PHYSICAL REVIEW VOLUME

159, NUMBER 5 25 JULY 1967

Configuration-Space Approach to Three-Particle Scattering

W. ZICKENDRAHT
Physikalisches Institut der Universitit Marburg, Marburg, Germany
(Received 11 April 1966; revised manuscript received 16 December 1966)

A configuration-space approach to the three-particle problem which has been proposed for bound states
in previous publications is generalized to include scattering states. It is illustrated for the case of nucleon-
deuteron scattering. The coupling between the elastic and the inelastic channel can be treated in an elegant
way. The problem is reduced approximately to a finite system of coupled differential equations, in which the
unknown functions depend on a single variable only. An iteration procedure for the solution is proposed.
The accuracy of the method is tested for a simple example.

I. INTRODUCTION

INTEREST in the three-particle problem has in-
creased since the Faddeev equations'™ turned out
to be a useful tool for studying three-particle scattering.
Noyes has proposed a nonsingular integral equation for
two-particle scattering,* by which the Faddeev equa-
tions can be reduced approximately to a system of
coupled integral equations in a single variable which are

soluble on a computer. However, recently Omnes® has

drawn attention to the weak points of these methods
using Faddeev equations.

The present paper offers a new method, which ap-
proaches the three-particle problem from quite a differ-
ent point of view, and which also allows us to treat
bound states as well as scattering states. This method
deals with the three-particle problem in configuration
space. It has already been shown that a whole class of
bound three-particle states can be treated this way.®
With the use of a special set of coordinates™ and a
special system of orthogonal functions®!® the Schro-
dinger equation is reduced to a coupled system of differ-
ential equations for functions which depend on a single
variable only. The initially infinite number of coupled
differential equations is approximately reduced to a
finite system. However, the orthogonal system is not
suited for scattering problems like nucleon-deuteron
scattering where we have an elastic as well as an inelastic
channel. We can use the functions for describing the
inelastic channel, but not for the elastic one, as will be
shown in Sec. I1. The purpose of this paper is to describe
a modification of the method which allows us to solve
three-particle scattering problems also. With this
modification it is again possible to reduce the Schro-
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dinger equation to a system of coupled differential equa-
tions for functions which depend on a single variable
only. This reduction is possible for any kind of inter-
action between the three particles (except interactions
with a hard core). But for simplification the discussion
below will be restricted to central forces. For further
simplification we consider only nucleon-deuteron scat-
tering, where we have only one bound state, and we
do not antisymmetrize the wave function. This anti-
symmetrization can be included easily as shown in Ref.
6. The case of three particles with different masses is
also discussed in Ref. 6.

The coordinates used are (in the center-of-mass
system)

1. external coordinates: the three Euler angles which
are defined by the three principal axes of the moment
of inertia;

2. internal coordinates: a length y and two angles «
and B8 which are related to the three distances 7,z by®

r12=7(1—sina sinB)2/V2

re3=y[ 1—sina sin(8—3%xr) J/2/V2

ra=1y[ 1—sina sin(8—%r) J2/V2.
For the case of a three-particle scattering state, & and 8
have a simple meaning: sina and B are plane polar
coordinates in the Dalitz diagram.®!° The wave function

for orbital angular momentum L can be written in the
form

¢y

L
V=% Felypaf)Duxb00). ()

K=—1L

The Schrédinger equation is reduced in this case to a
system of coupled differential equations for the func-
tions FgP. For further simplification the discussion
below is restricted to s states, L=0:

ot 59 4/62 cos2a 9 1 o?
BRSO )
mLdy? y dy y2\6a2 sin2a da  sin’a 987

. v<y,a,ﬁ>J}Fo°=o. @

Asymptotically (y—w), Fo® will consist of the elastic
channel (nucleon+deuteron) and the inelastic channel
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(three unbound nucleons). For this reason F¢ is ex-
pressed the following way:

F'=F:1+F,. @

Here F, represents the elastic channel asymptotically,
F, the inelastic channel:

F; ~ nucleon+deuteron
y—bw

F, e three unbound nucleons.

Details on the functions F; and Fs will be given in the
following section.
II. INELASTIC CHANNEL

For F, the following expansion is used:

Fy= ? Inu(y)e* fru(a). ©)

The functions e*ff,,(a) are eigenfunctions of the
operator

02 cos2a 9 1 o2
4 ]
da?

