for u>w,

and corresponds to displacing the %.-integration contour
in (2.8) slightly into the upper half of the complex plane.

Next we wish to examine the singularity structure of
the function ¢(#,s) appearing in (2.10a), and to continue
the integral to the positive s region. The reason for
making such a detailed study is that we believe that the
motion, and nature of the angular-momentum branch
points to be inferred from the present study are the
same for the more complicated diagrams which do ex-
hibit angular-momentum cuts; the latter diagrams will
be considered in a later section. Now ¢(#,s) is defined by
(2.10b), where I(u,s) is given by (2.10c); the integral
may be readily evaluated; one finds

7
TR (st ]
) e i
“<[K(u,s,m2>1w+ (uts—m)

I(u,s)

) exp(ir), (2.11a)

where

(2.11b)

and where, for s<0 and #>0, the phase of the quantity
appearing within brackets in the argument of the log is
to be taken zero. Throughout this paper we adopt the
conventions that: (a) all square roots are to be taken
positive if their discriminant is positive, and (b) Inz is
taken to be real for z>0; all phases will therefore be
explicitly exhibited. We now examine (2.11a) for three
real domains of the variable s.

K (u,s,m?) = (u+s—m?)?—4su,

1. s<0

From (2.11a) we see that the possible singular points
of I(u,s) are located at

(1) u=[m=xi/(=95)F,
(2) u=0,

where, for s<0, the latter singularity arises from the
vanishing of the denominator in the argument of the
logarithm. If we cut the # plane from #=0 along the
negative real axis, then the contour C, of the integral
(2.10a) extends around this cut, and the value of I (x,s)
on that contour is obtained by continuing (2.11) in % to
the points #o4=1ie, where %,<0; from here on we shall
refer to that sheet of the logarithmic branch point on
which C, appears as the “leading sheet.” We now verify
that I (u,s) is singular at w=[m—iv/(—s)]* and regular

and
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. 2
(m+ {/-s)
A
Ugti€ //’/
-____»\_.-ci-’\\
B e Z— AN
Cu N
\
\'(m— i/—s.)2

T16. 4. Paths of continuation leading from the point #o-tie,
located on the contour Cy, to the possible singular points of I (,s)
at u=[m=iy/(—s)P.

at u=[m-+1i\/(—s)]* where these points are reached
via the paths shown in Fig. 4. Let

_ [K (u’s’m2)]1/2.__ (’M+S— mZ)
IR Gasm?) T (o)

Recalling that the phase of z is zero for s<0 and #>0,
one may readily verify that

z— exp(Fir), as u— [mtin/(—s)PF.

(2.12)

It is then an easy matter to show that I (%,s) is singular
at u=[m—ir/(—s) 2 and regular at u=[m~+in/(—s) %
The continuation of (2.11) to the remaining sheets
of the logarithmic branch point at #=0 may also be
readily effected; one finds that I(w,s) is singular at
u=[m+i\/(—s)? on all sheets of the logarithm with
the exception of the leading one, and singular at
u=[m—1ir/(—s)]? on every sheet but the one which is
reached by a counterclockwise continuation around the
branch point at #=0. Finally one obtains the discon-
tinuity of I (u,s) across the logarithmic branch point by
continuing (2.11) to the points #o=ie, where #9<0; the
quantity z, defined by (2.12), then acquires a corre-
sponding phase i, and the discontinuity becomes

{disc. (#,5)} umo=27/[ K (w,s,m) 2. (2.13)

2. 0<s<m?

As s becomes positive, the complex singulari-
ties of I(ws) located at wu=[m+in/(—s)} and
w=[m—1ir/(—s) > move onto the real axis; if (—s)2is
continued to s>0 according to (—s)Y2=14s"2, then their
positions will be given by = (s'*—m)’=u_ and
= (s'24-m)?=u,., respectively. If we had chosen the
other branch of the square root, then the above order
of u_ and u, would be interchanged. For the remainder
of this section we shall restrict ourself to the case where
(—s)2 has been continued to s>0 according to the
above given prescription; the other possibility may be
discussed just as easily and leads, of course, to the same
conclusions with regard to the singularities of the s
channel partial-wave amplitude in the angular-mo-
mentum plane. [ That this must be so becomes evident
when one follows the motion of the singularities of the
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Fi16. 5. The complex # plane, showing the paths along which
the discontinuities of 7I(u,s) across w=u, and w=u_ are
evaluated.

integrand of (2.8) in the k. plane for the two possible
continuations of (—s)%2.7] With the above convention,
u_=(s'2—m)? and u;= (s'2+m)? are the respective
continuations of the complexlocations of the singularities
of I(u,s) at u=[m—+iy/(—s)? and u=[m—in/(—s)7;
since for s<m? neither one of the above singularities
could have left their respective logarithmic sheet, it is
clear from our previous discussion of the case s<0 that
I(u,s) will be regular at =u_ and singular at u=u. on
the leading sheet, and that it will be regular at the
latter point on the sheet reached by a counterclockwise
continuation around the logarithmic branch point at
u=0. The above expectations may be readily verified by
starting from an expression for 7 (u,s) valid for s>0 and
u=1uo+1e, where the latter point is located just above
the left hand cut on the leading sheet ; one finds (recall
that all phases are exhibited explicitly)

I(uptie, s)
_ i ln([K (240,8,m*) ]2 — (05— m2)>
LK (uo,s,m) 12 \[K (0,5,m%) ]+ (g+s—m?)
(2.14)

Xexp(—im), %<0, s>0.
As one continues this expression in # along the path P
shown in Fig. 5one finds that at u=1s, 2= | 21| exp(+ir),
while at u=us, 2.=(1/|21|) exp(4ir), where z; is the
value of (2.12) at #=u; [in the figure we have denoted
the points #; by their subscripts 4] ; the discontinuity of
I(u,s) across u=u_ therefore vanishes; to compute the
discontinuity of I(u,s) across u=u, we notice that if
U_<u<y,

—_— 'b
z=(a +’ b) exp(im) = exp(i) exp (i)

a1

thus one finds that at w=wu; and u=wu4, z3=exp(ies)

0 du v(u)

A (s,8) Jarps=mC
(A ams=mC | [(ut-s—m?)— 45 sinma(u)

(s1/2—m)? du
.
0 [ (u+s—m?)2— 4dsu ]2 sinmra(u)
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X exp (4ir) and z4=exp(—ips—4ir) exp(4im), respec-
tively ; hence the discontinuity becomes

{disc.t (#3,5)} umu, = 4m/[ K (us,5,m?) 2. (2.15)

3. s>m?

