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Configuration-Space Approach to Three-Particle Scattering
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(Received 11 April 1966; revised manuscript received 16 December 1966)

A con6guration-space approach to the three-particle problem which has been proposed for bound states
in previous publications is generalized to include scattering states. It is illustrated for the case of nucleon-
deuteron scattering. The coupling between the elastic and the inelastic channel can be treated in an elegant
way. The problem is reduced approximately to a finite system of coupled differential equations, in which the
unknown functions depend on a single variable only. An iteration procedure for the solution is proposed.
The accuracy of the method is tested for a simple example.

I. I5'TRODUCTION

"'INTEREST in the three-particle problem has in-
' ~ creased since the Faddeev equations' ' turned out
to be a useful tool for studying three-particle scattering.
Noyes has proposed a nonsingular integral equation for
two-particle scattering, 4 by which the Faddeev equa-
tions can be reduced approximately to a system of
coupled integral equations in a single variable which are
soluble on a computer. However, recently Omnes' has.
drawn attention to the weak. points of these methods
using Faddeev equations.

The present paper offers a new method, which ap-
proaches the three-particle problem from quite a differ-
ent point of view, and, which also allows us to treat
bound states as well as scattering states. This method
deals with the three-particle problem in configuration
space. It has already been shown that a whole class of
bound three-particle states can be treated this way. '
With the use of a special set of coordinates' ' and a
special system of orthogonal functions'" the Schro-
dinger equation is red.uced to a coupled. system of differ-
ential equations for functions which depend. on a single
variable only. The initially infinite number of coupled
differential equations is approximately reduced to a
finite system. However, the orthogonal system is not
suited for scattering problems like nucleon-deuteron
scattering where we have an elastic as well as an inelastic
channel. We can use the functions for describing the
inelastic channel, but not for the elastic one, as will be
shown in Sec. II.The purpose of this paper is to describe
a modification of the method which allows us to solve
three-particle scattering problems also. With this
modification it is again possible to reduce the Schro™
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J. M. Levy-Leblond and M. Levy-Nahas, J. Math. Phys. 6,
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+= Z F~'(y, n,p)D~~'(4, 0,0) (2)

The Schrodinger equation is reduced in this case to a
system of coupled differential equations for the func-
tions F~~. For further simplification the discussion
below is restricted to s states, 1.=0:

h' 8' 5 8 4 8' cos2o. 8 1 8'
+ + +2 +

m ay' y ay y' a ' sinS a sin' ap'):

+L~- l"(y,n,p)3 Fs'=o (&)

Asymptotically (y~~), Fss will consist of the elastic
channel (nucleon+deuteron) and the inelastic channel
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dinger equation to a system of coupled d,ifferential equa-
tioiis for functions which depend on a single variable
only. This reduction is possible for any kind of inter-
action between the three particles (except interactions
with a hard core). Hut for simplification the discussion
below will be restricted to central forces. For further
simplification we consider only nucleon-deuteron scat-
tering, where we have only one bound state, and we
do not antisymmetrize the wave function. This anti-
symmetrization can be included, easily as shown in Ref.
6. The case of three particles with different masses is
also discussed in Ref. 6.

The coordinates used are (in the center-of-mass
system)

1. external coordinates: the three Euler angles which
are defined by the three principal axes of the moment
of inertia;

2. internal coordinates: a length y and two angles a
and P which are related to the three distances r, s by'

r ~s ——y(1—sinn sinP)'"/v2

rss ——yL1 —sinn sin(P —-,'s.)]'"/V2

r» ——yL 1—sinn sin(P ——s's )j"'/V2.

For the case of a three-particle scattering state, n and P
have a simple meaning: sinn and P are plane polar
coordinates in the Dahtz diagram. ' "The wave function
for orbital angular momentum I. can be written in the
form
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(three unbound nucleons). For this reason Fs' is ex- If the energies of the three particles are plotted in a
pressed the following way: Dalitz diagram, the density of points is simply given by

Fo'=F1+F2 (4) u(~,P) =
I Z ~k,s'»fk, (~) I'.

Here Fj represents the elastic channel asymptotically,
Ii ~ the inelastic channel:

F1 nucleon+deuteron

F2 three unbound nucleons.

Details on the functions F~ and Ii~ will be given in the
following section.