T R y
sin2a da  sin’a 48°

occurring in Eq. (3). They form a complete orthogonal
system and constitute a special classification of three-
particle states.®®!12 The corresponding orthogonal
systems for orbital angular momenta L=1, 2 are given
in Ref. 6, along with a method for constructing the
orthogonal systems for higher orbital angular momenta.
Asymptotically the equations for the different %y, de-
couple (y—w):

B2/ 50 MO+2)
[—( 22 >+€PM=0- ©)
m\dy* y 9y »

The term 4\ (\+42)/y? represents a three-particle “cen-
trifugal” barrier and has the same effect as the cen-
trifugal barrier in the ordinary two-body problem: it
subordinates the importance of functions with high
values of A\. The asymptotic expressions for Ay, are
(for E>0)

Iap— Bue—"k”/ym—{—C)‘“e“’”/y5/2, ©)
k= (mE/h?)*. ®)

In the case of nucleon-deuteron scattering we will
have no incoming wave in the asymptotic expression
for F,; thus

B)\p = O ) (9)
Fy— (ev/y! 2)2: Crue®™ fru(e) . (10)

1 P, Kramer, Z. Naturforsch 18a, 260 (1963).
2 E. Chacon and M. Moshinsky, Rev. Mex. Fis. 14, 119 (1965).
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If the energies of the three particles are plotted in a
Dalitz diagram, the density of points is simply given by

pla,B)= I; Crue®™ fru(a) 2. (11)

The functions e*# fy,(a) are not suited for describing the
elastic channel. To see this we consider for the moment
an unbound nucleon which is not interacting with the
deuteron. Then the wave function for an s wave is

proportional to
Xq(712) (sinksrs) /7. (12)

Xg4 is the deuteron wave function, 7,2 the neutron-proton
distance, and 7; the distance of the unbound nucleon
from the center-of-mass of the deuteron. Expressed with
the new coordinates y, a, 8, Eq. (12) has the form

Xa[y(1—sina sing)!/2/21/27]
sin[ £5(8)2y(14-sina sing)!2]
(3)2y(14-sina sing)2

If the nucleon and deuteron are far apart, that is for
large v, the function X, is different from zero only for
values of @ and 8 around /2. To describe this property
with the complete orthogonal system e®f,,(a), one
would need the whole series 0<A< e, which would
make the method useless for any practical application.
This is the reason for the term F; in Eq. (4). A possible
ansatz for Fy will be given in the following section.

(13)

III. ELASTIC CHANNEL

The Schrédinger equation for the three-nucleon
problem has the following form

{(72/m)(Ar+Ay)+E—V}¥=0. (14)
Ay and A; belong to the vectors
X1=T12
xi= ()3 (15)

V is the interaction:

V="V12(r12)+ Vas(ras)+ Var(rsr) .

It should be emphasized again that two-nucleon poten-
tials with a hard core are not suited for this method;
rather, soft-core potentials should be used.”® V can be
written as a sum of two terms, the first causing elastic
scattering only, the second giving inelastic scattering
also:

V=[Vis(r1z)+Vos(rs)+Vsi(rs)]
FVea(rs) = Vas(rs)+Var(rss) — Var(rs)].  (16)
A possible starting point is to solve the elastic scattering

problem first [the first term in Eq. (16)]. In the second
step the second term in Eq. (16) is taken into account.

8 L. Bystritzkii, F. Legar, and I. Ulegla, Phys. Letters 20,
186 (1966).
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The solution of the elastic-scattering problem will be
called

Xd(xl)F(xz) . (17)
It has the asymptotic form (y— )
Xa (xl)F(x2) s e—iaxd (x1)[sin (Kx2+ 5)]/902 (18)

k= (3)Voky=[ (m/ 1) (E-+Eo) 1.

E,is the binding energy of the deuteron. The expression
(18) is approximately equal to

e~ Xq(xn)[sin(xy+8)1/y, (19)

because Xq(x;) is different from zero only for a=~g=~n/2,
and thus
x9=9[ 14sina sinf]2/212= y. (20)

There will be a second term in #; due to the inelastic

scattering:
Fi=Xa(x){F (x2)+2(y)} . (21)

®(y) will have outgoing waves only, and will occur
together with the functions /£y, as a consequence of the
second term in Eq. (16). Instead of Eq. (21) one could
start with another function, which we will call ; and
which makes use of the fact expressed by Eq. (20).
Equations (4), (5), and (21) are replaced by

F00=F1+F2, (22)
Fi=Xa(2)®(y), (23)
(24)

Fy= )‘Z ﬁ')\# (y)ei“ﬁfw(a) .