The case s> m? can be analyzed in a similar manner as
above; one finds that z;=|z1| exp(—ir), 2o=(1/]2|)
Xexp(—ir),23=exp(igps) exp(—ir),and 24=exp(—i¢3)
Xexp(—imr); we are therefore led to the conclusion that

{disc,t (41,8)} umn_=47/[ K (u1,5,m?) /2. (2.16)

while the discontinuity of I(u,s) across #=wu, is still
given by (2.15). Thus, for s>m?, I(u,s) is found to be
singular at #, and #_ on the leading sheet of the
logarithmic branch point; in fact, one may verify that
I(m,s) is singular at these points on all sheets of the log,
except for the one reached by a counterclockwise con-
tinuation. Finally one may readily check that the
discontinuity of I (#,s) across the branch point at #=0,
is still given by (2.13).

C. Asymptotic Behavior of the AFS Amplitude, and
Location and Nature of the Singularities in
the j Plane

From the above discussion of the singularities of
I(u,s), and therefore also of ¢(u,s), we immediately ob-
tain the proper continuation of the integral (2.10a) to
s>0: for s<m?® the contour of C, of (2.10a) extends
around the logarithmic branch point of ¢(u,s) at #=0,
and the asymptotic behavior in ¢ of the integral is de-
termined by this singularity. The discontinuity of ¢(u,s)
across the left-hand cut associated with the logarithmic
branch point is given by —im?Cy(u)C(e){discI (u,s)},
where we must substitute (2.13) for disc/(u,s). [This
expression remains valid also for s>m?.] As s becomes
larger than m?, the singularity of I(,s) [or ¢c(u,s)] at
u=(s"2—m)?, which for s<m? was absent from the
leading logarithmic sheet, now appears on the leading
sheet via the branching at #=0 and drags the contour
C. to the right as we keep increasing s; thus for s> m?
the new asymptotic behavior of the amplitude (2.10a)
will be determined by the singularity at u= (s2—m)?;
the discontinuity of ¢(u,s) across this branch point,
for 0<u<(s'2—m)?, is given by —in?Cy(u)C(a)
X{discI (%,s)}._, where (2.16) is to be substituted for
the discontinuity of I(u,s). The integral (2.10) may
therefore be cast into the following form, valid for all
real s:

C ()£ (@) t2=14-273CO (s— m?)

v(u)

c(@)E(a)tet—1,  (2.17)
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The asymptotic behavior of the AFS amplitude may be
obtained immediately from the expression (2.17); thus
for s strictly less than m? (only the first integral then
contributes) the integrand is seen to approach a con-
stant as #— 0, while for s>m?, the integrand of the
second integral diverges as # — (s*/2—m)?; now for large
{ the leading contribution to (2.17) comes from the
upper integration limit of the first or second integral,
depending on whether s<m? or s>m?, respectively. The
leading term in (2.17) is then readily obtained by
expanding the trajectory function a(#) around the ap-
propriate upper limit of integration and neglecting the
variations of any other slowly varying factors in the
integrand; one finds

[A4 (s,8) Jars = B(s)t«®=1/In¢, for s<m?, (2.18a)

where

¥(0)  Cla)é(e)

sinza o (0) (m2—s)

B(s)=7%C (2.18b)

and a=a/(0). Similarly one finds that for s>m?

LA (s,)Jars — Gs)eetHP=mn=1/[Ing ]2, (2.19a)

where ) c )
Gls)=n7oC—" @D ) 10)

sinma(u_) [ma’ (u_)sV2 ]2

and a=a(u_), u_= (s"2—m)>.

If the AFS amplitude has a Sommerfeld-Watson
representation (in which case the large-¢ behavior of the
amplitude is determined by the leading singularities in
the j plane of the s reaction), then we conclude from the
asymptotic expressions (2.18) and (2.19) that the
leading branch points in the angular-momentum plane
associated with the s reaction are located at j=a(0)—1
and j=a((s"?—m)?)—1, for s<m? and s>m?, respec-
tively, and, furthermore, that these singularities are of
the logarithmic type, and inverse square-root type. Since
for s<m? the singularity at j=a((s¥2—m)*)—1 no
longer determines the asymptotic behavior of the AFS
amplitude, it must have moved onto an ‘‘unphysical”
sheet via the logarithmic branch point at j=a(0)—1;
notice that the latter singularity does not depend on any
mass parameters, while the former one depends on ,
the mass of the exchanged elementary particle. The
location of the singularities as well as their logarithmic
and square-root nature agrees with the results obtained
by Mandelstam,? Wilkin,? Gribov ef al.,* and Simonov,?
in connection with the single Regge-pole exchange
diagram for which the cancellation of the cuts does not
occur (see Fig. 10, for example).

D. Concluding Remarks

Before closing our discussion of the AFS amplitude
associated with the single Regge-pole exchange diagram
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we wish to make two further remarks concerning (a) the
signature of the partial-wave amplitude in which the
leading branch points appear, and (b) the generation
of the normal threshold branch points in s of [4 (s,£) Jars.
We begin with the first-mentioned point. Assuming that
(2.1) is dominated at large ¢ by the expression (2.10a),
we have

A(s)t) — —’L~/ du c(u,s)
Cu

t—4-00 zllzl

X [(—=t)* =] /sinra(u), (2.20)

where we have substituted [(—#*®4®7] for
[exp(—ima(u))417t*, and have written |¢| instead
of ¢ to include the limit {— — » [see the discussion at
the end of Sec. (IL.A)7]. From (2.20) it follows that for
large ¢ the amplitude is even or odd under the trans-
formation {— —¢ depending on whether we exchange a
Regge pole of even or odd signature, respectively. Now
any amplitude that satisfies the usual one-dimensional
dispersion relation can be written in the form

A (siz-‘?) = %I:A+(S)ZS)+A+(S) - ZS)
+‘4—~(S;ZS)—A_(57 - ZS)] )

where z, is the cosine of the center-of-mass (cm)
scattering angle for the s reaction (i.e., z,=1-1#/2¢.% ¢,
being the corresponding ¢.m. momentum), and where

1 2 Ast) 1 p A (s,u))
A*(s,z)=— / df————— / du'
{0 ugy

T V—1i(s,2s) =

(2.21)

w'—u(s, —25) ’

here 4 ,(s,t) and A.,(s,u) are the {-channel and #-channel
absorptive parts of 4 (s,f) respectively, and  and u, are
the squares of the lowest-normal thresholds in the ¢ and
u reactions; since for large ¢, z< ¢, it follows from (2.20)
and (2.21) that in the limit #—o only the positive
(negative) signature amplitude will contribute to
[A(s,f)Jars if we exchange a Regge pole of positive
(negative) signature. Thus the leading branch points in
the angular-momentum plane appear in the analytically
continued partial-wave amplitude of the same signature
as that of the exchanged Regge pole.