II. INELASTIC CHANNEL

For E~ the following expansion is used:

F2=2 k k(y)s'"'fk, (c)

The functions e'»f&, „(o/) are eigenfunctions of the
operator

8' cos2e 8
+2 —+

Bas sin2a Bn sinsn BP8

occurring in Kq. (3). They form a complete orthogonal
system and constitute a special classification of three-
particle states. ' "' The corresponding orthogonal
systems for orbital angular momenta I.= 1, 2 are given
in Ref. 6, along with a method for constructing the
orthogonal systems for higher orbital angular momenta.
Asymptotically the equations for the different h~„de-
couple (y-+~):

The functions e'&/'fk„(o/) are not suited for describing the
elastic channel. To see this we consider for the moment
an unbound nucleon which is not interacting with the
deuteron. Then the wave function for an s wave is
proportional to

x„(r,2) (sink3r3)/r, . (12)

X~ is the deuteron wave function, r~~ the neutron-proton
distance, and r3 the distance of the unbound nucleon
from the center-of-mass of the deuteron. Expressed with
the new coordinates y, n, P, Kq. (12) has the form

XsLy(1—sinn sinP)'/'/2'/']

sinL'k8(88)'"y(1+ sinn sinP)"'j
X . (13)

(—') '/'y (1+sinn sinP)'/'

If the nucleon and deuteron are far apart, that is for
large y, the function X& is different from zero only for
values of o/ and p around 2r/2. To describe this property
with the complete orthogonal system e'»f8„(o/), one
would need the whole series 0&)«~, which would
make the method useless for any practical application.
This is the reason for the term F1 in Kq. (4). A possible
ansatz for F~ will be given in the following section.

III. ELASTIC CHANNEL

The Schrodinger equation for the three-nucleon
problem has the following form

-k' as 5 a A(}+2)
+—— +E hk„=0.

( (ks/r/8) (d 1+62)+E V}e=—0.
61 and 62 belong to the vectors

(14)

The term 4X(X+2)/ys represents a three-particle "cen-
trifugal" barrier and has the same effect as the cen-
trifugal barrier in the ordinary two-body problem: it
subordinates the importance of functions with high
values of X. The asymptotic expressions for hz„are
(for E)0)

S
—iks/y5/2++k Siks/ys/2

k = (r/8E/ks)"'.

In the case of nucleon-deuteron scattering we will
have no incoming wave in the asymptotic expression
for Ii2, thus

V is the interaction:

Xy= fy2

x2= (-', )"rs;

V12 (r12)+V23 (r28)+V81(r81) ~

It shouM be emphasized again that two-nucleon poten-
tials with a hard core are not suited for this method;
rather, soft-core potentials should be used. ." V can be
written as a sum of two terms, the first causing elastic
scattering only, the second giving inelastic scattering
also:

V= t, V12(r11)+V28(r8)+ V31(r8)j
+LV23 (r28) V2$(r3)+ V31(t $1) V31(r3)g . (16)

Bg„=0,

(s'""/y'")Z (."8 s'"'fk (~)

(9)

(10)
A possible starting point is to solve the elastic scattering
problem first Lthe first term in Kq. (16)].In the second
step the second term in Kq. (16) is taken into account.

"P.Kramer, Z. Naturforsch 18a, 260 (1963). "L. Bystritzkii, F. Legar, and I. Ulegla, Phys. Letters 20,"E. Chacon and M. Moshinsky, Rev. Mex. Fis. 14, 119 (1965}. 186 (1966}.
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Fo F1+F2 )

F i =Xd (xi)~(y),

F2= 2 &i.(y)e'"'flu(~)

(22)

(23)

(24)

The solution of the elastic-scattering problem will be
called,

X,(xi)F(x,) . (17)

It has the asymptotic form (y~~)
X„(x,)F(x,) e

—"X~(x )Lsin( x +8)]/x (18).= (-;)ii'&,= f(~/&') (&+~&)]'~'.

E~ is the binding energy of the deuteron. The expression
(18) is approximately equal to

e "Xe(xi)Lsin(i'+ b)]/y, (19)

because Xq(xi) is different from zero only for n =P=ir/2,
and thus

x~ =yL1+ sinn sinP]i "/2'" =y (20)

There will be a second term in F~ due to the inelastic
scattering:

F,=X„(xi)(F(x,)+C (y) }.