Am
Fol®=Xa(x)F (x2)+Xa(2)®(0)+ 2 2 Iau(3)gau(e,B)

A=0 u
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®(y) will have an ingoing and an outgoing wave, the
amplitude of the ingoing wave being equal asymptoti-
cally to the amplitude of the ingoing wave in Eq. (18).
The asymptotic Egs. (6) and (7) are unchanged for the
functions }_LM._The respective advantages of the func-
tions F; and #; will be discussed later.

IV. DERIVATION OF THE COUPLED SYSTEM
OF DIFFERENTIAL EQUATIONS

So far no approximations have been made. The
hypothesis which makes a solution of the problem
possible is that only a few terms of the sums in %y, or
P, Egs. (5) and (24), respectively, are of importance.
It is the centrifugal barrier in Eq. (6) which justifies
this approximation. Only low values of A\ are of im-
portance. (An example will be given later.) The maxi-
mum value of N will be called \,,:

Fo= 30 5 ()€ fra(a).

A=0 u

(25)

We have a corresponding equation for /5. The system
of coupled differential equations for the functions
Ine(N<\) and ®(y) could be derived now. But it has
turned out that the functions #,, (or %,,) are not the
most practical ones, and that the problem can be re-
duced further by defining new functions H», and Hy,
instead of /&y, and Ay, respectively. [In the following,
ey, () will be abbreviated as gy,(,8) ; the approxi-
mate functions for F,? will be called Fo,° and Fo,°.]

A
=Xd(x1)F(xz)+q’(y)[Xd(xl)‘ Eo 2 gxu(aﬁ)/du'ﬂ'gxu* (0!',3/>Xd(x1')]

Am
+X X gxu(a,ﬁ)[hxp(y)+<1>(y) / d’ra’ﬂ’gku*(alﬁl)xd(xll)]

A=0 u

=Xd(xl)F(x2)+q>(y)[Xd(xl)" Xm: > gxu(a,ﬁ)/dTa'ﬁ'gXu*(Ol'ﬂ')xd(xl'):l‘f“ 2 %ﬂ Oule,B) Hhu(y) .

A=0 u

dryp=sine’ cose’da’ds’,

xy’ =y[1—sina’ sing’ 2/ 212,

@7
(8)
The range of the variables is

0<a'<n/2,

Functions Hy,(y) are defined correspondingly. The
asymptotic expressions for Hy, and 7, are identical.
The advantage of this new form of Fo,° is the orthogo-
nality of the functions multiplying ®(y) and gu(e,8) in

0<p8<L2r.

(26)

A=0 u

@, B space. Thus the functions ®(y) and H,.(y) are
coupled over the potentials only, while for ®(y) and
hxu(y) one would have coupling terms in the differential
equations which do not contain any potential.

The following abbreviations will be used:

Fou’=G11Go,
o (29)
Foo®=0G+G2,

Gi=Xa(x)F (x2) +2(y)xa(y,2,8) (30)
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Am
Xa(y,a,8)=Xa(21)— EO > owla,B)

xﬁwwmwmmwx@n

Gﬁég&mmmmx 32)
Gl:i’(y)id(yaayﬁ) ) (33)
Gm 2 T ol (). (34

The coupled differential equations for the functions
® and Hy, (or & and H,,) are obtained the following
way: 1. Multiplication of the Schrédinger equation by
X7*(y,a,8) and integration over a and 8. 2. Multiplica-
tion of the Schrodinger equation by gy,*(e,8) and inte-
gration over a and B (for all values of A\ and u with
A<Aw). The result is

f‘i[i’f;( +2D(y)> ]+[E+Ed— Va(»)e

mL Jy

Z PR g (y)HMF*" Ve(y), (35)
A=0 n
Wro*Hy, 50H,, 4\(\+2)
'_l: - —“——H)\y:l'*'EH)\u
9y* y oy y

Am
= XZO 2 Vanvw ) Hyw+ Vi (0)@+ Vae(y).  (36)
'=0 p’

The following definitions are used in Egs. (35)
and (36):
Xy o
D(y)=/dTa»ﬂlxd*—//dTarglxd*Xd, (37)
dy
Va(y)= / 7o g X[V Ra— ViiXa] / / drasXitRa,
(38)
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Vau(y)= f Ao g Xd*Venu / / drapXa*Xa, (39)
VE(y)=/dTal,3/>_(d*XdFAV/ /dTarﬁfid*Xd. (40)

AV is the second bracket in Eq. (16) written as a func-
tion of v, o/, B'.