We now turn to the second point and show how the
normal threshold branch points of [4 (s,f) Jars in s are
generated ; they are expected to result from the coinci-
dence of the poles and normal threshold branch points
of the Regge-pole amplitude with the pole of the
propagator associated with the elementary particle ex-
change; the latter manifests itself in the singularity of
c(u,s) at u= (s"2—m)?. We notice first of all that the
integrand of (2.20) has poles at u=M 2, where M ; are
the masses of the physical bound states or resonances
lying on the Regge trajectory [the latter singularities
are reached by going through the normal threshold cuts
of the trajectory function a(x)]; they are therefore a
solution to

a+(Mi2)=07 2’ 4y ]
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and .
aMPH=13,5 -, k, Plane

[we have suppressed the signature labels on the tra- Cars Chrs

jectory function in (2.20)7]. The residues of the poles at
the remaining integers of a® (#) vanish on account of the
signature. Now for s<m?, the contour C, extends along
the negative # axis and encircles the branch point of
¢(u,s) at u=0; as we increase s above m? a new singu-
larity at u= (s'/2—m)? appears on the leading sheet, and
the contour C,, will be pinched between this singularity
and the above-mentioned poles when

si= (m+M ;).

This gives the position of the two-body normal threshold
branch points. The higher-normal threshold branch
points are generated in exactly the same way by the
pinching of the contour C, between the moving singu-
larity at u= (s¥2>—m)? and the normal threshold
singularities at #=wuy of the Regge-pole amplitude;
their locations are given by sy= (m~-uy'/?)% In addition
to the above normal threshold branch points the con-
tinued partial-wave amplitude of definite signature,
b*(7,5), will have singularities in s arising from the
moving branch point at j=a((s'/2—m)?)—1, as was
originally pointed out by Mandelstam.? Their locations
are given by

s(N={m+AG+1]"*P,

where X is the inverse function corresponding to a(#).
For definiteness sake let us consider the case in which
we exchange a trajectory of even signature (the
Pomeranchuk, for example). The singularity at
j=a[ (s2—m)?]—1 will then appear in the even signa-
ture partial-wave amplitude; from (2.22) we see that if
7 is an even integer [b*(j,s) then coincides with the
physical partial wave amplitude], then the singularity
s(4) would coincide with an unphysical threshold branch
point at sj.1= (m~+M ;1)% where My, is the mass of
an unphysical bound state (or resonance) with odd spin
o= j+1, lying on an even signature trajectory. Unless
the discontinuity across this singularity vanishes for j
an even integer, it would manifest itself in the scattering
amplitude as well; now we have seen that [4(s,$) Jars
has only physical cuts in s; we hence conclude that for
even 7, b*(4,s) is nonsingular at s=s;;;; this agrees
with the conclusion reached by Mandelstam.?

(2.22)

E. Cancellation of the Cuts

So far we have assumed that (2.6) gives the dominant
contribution to (2.1) at large energies; this has led us to
conclude that the amplitude has angular-momentum
branch points of the AFS type. As was originally sug-
gested by Mandelstam,? these singularities are absent in
the true amplitude; the purpose of this section is to
exhibit the simplicity of the cancellation mechanism. To
this effect we return to formula (2.4), which one expects

F1G. 6. The integration contour of (2.4) in the ks plane split
up into two pieces, Cars and Cars’, where the latter contour
encircles all the singularities in k2% of the Regge-pole amplitude
(these singularities are symbolically denoted by the dot).

to give the leading contribution to (2.1) for {— ; the
approximation which has led us to (2.6) consisted in
ignoring the singularities of R(ks%t; ks%k4?) in the com-
plex ko? and k4 planes. We now show that if we include
the latter singularities, the integral (2.4) vanishes
identically. To see this, one only has to realize that the
singularities of a Feynman amplitude in any one of its
external invariant masses must lie in the lower half of
the complex plane, if the remaining variables are kept
real (we are referring here to four-line connected parts).!®
Thus, if R(ks,t; ksksZ) vanishes as k9? or k¢ becomes
infinite, as we believe to be the case,! then the integral
(2.4) will vanish identically, since the singularities of the
integrand in &4 (or %42) are all located in the lower half
of the complex plane. The two cancelling pieces of the
amplitude (2.4) may be readily exhibited. Consider the
k? integration for example; the contour integral along
the real axis may be split up as shown in Fig. 6; the
contribution to the amplitude coming from the contour
Cars corresponds to an AFS type of approximation,
while the integral along the contour Cars’ (which en-
closes all the singularities of R in ks?) becomes the dis-
persion integral for the function R (ks,¢; m?k?) ; the two
contributions mentioned above evidently cancel. If one
continues to treat the two pieces separately and per-
forms the remaining integrations, one finds that a

F16. 7. Box diagram in which two of the elementary lines have
been replaced by Regge poles.

15 This follows from the fact that the coefficients of the invariant
masses which appear in the Feynman denominator function,
D(a,s,t,p2), are nonnegative; see N. Nakanishi, Progr. Theoret.
Phys. (Kyoto), Suppl. 18, (1961).
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similar cancellation takes place within each of the
separate pieces; the AFS approximation to (2.1) is ob-
tained by consistently ignoring the Cars’ integrations.
The fact that the AFS-type singularities are absent in
the full amplitude (2.1), but present in the two-particle
discontinuity [which is given by (2.6)], shows that
these singularities must be found present if the ampli-
tude is continued into the second sheet of the 2-particle,
t-channel branch point.

III. THE DOUBLE REGGE-POLE
EXCHANGE DIAGRAM

A. The AFS Approximation

In this section we analyze the diagram of Fig. 7; for
simplicity we consider the exchange of two identical
Regge poles; the modifications that are required if this
condition is relaxed are rather obvious and we state
them at the end of the section.

Making the same approximations to the Jacobian
(2.2, 3) as before, we arrive at the following expression
for the leading contribution to the amplitude at large
positive ¢, and s<0:

C
A(s,) Q"«4— /dkfdkz?dkg,?dkﬁf(k12,k32,s)
4
1

X
[k—mi+ il ke—mitic]
XR (k15 k2 RDR (ki ki kd?)

(3.1)

where 7(k2ks2,s) is the triangle function defined in
(2.5), and where the functions R are the amplitudes as-
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sociated with the two Regge poles. The AFS approxi-
mation corresponds, as before, to ignoring the singu-
larities of R in ks and k42; closing the k¢* and %42 inte-
gration contours in the lower half planes, we pick up the
following contribution coming from the poles of the two
propagators:

[:A (S,t)]AFs=— 2C/dk12dk32T(k12,k32,S)

(k) (ks
sinzra (k1) sinme(ks?)