C(y) will have outgoing waves only, and will occur
together with the functions h» as a consequence of the
second term in Eq. (16). Instead. of Eq. (21) one could.

start with another function, which we will call F& and,

which makes use of the fact expressed by Eq. (20).
Equations (4), (5), and (21) are replaced by

C (y) will have an ingoing and an outgoing wave, the
amplitude of the ingoing wave being equal asymptoti-
cally to the amplitude of the ingoing wave in Eq. (18).
The asymptotic Eqs. (6) and (7) are unchanged for the
functions Aq„. The respective advantages of the func-
tions Ii~ and Fj will be discussed later.

F2= Z Z», (y)e"'f~, (~). (25)

Ke have a corresponding equation for F2. The system
of coupled differential equations for the functions
»„(li(X ) and, 4(y) could be derived, now. But it has
turned out that the functions»„(or Ai, ) are not the
most practical ones, and, that the problem can be re-
duced further by defining new functions Hq„and Hq„
instead of »„and»„, respectively. LIn the following,
e'~~fi„(n) will be abbreviated as gi„(n,P); the approxi-
mate functions for Fo' will be called Fo,' and Fo,'.]

IV. DERIVATION OF THE COUPLED SYSTEM
OF DIFFERENTIAL EQUATIONS

So far no approximations have been made. The
hypothesis which makes a solution of the problem
possible is that only a few terms of the sums in hz„or
»„Eqs. (5) and, (24), respectively, are of importance.
It is the centrifugal barrier in Eq. (6) which justifies
this approximation. Only low values of X are of im-
portance. (An example will be given later. ) The maxi-
mum value of X will be called X

Fo Xd(xi)F(x2)+Xd(xi)+(y)+ Z Z». (y)ai. (o,p)

=x.(xi)F(»)+C(y) x.(»)—2 2 ai. (o,p) dr- e ai.*(~',P')x.(»')

+Z Z ai, (~,P) h~, (y)+4'(y) dr. e gi.*(~'P')X.(»')

= Xd(xi)F(x2)+C'(y) Xd(xi) E 2 gip(ii&p) if+0."e'gXp (& P )Xd(xi ) + 2 E Rip(+rp)HXy(y) (26)

d're~pl =sin@ cosQ dG~dP

xi' ——yt 1—sining' sinP']'t'/2"'.

The range of the variables is

0&~ &x/2, 0&P&2~.

(27) n, P space. Thus the functions C(y) and Hi„(y) are
coupled over the potentials only, while for C(y) and

hz„(y) one would have coupling terms in the differential

equations which do not contain any potential.
The following abbreviations will be used, :

Functions Hi„(y) are defined correspondingly. The
asymptotic expressions for IIq„and h~„are identical.
The advantage of this new form of Ii 0

' is the orthogo-
nality of the functions multiplying C (y) and gi„(n,P) in

Fo.'= R+Gi,

7&0.'——Op+62,

Gi= Xd(»)F (»)+C'(y)X~(y ~ P)

(29)

(30)
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V (y) = dr a'8'~d 3PIXJ X8

y45$

(39)

(40)

~ P) =gd(XI} ,v)

~ppXQ Xg 3vz(y31)

(16) written as a f""V
'

the second braack.et in E
tion of y,(32)

(41)lpga'P'C~& gXp" P

& &,„(,gH. ,(»X-.

(42)y = G&cr'P'f&& *VX~ )l)~p

g, =C (y)Xd(yPi@ '

~, , X, X,~&~' ' Xd(&I) )x ~" g""

~ p g„„(II,p)Hl3(y .

V~ &= 21:g t'/rX~P,

E s. (37) to ( are functio»
ajn the

The integrands in q
d Bz„do not contaiThe equations for @

the are identicals v (y)
F s (35) and (36)'

Multiplication of
d p 2. Multipllca

gration
"'"„.„,„, nd 8 (fo ' "

m ~gy ) The result ls

„2,2~ &5 &~~ +L&+~d-V3(y) jc'+ 2D(y)
m-~y'

X-
& v (y)H„„+v.(y) (35)

5 aH3g
H„„+alp

4X (X+2)""+--—
82 y ay y

(36))c,+ vl„~(y)l3l'P ( )H„,„,+Vll. (y
)t~=0 u

nEq. ( )

sinII »n~

(44)sing' sing )sinn cps
/cos~' = sin8' cos4' .