V)\M’M’=/dTa'ﬂ’gAu*gk’u’Vy (41)
Vn;;:/d‘l'a'ﬂ'g)\u*Vid, (42)
V)‘,,E‘—'—‘/dTarﬂrg)‘“*AVXdF. (43)

The integrands in Eqs. (37) to (43) are functions of
y, ¢, 8. The equations for & and H,, do not contain the
terms Vg(y) and Vy.z(y); otherwise they are identical
to Egs. (35) and (36).

V. DISCUSSION OF THE PROPERTIES OF
THE DIFFERENTIAL EQUATIONS

In this section the asymptotic behavior of Egs. (35)
and (36) will be discussed. Afterwards the expressions
which express the conservation of current will be
derived.

(a) Asymptotic behavior of the differential equa-
tions: In the asymptotic region (y — ) Egs. (35) and
(36) decouple, as will be shown now, ®(y) describing
the relative motion of the nucleon and the deuteron. y
is proportional asymptotically to the nucleon-deuteron
distance [Eq. (20)]. The coefficient D(y) is equal
asymptotically to —3/2y. To show this the integrands
in Eq. (37) are transformed to new coordinates

sina’ sinB’= cos#’,
sina’ cosp’ =siné’ sing’, (44)
cosa’=sinf’ cos¢’.

The second term in X; [Eq. (31)] will not give any
contribution to the asymptotic form of D(y). This can

be shown by the same method which is applied below to
the other terms;

+7/2 g
/ AT Xd*Xg= / de¢’ cos¢’ / do’ sin?6’X ;¥ (y sink6')X4(y sinké’)
0

—m/2

/2

=16 / df sin%d cos?6 Xg*(y sind) 1 X4(y sind)
0

= (16/y%) / du 1 (1—2/y") X * () Xa (1)

(45)

S 16/93.
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Similarly one finds

/dTargrxd*axd/ay ~ — 24/314 (46)

Thus
D(y)~—3/2y. (47)

The asymptotic behavior of the other coefficients in
Egs. (35) can be derived also with the transformation
(44). One obtains (only nuclear forces are considered,
no Coulomb forces)

Va(y)~uvs/?,
Vo)~ oag,
Vawnew )~ v /32,
V@) ~onu/9.

Ve(y) and Vyug(y) decrease exponentially for large y.
The coefficients 3, etc., in Eq. (48) are constants. The
asymptotic forms of Egs. (35) and (36) can be written
down now;

/9% 20
_(—.+— ———)-[— (E+Eg)d= Z > o),
ay y y A=0 u

W0 H 5 oH,, M(\+2)
Y )

Vinp
+EHy=— .
y3

(48)

9y* y ay ¥
(49)

From Egs. (49) it can be derived easily that the func-
tions Hy, show the asymptotic behavior of Eq. (7) and

®(y)~Be~txv/2iy+Ae™v/2iy. (50)

The solutions which one is looking for in the case of
nucleon-deuteron scattering will have B=0 and B),=0;
or B=1, B,,=0 when using & and H,, instead of &
and Hy,.

(b) Conservation of current is expressed by the
equation

227 /2
¥® / ag / da sina cosa
0 0

X (Fo“*aFg"/ay—Fo"aF.)O*/ay)=0. (51)

It can be derived from Eq. (3). Asymptotically Eq. (51)
connects the coefficients Cy, of Eq. (7) (Bry=0) and 4
of Eq. (SO). One obtains

— Z 2O |4 —eit|2=1 (52)
4y a=0 o
when using ® and H,,, and
k »
— 2 Z|COu|*+14]2=1 (53)

4k \=0 u

when using & and Hy,.

ZICKENDRAHT
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From Eqgs. (35) and (36) one obtains the same Eqgs.
(52) and (53) for the approximate solutions of the
problem. The infinite sum over A is then replaced by the
corresponding finite sum. This way one can check the
accuracy of numerical solutions of Egs. (35) and (36).
But it cannot be checked from Egs. (52) and (53)
whether or not one has to take into account higher
values of A.