X C(k12)c (k32)ta(k12)+a(k32)—1 R

(3.2

where we have substituted (2.7) for the on-the-mass-
shell Regge-pole amplitudes (throughout this section we
shall omit all signature factors and signature labels,
since they are not pertinent to the discussion); the
coefficients C (k?) and C(k5?) are defined by

Py (2) > C(y)z=@. (3.3)
20

Except for a trivial change, we treat formula (3.2) by

the same recipe as was used in dealing with the single

Regge-pole exchange diagram. Let us switch to a new

set of integration variables, x and 7, which are defined

in terms of %% and k3? by

x= k32'— (1/43) (klz‘—s—‘k32)2 ’
and
r=[(k?—s—ks)/2(—s)"*]—3(—5)'".

In terms of x and 7 the integral (3.2) becomes

v@—[r+3v/ (=)

0 dx
[A (5,()Jars=—C /

0
d
(—x)12 /_w ’lsinm(x—[r-i-%\/(_s)]z)

Y@—[r—3v(=9T)

X
sinma (x—[7—3/(—s) )

where

Clay; s)=Cl—[r+3v(=9P)
XC@—=[r—3V(=9F), (3.4b)

and C(y) is defined by (3.3). Consider the analytic
structure of the integrand of (3.4) in the 7 plane; there
will be poles arising from the vanishing of the sine
factors in the denominator, as well as branch points
which arise from the normal threshold branch points of
the Regge trajectory function, a(#), and reduced residue
function, v (u) ; the location of the singularities in the 7
plane is thus given by

7a= £t (— )21 (u,—2x)'2, (3.5)

where u, stands for the square of the masses of the
bound states and resonances lying on the trajectory
a(u), and for the position of the normal threshold

('j(x,r;s) gea=lrHv (0 Dtale—r—VE=al®=D - (3 4a)

branch points of a(x) and v (). If we define the ‘“angular

momentum” variable 7,16

I=a(@—[r+3vV(=9TF)
tale—[r—3V/(=5)P)—1,

then the integral (3.4) may be written in the form

dx

(_x 1/2

dl
X/ B(l,s,x)t?,
C al/af

16 The quantity ! should not in general be identified with
the total angular momentum j in the s channel; one may
interpret it as the total angular momentum in the s channel,
obtained by coupling the (complex) spins of the two Regge poles
to a relative angular momentum L=—1.

(3.6)

[A4 (s,8) Japs=—m?C /_0 i

3.7
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F1c. 8. The complex ! plane showing the contour C; of the
integral (3.7) for the case where we exchange two Regge poles,
together with the singularity of the integrand at =2« (x+s/4)—1.

where the contour C; is shown in Fig. 8, and where
B(l,s,x) is the quantity appearing within braces in
(3.4) expressed in terms of / and x through relation
(3.6). To obtain the contour C; of Fig. 8 we have used
the fact that a(#) is a real analytic function of %, and
have made the assumption that da/du>0 for %<0
[which is true if a(#) has only the right-hand normal
threshold cuts and satisfies a dispersion relation with a
possible subtraction]. Notice that the Jacobian for the
transformation dwdr — dxdl is singular at =0, since
(3.6) is invariant under the transformation r — —7.
This manifests itself in formula (3.7) as a singularity of
the integrand at /=2a(x+%s)—1 (corresponding to
7=0) which arises from the vanishing of 9//dr; in fact,
it follows trivially from (3.6) that at »=0

3/ ar=0. (3.8)

Thus, for any given ®, the contour C; of Fig. 8 is the
“minimizing” contour [since any other contour ob-
tained by distorting C; must pass through a point /, for
which Relo2> 2a(x+%s)—1]; the asymptotic behavior of
the integral over / in (3.7) will therefore be determined
by the singularity at /=2a(x+%s)—1.

In order to continue the expression (3.7) to positive
values of s it is easiest to return to the form (3.4), since
we have complete knowledge of the singularity struc-
ture of the integrand in the 7 plane. As we increase s
from negative to positive values, the complex conjugate

E r plane

s

{'s
{

/
B

F1c. 9. The new integration contour of (3.4a) in the complex 7
plane as it appears for s>4(M2—x); 75, r5’, 75, and 75’ give the
position of the singularities arising from a bound state of mass
#5" lying on the trajectory «(u); they are given by: rp=3is12
+i(up—x)12, Tp=i}s12—i(ug—2x)'2, g’ = —i3s12 i (up—x)l,
and 7p'= —i3s12—4(up—x)'2,
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pairs of singularities (3.5) move onto the imaginary
axis, and remain on that axis for s>0; for a fixed value
of x, the r-integration contour of (3.4) [corresponding
to the minimizing contour C;] will then remain
undistorted as long as s<4(M?—x), where M is the
mass of the lowest-lying bound state on the trajec-
tory a(#); if no such state exists, then M is to be
replaced by the energy corresponding to the lowest
normal threshold branch point of the Regge pole.
We shall assume for the present that there exists such
a bound state; it then follows that for s=4(M?—x)
the r-integration contour will be pinched by the
pair of singularitieslocated atr= —(3/2)s'2+ 7 (M2 — x)1/?
and 7= (¢/2)sV2—i(M?*—x)'2; thus for s>4(M>—x)
the contour will appear as shown in Fig. 9.

B. Asymptotic Behavior of the AFS Amplitude,
and Location of the j-plane Singularities

The asymptotic behavior of the amplitude (3.4) will
be determined by the above-mentioned singularities in
the 7 plane, and by the upper limit of the x integration
(i.e., #=0). Thus for s<4M? the large-t behavior of
(3.7) is controlled by the singularity of the integrand
at I=2a(x+s/4)—1, and x=0 (corresponding to r=x
=0), while for s>4M? it is controlled by the singu-
larity at I=a(M?)+a(s+M2—2s12(M2—x)2)—1, and
=0 [corresponding to 7= == (i/2)s"2F1(M?*—x)'/2, and
x=0]; that the latter singularity will dominate over the
former for s> 4M?, follows from the fact that 4%/d72>0,
where in=7, and / is defined by (3.6). To find the precise
form for the asymptotic behavior of (3.4), we expand the
various Regge-trajectory functions around the above-
mentioned points in the x and 7 planes keeping only the
linear terms, and ignore the variation of all slowly
varying functions in the integrand; one readily finds
that

[A (s,t) Jaws el D(s)p=e!9=1/In¢ | for s<4M?, (3.9a)

where
D(s)=—n*C[y(s/4)/sinra(s/4) P
X C(0,0,5)/2d/ (s/4), (3.9b)
and
[A (s,0)Jars = H(s)pistals 221/ (Ing)1/z
for s>4M?, (3.10a)
where
sIIZ_M 2
H(s)= z,rslzcu
sinma ((s12— M)?)
vy (M2 C(0, iM—isi2/2; s
/239) (3.10b)

(=DM’ (MH[ (/Mo ((s2—M)?) ]2

and Iz is the spin of the bound state of mass M. As-
suming that the amplitude (3.4) has a Sommerfeld-
Watson representation, we then conclude from (3.9)
that the continued partial-wave amplitude associated
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with the s reaction must have a logarithmic branch
point at j=2a(s/4)—1 which for s<<4M? is the leading
singularity in the 7 plane; similarily, one may conclude
from (3.10) that for s>4M? the leading singularity is a
branch point of the inverse-square-root type located at
j=lpta((s"2—M)*)—1; since for s<4M? the latter
singularity has no effect on the asymptotic behavior of
the amplitude (3.4), it must appear on an unphysical
sheet of the logarithmic branch point.