31)] will n«g'The sec»
totic form o 3' .

d term in Xd q'
f D( ). This cancontri u 'b tion to the ash .

h applied below tobe show»y the
t e other terms)

,„Zqs. (35)are useThe fo}low»g dani
and (36):

(37)
QXg

) gr rpiXd p X X

3PJXJ X4
P

.-*L-v"-v" ~v (y) = d&a'P'

(38)
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sed Afterwar s
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d the expressio

'll be
36) will be discuss

of current wi l

an
} conservation ohich. exPress t e

differential equa-
derived

hehavior of the I e
(35)

(a) Asymptot'c . (y~~) Fqs.ptotlc r g
C (y) descrlhlng

tipns ~ n
ll be shown now(36) decouple, as w'

l o„a„d the deuter "' yptjpn « th n
on-deuteron

the relative mpt'
'

ll tp the nucleon-
l

nal asymptotlca y
is equaudistance LEq

3 2y. To show this th
20) e

e integran stotically to ~
„oord»ates37 are transforme1

I p&Xg

+ /2
~

2g/Z 3(y sln28 )~d(yN

,„*(„0)«.(ygg sin2g cos d

2/y2) u2yd*(N) &~(N)(16/y3) gg 23 (45)
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Similarly one 6nds

dT~ e'Xe BXe/By ~ —24/y (46)

D(y)--3/2y. (47)

The asymptotic behavior of the other coeS.cients in
Eqs. (35) can be derived also with the transformation
(44). One obtains (only nuclear forces are considered,
no Coulomb forces)

From Eqs. (35) and (36) one obtains the same Eqs.
(52) and (53) for the approximate solutions of the
problem. The infinite sum over P is then replaced by the
corresponding 6nite sum. This way one can check the
accuracy of numerical solutions of Eqs. (35) and (36).
But it cannot be checked from Eqs. (52) and (53)
whether or not one has to take into account higher
values of P.

VI. METHODS FOR SOLVING THE
DIFFERENTIAL EQUATIONS

V3(y)-»/y',
V~, (y)-». ,

Vxy'v p' (y)»px'y'/y
V1xp (y) v1g g/y ~

(4g)

Two methods for solving the differential equations
will be discussed shortly in this section without going
into mathematical details.

A. 5umerical Solution

~2 7l n'/2

do. Sinn cosa.'

&((P '*BP '/By P'BP '*/By) =0 (5—1)

It can be derived from Eq. (3).Asymptotically Kq. (51)
connects the coeKcients Cq„of Eq. (7) (Bq„=0) and A

of Eq. (50). One obtains

k
e—2's

l

2 1 (52)
fft'. ),=0 P

Vz(y) and Vq„z(y) decrease exponentially for large y.
The coefficients v3, etc. , in Kq. (48) are constants. The
asymptotic forms of Eqs. (35) and (36) can be written
down now;

a' B'C 2 BC) &os+- l+(E+~e)c = 2 Z»,%,(y),
m By' y By/ X=0 p

h'(B'H), „5BHg„Q.(X+2)
, +-

mk By' y By y'
&1hp,

+PH),„= C . (49)"
y'

From Eqs. (49) it can be derived easily that the func-
tions Hq„show the asymptotic behavior of Kq. (7) and

4(y) Be '"&/2iy+Ae'""/2iy. (50)

The solutions which one is looking for in the case of
nucleon-deuteron scattering will have 8=0 and 8),„——0;
or 8=1, Bq„——0 when using 4 and. H),„ instead of 4
and II),p.

(b) Conservation of current is expressed by the
equation

One could solve the problem by integrating Eqs. (35)
and (36) numerically starting at small y. After con-
structing the maximum number of linearly independent
solutions, one has to combine these to get only outgoing
waves for Hq„or Hq„.