VI. METHODS FOR SOLVING THE
DIFFERENTIAL EQUATIONS

Two methods for solving the differential equations
will be discussed shortly in this section without going
into mathematical details.

A. Numerical Solution

One could solve the problem by integrating Egs. (35)
and (36) numerically starting at small y. After con-
structing the maximum number of linearly independent
solutions, one has to combine these to get only outgoing
waves for Hy, or Hy,.

B. Iteration Procedure

The case of the functions ®(y), Hy.(y) will be dis-
cussed first. The first step of the iteration procedure is
taken by putting

®=H,,=0 (54)

on the right-hand sides of Egs. (35) and (36) and solving
with the appropriate Green’s functions, giving solutions
®;, Hip In the second step ® and H,, on the right-
hand sides are replaced by ®; and Hiy,. One finds
solutions &, Ha,, and so on. This procedure does not
converge for proton-deuteron scattering, as a conse-
quence of the Coulomb potential. For this case it will
be useful to introduce a cutoff radius y., outside of which
one sets all coupling terms equal to zero. y. should be
large compared to the size of the deuteron. That part
of Vamu(y) originating from the Coulomb interaction
has to be transferred to the left-hand side of Eq. (36) and
included in the Green’s function. There is a big dis-
advantage of this procedure using the functions ® and
H,,: The quantities Vg(y), Vaue(y) (as well as the
Green’s functions) of Eq. (35) are energy-dependent.
The functions Vg (y) and Vi.g(y) are double integrals
over the a, 8 space. Computing them for every energy
will take quite a bit of machine time. Therefore it will
be better to use the functions &, [, instead. Moreover,
part of the left-hand side of Eq. (35) is transferred to
the right-hand side, to get a simple Green’s function:

3 208 3 0%

CATLL NI LIPS

9y y dy y dy
-l- Vg(y)<1>+ Z > V@ Hy, (55)

A=0 p
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Oy, 50H\, MO+2)_ _
+ Hy+kH )\,
a* y dy b
m Am - -
=—2 2 thk’u’(y)H)\’n"}" Vl)\n(y)q>~ (56)
2 N=0

The right-hand sides of Egs. (55) and (56) are treated
as the inhomogeneous parts in the iteration procedure.
The iteration procedure is started by replacing on the
right-hand sides of Egs. (55) and (56)

&):&50)

_ S7
Fy,=0, (7
where @, is a solution of the equation
9%y 20%,
—<—+— — K2<1>0> =0, (58)
m\9y* 'y dy

corresponding to a plane wave and yielding the Born
approximation in the first step of the iteration pro-
cedure. The quantities D(y), V3(3), Vau(®), Vauvw (9),
and Vy,(y) do not depend on the energy. Thus one has
to compute them only once and can use them for all
energies for which one would like to have the cross
sections. The Green’s functions for Egs. (55) and (56)
have the following form:

Ga(y,9")= (v/ 29" H 12 (ky>)y"*%T 112(xy<) ,  (59)
Gru(3,y")= (7/29*) Harya(ky>)y' *Tnia(ky<);  (60)
y<=y, y>=y, for y>y;
y<=y, y>=y', for y<y;
H,=Jn+iV .

J»and Y, are Bessel functions of first and second kind.
Egs. (55) and (56) are now

00

§>=/ dy'Ga(y,y ) a(y")+Po (61)

= [ 2yGu0)10). (©2)
0

Here the right-hand sides of (55) and (56) have been
abbreviated as Is and Iy, respectively. The Green’s
functions (57) and (58) depend only on «y and ky, and
can thus be used for all energies. Things will be more
complicated again for proton-deuteron scattering, where
one has to include the Coulomb potential. This is done
by transferring the Coulomb potentials included in
Vs(y) and Vaumu(p) to the left-hand sides and including
them in G and Gy,. The coupling terms will be set equal
to zero for y>y..