One can readily generalize the above discussion to the
case where we exchange two different trajectories a;
and ;. The analog of the singularity at j=2a(s/4)—1
is still determined by (3.8) and by the upper limit of
the x integration in (3.7). The position of the singularity
is readily found to be

j=a1(u)Fa((sV2—u2)?)—1, (3.11a)
where # is a solution to
a () —a (52— ut/2)2) (52— /2) /t2=0 . (3.11D)

Let us suppose, for simplicity, that only one of the
trajectory functions, say a;, passes through a physical
bound state of mass m; and spin /;. In the 7 plane of the
integrand of (3.4) this gives rise to a pair of singularities
which for s>0, and fixed negative x, appear on the
imaginary axis at r=—i3s"2+i(m?—x)"2. We are
forced to distort the minimizing contour associated with
the vanishing of d//dr (where /=a;+as—1) when the
singularity at r= —is"24i(m?—x)"? coincides with
r=ry, Where 7, is a solution to (3.8); in the / plane this
corresponds to the coincidence of the bound-state singu-
larity at I=04as(s+m2— 252 (m?—x)2)—1 and the
singularity arising from the vanishing of 81/dr in (3.7);
now with regard to the x integration, the asymptotic
behavior of (3.7) is determined by its upper limit;
furthermore, the above-mentioned singularities in the /
plane will coincide at =0, when s is a solution to

oy’ (m2) — o (82— my)2) (82— my) /m=0. (3.12)

Let s, be the critical value of s; it then follows that
(except for logarithmic factors) the asymptotic behavior
of the amplitude will be of the form ), where \(s) is
given by (3.11) if s<s., and by li+aa((s"*—m1)*)—1,
if s>s.. (The latter behavior is determined by the
above-mentioned bound-state singularity.) The general
picture in the angular-momentum plane which is sug-
gested by the analysis of this section is summarized
below. Finally we wish to remark that none of the above
singularities will be present in the complete amplitude
(3.1); the mechanism responsible for their cancellation
is, of course, of the same type as the one discussed in
Sec. IT in connection with the single Regge pole ex-
change diagram.

C. Concluding Remarks and Summary

Let us summarize the situation for the case where the
two exchanged trajectories are identical, Assuming that
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the AFS approximation to the diagram of Fig. 7 has a
Sommerfeld-Watson representation, we are led, on the
basis of the asymptotic expressions (3.9) and (3.10), to
the following picture in the angular-momentum plane of
the s reaction: If there exists a bound state of mass M
lying on the trajectory a(u), then for s<4M?* (that is
below the threshold corresponding to the two-particle
intermediate state formed by the bound states of the
Regge-pole amplitudes) the leading singularity in the j
plane is located at

j=2a(s/4)—1. (3.13)

All other singularities which lie to the right of (3.13)
hence must appear on an unphysical sheet. As we in-
crease s above 4M2, a new singularity emerges onto the
physical sheet via the branching at (3.13) and controls
the asymptotic behavior of the amplitude; its position
is given by the formula

j=a((sP=M)")+1s—1, (3.14)

where I is the spin of the bound state; (3.14) is the
analog of the moving singularity j=a((s"?—m)*)—1
found in the single Regge-pole exchange case. If, on the
other hand, a(x) has no bound state, then (3.13)
remains the leading singularity for s<16m?, that is,
below the four-particle production threshold (corre-
sponding to two-particle intermediate states for each of
the Regge-pole amplitudes). For s>16m? a new singu-
larity then appears on the physical j sheet via the
branching at (3.13); its location is given by

j=al(s"2—2m)*)F-a(4m?)—1. (3.15)

Now there exists no essential difference between the
various types of singularities in the 7 plane of the
integrand of (3.4) ; the general picture thus suggested by
the above analysis is that as we keep increasing s
through positive values, all the mass-dependent singu-
larities (which arise from the bound states and normal
thresholds of the Regge-pole amplitudes) will appear in
turn on the physical sheet via the mass-independent
branch point at j=2a(s/4)—1 whenever s has the
appropriate value for the coincidence of the singularities
of type (3.14) and (3.15) with the singularity (3.13); for
any given s, the rightmost singularity will then de-
termine the asymptotic behavior of the amplitude.

So far we have not specified which of the two s-
channel partial-wave amplitudes of definite signature
carries the above-mentioned branch points; to answer
this question we notice that

Er(@)Ex(o)terta=[ (=t ]l(=)=kre].

Now for - the amplitude (3.1) presumably ap-
proaches (3.4a); the corresponding limit for {— — o
would then be given by the negative of this expression
(the reasoning is of course identical to that given in
connection with the single Regge-pole exchange dia-
gram). We hence conclude that the amplitude is even or
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odd under the transformation {— —{, depending on
whether we exchange two Regge poles of the same or
opposite signatures, respectively. [ The signature factors
had been omitted in (3.4a).] Similar reasoning to that
used in connection with the single-Regge-pole exchange
diagram then leads us to conclude that the above-
mentioned branch points in the j plane will appear in
the even or odd signature partial-wave amplitudes de-
pending on whether the two exchanged trajectories have
equal or opposite signatures (in that order).

Concerning the normal threshold singularities of
[A(s,))]ars in s, they are generated in a similar way to
those of the single Regge-pole exchange amplitude;
thus, let us suppose that there exist two physical bound
states of masses m; and m, which lie on the trajectories
a1 and a, respectively. For s>0 the pairs of singu-
larities of the integrand of (3.4a) in the 7 plane which
arise from each of the bound state poles of the Regge
amplitudes [their locations are given by (3.5) with
u, — my® and mo?*] lie on the imaginary axis; as we keep
increasing s, two of the four singularities (one from each
pair) will pinch the r-integration contour when s'/2
— (m2—x)V2— (m2—x)"2=0. Performing the x inte-
gration then generates an end-point singularity of
[A(s,))Jars at s= (mi+ms)?. This is the two-body
normal threshold branch point corresponding to the
intermediate state formed by the bound states of mass
my and m.. As we keep increasing s above s= (m1+m.)?,
the r-integration contour will again be pinched between
two of the bound-state singularities and one from each
pair of threshold singularities (which arise from the
normal threshold branch points of the Regge-pole
amplitudes) when either

si2— (m12_ x)1/2__ (4m2_ x)l/Z =0
or
siz— (m22_ x)1/2_ (4m2___ x)1/2= 0;

[we have assumed that u=4m? is the lowest-normal
threshold of R(a1(#),t) and R(as(),t)]. Subsequent in-
tegration over x then produces the corresponding three-
body normal threshold branch points at s= (m1+2m)2,
and s= (mq+2m)?, respectively; the generalization of
the above results to include higher normal threshold
singularities (which will be complex if they arise from
resonances lying on the trajectories a; and as) is
self-evident.