B. Iteration Px'ocedure

The case of the functions C(y), H&, „(y) will be dis-
cussed Grst. The 6rst step of the iteration procedure is
taken by putting

(54)

on the right-hand sides of Kqs. (35) and (36) and solving
with the appropriate Green's functions, giving solutions

4~, H~q„. In the second step 4 and H),„on the right-
hand sides are replaced by 4» and H»„. One Gnds

solutions 42, E/2q„, and so on. This procedure does not
converge for proton-deuteron scattering, as a conse-

quence of the Coulomb potential. For this case it will

be useful to introduce a cutoff radius y„outside of which

one sets all coupling terms equal to zero. y, should be
large compared to the size of the deuteron. That part
of Vq„q„(y) originating from the Coulomb interaction
has to be transferred to the left-hand side of Eq. (36) and
included in the Green s function. There is a big d.is-

advantage of this procedure using the functions C and.

H&,„.The quantities Vz(y), V&„z(y) (as well as the
Green's functions) of Eq. (35) are energy-dependent.
The functions Vz(y) and Vq„z(y) are double integrals
over the n, P space. Computing them for every energy
will take quite a bit of machine time. Therefore it will

be better to use the functions 4, IIq„ instead. Moreover,
part of the left-hand side of Eq. (35) is transferred to
the right-hand. side, to get a simple Green's function:

when using C and, IIq„, and,

00—Z Zlc~. l+l~l'=1
4f(; X=o P

when using C and, H),„.

(53)

8% 2 BC 3
+— +K%=——+2D(y)

~3 3 ~3 -3

+—V3(y)~+—2 2 V"(y)H", (55)
It2 Q2 X=0 IM,
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8'Hb„5 8Hb„4XP,+2)+- —— K,+k'K,

k' 8PCp 2 8Cp+- +bpCp i=0,
m 8y' y8y /

(5g)

corresponding to a plane wave and yieMing the Born
approximation in the erst step of the iteration pro-
cedure. The quantities D(y), Vb(y), U&,„(y), Vb„z „(y),
and Ubb„(y) do not depend on the energy. Thus one has
to compute them only once and can use them for all
energies for which one would like to have the cross
sections. The Green's functions for Eqs. (55) and (56)
have the following form:

G~(y, y') = (~/2y"')H bib(~y&)y'"'~»b(~y&), (59)

Gb„(y,y') = (m/2y')Hpgi. b(ky&)y"Eppes. p(ky&); (60)

3' =3' 3'&=3' «r 3'&3' '

X)=r' «r X&r'

H„=J„+iF'„.

=—g p Vb„g „(y)Hz „+Vbb„(y)C' . (56)
PP v=p

The right-hand sides of Eqs. (55) and (56) are treated
as the inhomogeneous parts in the iteration procedure.
The iteration procedure is started by replacing on the
right-hand sides of Eqs. (55) and (56)

C=Cp

II),„=0,
where Cp is a solution of the equation

number of iteration steps). However, when computing
C and B» one saves the computation of the energy-
dependent functions Vz(y) and Vb„z(y), and thus can
do a few more steps of the iteration procedure to get
better accuracy. And one will need less machine time
for this than for computing the double integrals of

Vz(y) and Vq„z(y). To improve C and Hb„one can also
start with the elastic-scattering solution for Cp and use
the corresponding Green's function.

VII. CONTRIBUTIONS OF TERMS WITH
HIGH VALUES OF X

The contributions of functions with high values of X

to the cross section can be ignored. This is partly a
consequence of the "centrifugal" barrier $Eq. (6)j. An
estimate of this decrease with increasing X will be given
in this section. We consider the erst step of the iteration
procedure, Eq. (62). The asymptotic expression for

By@, ls

~ P~/$2(2prk)1/2ybi25gibpg in (A+bib—) dyly~b

XcosLky' sini —(2lb, +2)t jvg, „(y')Cp(y'). (63)

The effect of the "centrifugal" term is now contained
in the cosine function in the integrand. For high values
of X this cosine function is rapidly oscillating and causes
strong cancellations in the integral. For the same reason
the function Vbb„defined in Eq. (42) will decrease with
increasing X, because the functions gz„are rapidly
oscillating in (n,P) space. To show this in more detail,
the special case p, =X is considered now. The normalized
function g~~ is

J„and I'„are Bessel functions of first and second kind. '
Eqs. (55) and (56) are now

grab
——t'(X+1)/syrup si

For VXq in V~qq the abbreviation Vq is used:

(64)

dy'Ge(y, y')Ie(y')+C'p (61) Ubu= LP+1)/pr]'"
2x' n/2

dy'Gb, (y,y')Ib. (y') (62)

14 Erdelyi, Magnus, Oberhettinger, and Tricomi, Higher Trans-
cendenta/ Functions (McGraw-Hill Book Company, New York,
1953), Vol. 2.