The functions ® and H,, will in general be more ac-
curate than the functions & and H,, (after the same

* Erdélyi, Magnus, Oberhettinger, and Tricomi, Higher Trans-
cendental Functions (McGraw-Hill Book Company, New York,
1953), Vol. 2.
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number of iteration steps). However, when computing
& and H,, one saves the computation of the energy-
dependent functions Vg(y) and V.e(y), and thus can
do a few more steps of the iteration procedure to get
better accuracy. And one will need less machine time
for this than for computing the double integrals of
Ve(y) and Vy,z(y). To improve & and H), one can also
start with the elastic-scattering solution for & and use
the corresponding Green’s function.

VII. CONTRIBUTIONS OF TERMS WITH
HIGH VALUES OF 2

The contributions of functions with high values of A
to the cross section can be ignored. This is partly a
consequence of the ‘““centrifugal” barrier [Eq. (6)]. An
estimate of this decrease with increasing A will be given
in this section. We consider the first step of the iteration
procedure, Eq. (62). The asymptotic expression for
H Ap is

Hy,— [m) 12(2mk)V2y5/2 Jgikvg—in Ot5/4) f dy'y's / di
0 0

Xcos[ky' sinf— (2A+2)8 1V (5)2o(y) . (63)

The effect of the “centrifugal” term is now contained
in the cosine function in the integrand. For high values
of A this cosine function is rapidly oscillating and causes
strong cancellations in the integral. For the same reason
the function V), defined in Eq. (42) will decrease with
increasing A, because the functions g, are rapidly
oscillating in (e,8) space. To show this in more detail,
the special case u=N\ is considered now. The normalized
function gy, is

ga=L(\+1)/7]"2 sin*ae™p. (64)
For VX4 in Vo the abbreviation V4 is used:
27 /2
Voo=[OF1)/2 ]2 / a8 / da
0 0
XsinMlq cosae™ Vi (y,e,8).  (65)

The real part of Vi, is considered now (the proof for
the imaginary part is quite analogous):

2 /2
Re(Von) =[(1)/m ]2 / a8 / da

X sinMly cosa cosA8Vq(v,a,8). (66)

The integration over § is broken up into small intervals
now;
nr/ALBL (4 Dr/N, 0<n<2A—1. (67)

If X is sufficiently large, V4 can be replaced approxi-
mately by a linear function in such a small interval:

Va (y:a7ﬂ) ~Vq (y;arnﬂ'/k)
+N/m{Va(y,e, (nt+1)m/)

—Va(y,anm/NHB—nm/N}.  (68)
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The integration over 8 will give then
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[ 88 conaVtoiag)= /)T, [Vt r/)=Vatoagmm/ W)

~en L (]

- /) El{[ivm,a,m

n=0

9B

82

9
Z, (y,a,ﬂ)]
aB 8—nr/\

—[%Vd(y,a,ﬁ)] 1

Jﬁ=(2n+1)7r/)~ ﬁ=2n1r,)\l

A—1
~ (/W) T [—Vd@,a,a)]
n=0 2nm/\

ap?

2 83
~ (1/3) / dﬁ[~Vd(y,a,ﬁ):| .
0 a83

(69)

With respect to a, the integrand in Eq. (66) will be different from zero only in a narrow neighborhood of a=m/2.
The quantity Va(y,a,8) can be assumed to be a smooth function of . Hence we replace in the integrand

Vd()’,a,ﬁ) - Vd(y;”r/zlﬁ) .

So one has as the approximate result for (66):

(70)

2T 63
Re(Von) ~[ Ok 1)/A L1/ (02)] f dﬂ[%vd@,a,m]

2T 63
~ (1/N5/27112) / dﬁ[——— Va (y,a,ﬁ)} .
0 e

Similarly the integration over 3" in Eq. (63) can be
approximated, and an additional decrease of Hy, with
1/)? is found. So altogether one has for large A

Hy~Ceiku/ysiz\/2, (72)

Here C is everything in Eq. (63) which is not A-depen-
dent. The arguments for functions with us\ will be the
same, as all these functions are rapidly oscillating.
Assuming that C does not depend on u, one finds that
the contribution of functions with high X to the cross
section is proportional to

[C > /NP

A large

(73)

H [Eq. (72)] was multiplied by A because the number
of functions for a given X is proportional to X. Thus one
can conclude that functions with high values of N\ con-
tribute very little to the cross section. Nothing has
been said so far about the values of A which can be
considered as large. For high energies there are other
parts of the integrand in Eq. (63) which are rapidly
oscillating. Thus the estimate of this section will be
correct only for A>Amin, where Amin depends on the
energy and will increase with the energy. Fortunately
Amin Will have rather low values in general. Let us con-
sider nucleon-deuteron scattering again to see this. Only

(11)

energies below the threshold for meson production are
considered, £<150 MeV. Even at the upper end of this
range the nucleon wavelength is comparable to the
range of the potential. Thus the functions sin(ky’ sin®),
cos(ky' sin®), and &, in Eq. (63) are rather smooth and
do not show rapid oscillations, which will occur only at
higher energies. In the following section a simple
example will be considered, which shows indeed that
only functions with low values of X will contribute to
the cross section.