In concluding we wish to add one further remark ; let
us suppose that we exchange two identical trajectories
a; the singularities (3.13-15) then appear in the even-
signature-partial-wave amplitude; one may now easily
convince oneself that for j even [6+(J,s) then coincides
with the physical partial-wave amplitude] they give
rise to unphysical singularities in the s plane; in com-
plete analogy to the single Regge-pole exchange case one
can however show that the discontinuity across these
singularities of &*(j,s) vanishes at the even integers
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since the AFS amplitude was shown above to have only
physical branch points.

IV. DIAGRAMS THAT HAVE THE
MANDELSTAM SINGULARITIES

So far we have dealt with a set of Feynman graphs
which in an AFS-type of approximation gave rise to
angular-momentum branch points which are, however,
absent in the full amplitude. Nevertheless we have
studied them in great detail for two reasons: (a) We
wished to obtain a clearer understanding of the mechan-
ism responsible for the cancellation of the singularities
(which presumably is not in operation for such diagrams
as shown in Figs. 10 and 11). (b) We expect that the
location and nature of the singularities found in an AFS-
type of approximation to the diagrams of Figs. 1 and 7
is the same as that found for the full amplitudes as-
sociated with the diagrams of Figs. 10 and 11. It is clear
that the complexity of the latter diagrams will make it
impossible to carry out as careful an analysis as was
made for their simpler versions, and we will have to
sacrifice a certain amount of rigor in favor of simplicity.

A. The Single Regge-Pole Exchange Diagram

Consider the Feynman amplitude corresponding to
the diagram of Fig. 10 which is expected to have the
angular-momentum branch points that we found in
Sec. ITin connection with the AFS approximation to the
diagram of Fig. 1:2

2\* 1
A(s, )= —i(——) / P A L) 2 L P—
4r2 n—mi+ie

4 1
XII
i=1 [ £2—mP~ie | k2—mi+tie]
XR("hsz; 5321542)k32;k42) )

where R is the amplitude associated with the Regge
pole,)” U being the invariant-momentum-transfer
squared

(4.1)

U= (£3tks)?= (Estka). (4.2)

Let s'=1n2, s’ =9, ' = (q1+n2)% and ¢’ = (g2— 12)%. The
components of the four-vector n; may be expressed in
terms of the invariants s/, s, #', and #’; the Jacobian for
the transformation is given as before by (2.2, 3) with the
replacements: k2 — 5", k2 — s’ k2 — ¢/, and k2 — ¢’
proceeding as in Sec. II, we shall keep for t—o and
small momentum transfers s only the first two terms in

b 17 The amplitudes 4 and R are related to the 7-matrix element
y
Fys
Tri=(Qm%(Py—P)——- T — |
4
L@2m)a2 ]t I1 (2w,)H2
i=1

where F=4, or R.
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Fic. 10. Single Regge-pole exchange diagram which has singu-
larities of the AFS type.

the expression for D [see Eq. (2.3)]. With this ap-
proximation the integral (4.1) becomes
7(s,8,5"")

i 1
A (s5,) = ——(g/4n?)5- /ds’ds”
=0 4 ¢ s —mi-ie

+o0 0
x[ / a’ / dt"F(s’,s”,t’,t";s,t)], (4.3)

where 7(s,s",s"") is the triangle function defined in (2.5),
and where

F(s',s" 00" s)

+  R(\U; 2,62 k5% k4)
— / ded I1 DT (4.4)

it [£2—metie ][k 2—mitie]

Included among the singularities of F there are those
pertaining to the integral (4.4) with R replaced by a
constant; i.e., it has the singularities of /', where

ﬁ(slysn;t,>t”; s):AC(s’t'; S’,S")AC(S,t"; SI:S”) >

here AC(s,¢; s’,s"") is the invariant amplitude associated
with the “cross” in Fig. 10:

4 1
AC(s '3 5,5") = / sl —— . (45)
i=1 £ 2—mP-ie

Now A¢(s,'; s',s"") has normal threshold branch points
at ¢’ =4m2—ie and w'= (na— p1)>=4m?—ie, where ¢ and
' are related according to: ¢ +4u'+s=2m24s'+s". It
follows that (4.4) will be singular at

' =4m2—ie (4.6)
and

V=s"+4s"—s—2m*+ie, 4.7

with an identical set of singularities of F in the variable
¢" which arise from the normal threshold singularities of
AC(s,t"; s',s'"). The essential feature to be noticed about
the singularities (4.6, 7) is that they appear on opposite
sides of the # integration contour, Cy (the same, of
course, applies to the singularities of F in #’); the
integration contours of (4.3) in the # and ¢’ planes are
thus forced to cross the real axis somewhere between #

T16. 11. Double Regge-pole exchange diagram which has singu-
larities of the AFS type.

(or "")y=4m? and ¢’ (or {'") =s"+5"—s—2m*.18 Now from
the Landau equations for the normal threshold singu-
larities of the two crosses in Fig. 10 it follows that when
'=4m?—1ie the & integration contours in (4.4) cannot
be distorted so as to avoid theregion where £3= — £4, and
£2=E2=m?; similarily, when ¢’=4m?—1e, we cannot
avoid the integration region where ko= —Fk4, and ks
=k2=m?; from this it follows that when ¢/=¢"=4m?
—ie, U=1/4, where U is defined by (4.2). Similarly,
from the Landau equations for the #-channel threshold
singularities at «'=4m?—ie and u”=4m?—ie (corre-
sponding to #=s"+s"—s—2m2+ie and ¢'=54s"—s
—2m2+ie), one finds that there exist corresponding
unavoidable integration regions in (4.4) where &= — &3,
E2=tl=m?, and ki=—ks, ki®=k2=m?, respectively;
once again one may verify that at ¢=1"=s"+s"—s
—2m?4-ie, U=1/4. Next we notice that the s’ and s”
integrations in (4.3) include the boundary point s’=0,
s”’=s (the boundary of the s, s” integrations being
given by s2-s'2-4s"2—2ss’— 255"’ —2s's"’ =0); further-
more, we cannot distort the integration contours so as
to avoid this point ; now at s'=0, s =s, the singularities
of Fin ¢ and ¢’ are located at ¢ =4m?—ie, t'' = dm>— i,
and ¢'= —2m2-+ie, ¢' = —2m2+-ie, so that the ¢ and ¢’
integration contours are forced to cross the real axis
somewhere between # (or #/)=4m? and ¢ (or ¢”)
= —2m?; thus one might expect that in this region of the
“approximate pinch,” ¢2~kl~m?, and U={/4. In
order to get an estimate of the contribution to the
amplitude at large ¢ coming from the angular-mo-
mentum cut, we shall make the (not totally unreason-
able) assumption that the major contribution to the
quantity appearing within brackets in (4.3) comes from
the above-mentioned region of the “approximate pinch”
in the # and ¢’ planes, and from the integration region
of (4.4) where all four-momenta squared are close to
their mass-shell value; thus one might attempt to ap-
proximate the function R(s,U ; £2,£2,ks,k4*) appearing