The arguments of this section can be applied to all
matrix elements, which occur in the second and con-
secutive steps of the iteration procedure.

VIII. SIMPLE EXAMPLE

Equation (63) is evaluated in this section for the two
limiting cases of large and small %2 and for a simple
example concerning the interaction potential and the
deuteron wave function. The interaction is

V=a(eTrs4g Trsf g Trat’), 74)

The deuteron wave function is determined approxi-

mately by a Ritz variational procedure;
Xa(riz)=Ne1m#.

(75)

v is a parameter that is a function of ¢ and T, and
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N is the normalization constant. @ and T in the poten-
tial are chosen to give the correct binding energy
and (for mathematical simplicity) I'=+. In addition,
the following approximations were made to facilitate
the integrations:

Po(y) = (sinky)/y, (76)

Jae= (—)1(2/my)"% cos(ky—/4)
for EXEs, (17)
Tonsa= (By)™2/(0A42)12M2 for E<EL. (78)

The quantities of interest are the relative magnitudes
of the coefficients Cy,. In the high-energy limit the
following results were obtained:

E>E; |Ci,11/Cool =TX1072
|C2,0/Co0| =101
| C2,42/Coo] =1.8X 10
|Cs,41/Coo| =2.2X 1073
[Cs,43/Coo] =5X 1072
| Ca0/Coo| =6X 104
[Ci,x2/Coo| =7X 1074
|Ci,24/Coo| =TX 104
|Cs,41/Coo| =1.8X 1073
[C5,25/Coo] =1.8X10-3
[Cs,45/Coo] =1.8X 103
| Ce/Coo] =4X 104
| Co,19/Coo| =3X 10~
‘Cs.if;/cooi =3X10"*
| Cs,16/Coo| =4X 1074,
In the low-energy limit it was found that
EKEs |C1,41/Cool =3X1072E/E,
| C20/Cool =TX1073(E/Eq)?
| C2,4.9/Cool = 1073(E/E,)2.

For higher values of ), the factor E/E; occurs with a
higher power.
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IX. THE LIMIT OF ELASTIC SCATTERING

The limit of elastic scattering was &= H,,=0. This
limit must be contained in the function & too. It is
obtained by treating the deuteron as a point particle.
This is formally done by letting ¥ go to infinity in Eq.
(75). It can easily be shown that the coupling terms in
Egs. (35) and (36) vanish in this case, and that the
exact equation for & has the well-known form

W/a® 292
)
m\3y* 'y dy

HLE+Ea—Vas((D"y)— V(D)) J8=0.  (79)

X. CONCLUDING REMARKS

For actual problems one has to use properly sym-
metrized or antisymmetrized wave functions. This is
easily done because the coordinates y, @, and 8 have very
simple symmetry properties. The inclusion of higher
orbital angular momenta is no problem either. In this
case one has to transform eigenfunctions of the orbital
angular momentum W5 (61,¢1,02,¢2), where 81, ¢1, 02, @2
are polar angles of x; and x,, to the new coordinates.
The formulas for this transformation are given in Ref. 6,
pP- 22 and 26.

For nuclear reactions in which one has three outgoing
particles, one can always use the complete orthogonal
system of Ref. 6 to describe the asymptotic behavior of
these three particles. By the same arguments which
were given in this paper, one can expect that only func-
tions with low values of X\ are of importance. It was
possible to show this for the decay of C'2 into three o
particles, for which Dalitz diagrams were measured at
two different energies by Dehnhard ef al.'® The results
have been published recently.'® This decay of C2 is the
first example for which the hypothesis of this paper
could be confirmed. We may hope that there will be
more Dalitz diagrams for three-particle reactions soon.
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14, 201 (1964).

18 W. Zickendraht, Z. Physik 200, 194 (1962).