18 Our qualitative reasoning is that of C. Wilkin (see Ref. 3)
and of E. S. Abers, H. Burkhardt, V. L. Teplitz, and C. Wilkin,
Nuovo Cimento 42, 365 (1966). Our goal is however a more
ambitious one in that we wish to arrive at a quantitative estimate
for the contribution to the amplitude coming from the angular-
momentum cut.
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in (4.4) by its value at U=t/4, and {2=¢2=Fki=k
=m? (we certainly cannot consider the present discus-
sion as rigorous; however, the approximations will at
least give us some kind of estimate for the strength of
the cut); with this approximation the integral (4.3)
becomes

’I: 51 ( / N)
A(s,) > —— LY ds'ds"”
oo A\4y?/ ¢ s —m2tie

o0 12
X{/ dl'AC(s,t’;s’,s”)J ,

—0

————R(a(s),t/4)

(4.8)

where A¢(s,’; s',s"") is given by (4.5).

Before proceeding with the analysis of (4.8) we wish
to emphasize once more that the existence of the “ap-
proximate pinch” in the ¢ and ¢”” planes was essential in
deriving the expression; this in turn requires that both
the right and left-hand portions of the diagram must
have a third double spectral function with respect to
the s reaction; in fact, it has been shown by Wilkin? that
if either the right or left-hand portion of the diagram
does not have a third double spectral function, one can
distort the integration contours of the Feynman ampli-
tude (4.1) in such a way that the Regge pole will not
assume its characteristic asymptotic form anywhere
along the paths of integration.

We now return to formula (4.8) and extract from
it the leading term for ¢{—w which comes from
the integration region s'>~0, s”~~s. Approximating
AC(s,t';s',s”") by AC(s,t';0,s), and proceeding as in
Sec. II, we obtain, upon substituting (2.7) for R,

A(s,f) — _i<;g_>6 v(0)
16 \472/ sinwa(0)

0 I\ & O
X / ds’<—> / ds"
—e 4

J_T(iy v(0) [K(s)T
16\47%/ sinwa(0) m?—s

O/

where C(a)=C(a(0)), £+(a) =£.(a(0)), and

-+
K(s)= di'A°(s,t’; 0,5).

—00

mwwwmmamﬁ

7(s,5",5")

s —m2t-ie
(4.9a)

Cla)és(a)

o' (0) In(t/4), for s<O0,

(4.9b)

Except for the factor [K(s)]* and the replacement
t— t/4, formula (4.9a) is identical to that obtained for
the AFS approximation to the single Regge-pole ex-
change diagram treated in Sec. II [see (2.18)]; thus
once again we conclude that, for s<0, the leading
branch point in the angular-momentum plane of the
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s-channel partial-wave amplitude is located at j=a(0)
—1, and that it is of the logarithmic type.

B. The Double Regge-Pole Exchange Diagram

The diagram involving the exchange of two Regge
poles (see Fig. 11) can be dealt with in exactly the same
way as above; for simplicity we shall consider the case
of two identical Regge poles. Making the same type of
approximations as before, one arrives at the following
expression for the amplitude:

A(s)t) = = 4(8#) //ds’ds"r(s s',s" VR (a(s"),t/4)
o0 12

XR(a(s"),t/éL)[/ dt’A"(s,t';s’,s")j ; (4.10)

—00

the leading contribution to (4.10) comes from the
integration region s’~s"’=~s/4, so that we may ap-
proximate AC(s,t’;s’,s"”") by AC°(st';s/4,5/4) in this
domain. If we then substitute

R(a(8),t/H)=7(5)C(@)éx(e) (t/48)« /sinma(s) (4.11)

into Eq. (4.10) (here { is a reference energy to be
specified below) and make the change of variables
g=s"+s", n=5"—5s", we arrive at the following formula
for the asymptotic contribution to 4 (s,f):

Al )~ i (8 > (7(5/ 4HH (5)C (a)Ei(a))

32 sinra

1 ¢ 2a(s/4)—1—}sa’ ,s/2 t o't
AL )
i\4i voe \4i
6(2s&—s2—7?%)
 fanllEED
(25— s )"
(s/HH(5)C (@)t (a))2

sinmra

)
T 32\84

X(i_)‘”(“/‘”“l / o/ In(t/4f), (4.12a)

4t
where a=a(s/4), o’=d'(s/4), and
0
H(s)= di'AC(st 5 s/4,5/4). (4.12b)

—0

From formula (4.12) we see that for s<0 the position
of the leading singularity in the angular-momentum
plane of the s reaction is a logarithmic branch point
located at j=2a(s/4)—1.

Finally we wish to cast (4.12b) into a more convenient
form for computational purposes. Since we shall be
interested in the value of (4.12b) at small momentum
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transfers s, we will approximate the integrand by
AC(s,t';0,0). Now, on account of the many approxima-
tions made in deriving formula (4.10), we can only hope
to obtain a very rough estimate of the contribution to
the amplitude coming from the cut. For practical
reasons we shall therefore make a further approximation
and replace 4¢(s,t;0,0) by A%(s,f), where the latter is
the amplitude associated with the ‘“cross” with all
external masses taken equal to m? Now, AC€(s,f) is
known to have the spectral representation

p(t'u')

1
A6(sy)=— / a / aw ,
x? (' — [ — (42— s—1) ]

where p(f,u) is the well-known Mandelstam double
spectral function for the box diagram;'* the boundary of
the region where p(£,4)#0 is given by ({—4m?) (u— 4m?)
—4m*=0; from here it follows that, for fixed s, (4.13)
defines an analytic function of ¢ in the ¢ plane cut from
t=4m? along the positive { axis, and from = —s along
the negative axis. The singularities at ¢=4m? and {=—s
are the ones responsible for the approximate pinch
discussed previously (where the limit e— O has been
taken); the contour C, of the integral (4.12b) extends
just above and just below the right- and left-hand cuts,
respectively. Now for fixed s, 4¢(s,f) vanishes like 1/£
for large f; we therefore may distort the contour C,
around the right-hand cut of A€(s,f) and rewrite the
integral (4.12b) in the form

(4.13)

0

H(s)=~ Zi/ di'A C(s,t'), (4.14)
4m?

where A4.°(s,) is the f-channel absorptive part of
AC(s,t), which, in the notation of Ref. 19 is given by

_iﬂ.s
AtC ) =—
O e
><1n<°‘(%u)+ (q./t)[K (t,u)]W) w150
a(tuw)— (q./t"))[K (tu) ]
where

K (tyu) = dtul tu— 4m? (i+u)+12m*],
a(tu) = tu—2mt— AmPu-+6m?,
(]t2= —m2+t/4 )

(4.15b)

and
u=4m?—s—{.

If, in (4.12), « is taken to be the Pomeranchuk tra-
jectory, then we obtain for s=0

T /g\*
cwt=—-—} 7(0 H(0)
A0 ) 500 0)]

XR((0),t)/1e/ (0) In(t/41), (4.16a)

19 S, Mandelstam, Phys. Rev. 115, 1741 (1959).
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where

t
R(a(0),t)=—17(0) (—t) . (4.16b)

We now wish to obtain a numerical estimate for the
right-hand side of (4.16a). From formulas (4.14) and
(4.15a, b) one finds, after some algebra,

3

® 1
H(O)=—1/ d————
)y Cer D@
XIn[142(z+2) ]~ —1.53%3/m?.

Next we shall assume that the value of ¥(0) is ap-
proximately given by the corresponding residue function
associated with the coupling of the Pomeranchuk tra-
jectory to the m-m system; the latter has been estimated
in Ref. 20; taking into account that the Regge-pole
amplitude R used in this section is related to that of
Ref. 20 (call it R’) by R=167R’, we find that 7(0)
~ —16m, if the reference energy ¢ in (4.11) is chosen to
be {=1.87 (BeV)2. Finally, to obtain an estimate of the
coupling strength g, we take recourse to the following
model: consider the amplitude for scattering of two
scalar particles in the ladder approximation to the
Bethe-Salpeter equation (all particles involved in the
ladder are taken to have mass m) ; in this approximation
an estimate of the coupling strength may be obtained by
requiring that the leading Regge trajectory shall pass
through unit angular momentum at zero energy. The
calculations Ref. 21 show that the required value of g
is approximately given by g= (16m)m. (This corresponds
to A=16 in Ref. 21.) Substituting the values for H(0),
+(0), and g into formula (4.16a), we find

A0,0)/RO,5)~—4.7/t/ (0) In(¢/48), (4.17)

where we have written R(0,f)=R(«(0),t). Now, there
are indications that the Pomeranchuk trajectory is
rather flat ; if we take, for example, its slope to be % that
of the P’ trajectory (which we shall assume to go
through angular momentum 2 at the mass of the f,, and
through % at zero energy), then we find, using formula
(4.17), that the ratio becomes unity at an energy around
140 BeV. This dominance of the cut over the pole would
become even stronger as we moved away from the
forward direction. Expanding the trajectory function
a(s/4) appearing in (4.12a) around s=0, one obtains,
for the ratio A/R at small momentum transfers s

A(s,t)/R(s,t)=—4.7 exp[—32s\N() J/IN(), (4.182)

where
N =o' (0) In(t/4%).

20 H. J. Rothe, Phys. Rev. 140, B1421 (1965).

2 For a discussion of the coupling strength required to produce
a bound state of zero mass and unit spin in the ladder approxima-
tion to the Bethe-Salpeter equation, see C. Schwartz, Phys. Rev.
137, B717 (1965). It has been shown subsequently by W. B.
Kaufmann (private communication) that this bound state lies on
the leading Regge trajectory.

(4.18b)
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The above-obtained results should, of course, not be
taken at their face value, in view of the numerous
approximations made in the derivation of (4.17) and
(4.18); even if all parameters appearing in (4.16a) were
known, it would not be surprising if the true result
differed from the one obtained above by an order of
magnitude, or even more.

V. CONCLUSION

The considerations of the preceding section indicate
that the location and nature of the angular-momentum
branch points associated with the diagrams for which
the cancellation of the cuts does not occur is the same as
that for the AFS approximation to their simpler ver-
sions, considered in detail in Secs. IT and III. The role of
the third double spectral function associated with the
cross in the diagrams of Figs. 10 and 11 thus appears to
be essentially that of preventing the above-mentioned
cancellation from occurring; the latter diagrams have
been studied in much more detail in Refs. 2 and 4 via
s-channe] unitarity, and the results support the above
conclusions. Concerning our estimate of the contribution
to the amplitude coming from the Mandelstam singu-
larity associated with the diagram of Fig. 11, it can, of
course, not be taken very seriously; it does, however,
suggest that at moderate energies, the cut and pole
contributions might conceivably be of the same order of
magnitude. The method used in the analysis of Figs. 1
and 7 had been originally adapted to the purpose of
exposing in as clear a way as possible the cancellation
mechanism of the Amati, Fubini, Stanghellini cuts; this
mechanism has been found to be extremely simple. The
same method also led to a relatively simple analysis of
‘the singularities in the angular-momentum plane of the
s reaction; we found them to be of two general types:
those that are independent of particle masses, and those
which depend on them. Only the former ones remain on
the physical j sheet at negative momentum transfers;
their positions in the j plane are given by j=«(0)—1
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and j=2a(s/4)—1 for the single and double Regge-pole
exchange diagrams, respectively. It is interesting to note
that both these singularities are of the logarithmic type
and are a consequence of the singular nature of the
mapping of the %, plane into the complex / plane, where
is the angular momentum in the s channel obtained by
coupling the (complex) spins of the exchanged systems
to a relative orbital angular momentum L= —1. The
analog of the singularity at j=a((s¥?—m)?)—1 for
thesingle Regge-pole exchange diagram is the singularity
at j=a((s¥2—M)?)+15—1 associated with the diagram
involving the exchange of two identical Regge poles;
these singularities appear on the physical j sheet via the
particle-mass independent branch points for s>m? and
s>4M?, respectively; furthermore, both are of the
inverse-square-root type. The similarity between the
amplitudes (4.8) and (2.6), and, (4.10) and (3.2),
suggests that the above picture in the 7 plane remains
the same for the diagrams of Figs. 10 and 11.

In conclusion, the analysis presented in this paper
indicates that everything we wish to know regarding the
location and nature of the angular-momentum branch
points associated with the diagrams in which the
singularities are not cancelled, can be learned by in-
vestigating the corresponding simpler versions of these
diagrams in an AFS-type of approximation; thus it
appears that the additional complexity of the former
diagrams, aside from modifying the strength of the
singularities, merely serves to prevent the cancellation
of the cuts from occurring.
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