Here the right-hand sides of (55) and (56) have been
abbreviated as I+ and I~„, respectively. The Green's
functions (57) and (58) depend only on by and ky, and
can thus be used for all energies. Things will be more
complicated again for proton-deuteron scattering, where
one has to include the Coulomb potential. This is done
by transferring the Coulomb potentials included in
Vb(y) and Vb», „(y) to the left-hand sides and including
them in G+ and Gz„.The coupling terms will be set equal
to zero for y&y, .

The functions C and II),„will in general be more ac-
curate than the functions C and Hb„(after the same

p 0

Xsin "+'n cosibe'bz Vg(y n,P) . (65)

The real part of Vbb&, is considered. now (the proof for
the imaginary part is quite analogous):

2m' m'/2

Re(vbgb) = L(lw, +1)/br]"' dp dn

Xsin"+'u cos~b costs%,PVq(y, n,P). (66)

The integration over P is broken up into small intervals
now;

bb~/X&P& (n+1)~/X, 0&ib&2X 1 (67)— .
If X is sufficiently large, V& can be replaced approxi-
mately by a linear function in such a small interval:

v, (y,~,p) =v.(y,n,~~/~)

+ (z/~)(v. (y,~, (0+1)~/~)
Vp(y, bb,m/—X)}(P ebs/X) . (6—8)
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The integration over P will give then

dp cos))PV&(y,n,p) = (2/os) g (Ve(y,n, (n+1)~/X) V—&(yn, n~/7)]( )"—+'

2X—1
= (2/&') 2 (—)"" V—e(yap)

n 0 Bp

X—1
= (2/~') 2 —V.(y, ,p)

33=O QP

——V (y,-,p)
—e=(233+1)3/X -~P —fi=2nm/X

X—1

=(2 /) ') 2 V.(y, ,p)
33 O=r/PO —2nm//X

= (1/73o)

2 83
dp —,V.(y, ,p) .

Bpo
(69)

With respect to n, the integrand in Eq. (66) will be different from zero only in a narrow neighborhood of 3).=3r/2
The quantity Ve(y, n,p) can be assumed to be a smooth function of a. Hence we replace in the integrand

V.(y,-,p) -V.(y,-/2, P)

So one has as the approximate result for (66):

(70)

Re(V~),))=L(),+1)/) ]'"[1/X'(lan+2)]
2 83

dP ,V.(—y,~,P)
8

2 83
= (1/~'" "') dP V.(y, ,P)

o ~po- (71)

Similarly the integration over y' in Eq. (63) can be
approximated, and an additional decrease of II),„with
1/6 is found. So altogether one has for large 3)

P ~Cei/3o/yo/og9/2 (72)

Here C is everything in Eq. (63) which is not 'A-depen-

dent. The arguments for functions with p, /) will be the
same, as all these functions are rapidly oscillating.
Assuming that C does not depend on p, one finds that
the contribution of functions with high X to the cross
section is proportional to

LC 2 (1/l'")]'
'A large

(73)

H),), LEq. (72)] was multiplied by X because the number
of functions for a given ~ is proportional to P. Thus one
can conclude that functions with high values of P con-
tribute very little to the cross section. Nothing has
been said so far about the values of 3 which can be
considered as large. For high energies there are other
parts of the integrand in Eq. (63) which are rapidly
oscillating. Thus the estimate of this section will be
correct only for P &'A,„;„,where X;„depends on the
energy and will increase with the energy. Fortunately
) ~;„will have rather low values in general. Let us con-
sider nucleon-deuteron scattering again to see this. Only

energies below the threshold for meson production are
considered, 8&150 MeV. Even at the upper end of this
range the nucleon wavelength is comparable to the
range of the potential. Thus the functions sin(ky' sinC),
cos(ky' sinC&), and C o in Eq. (63) are rather smooth and.

do not show rapid oscillations, which will occur only at
higher energies. In the following section a simple

example will be considered, which shows indeed that
only functions with low values of X will contribute to
the cross section.

The arguments of this section can be applied to all

matrix elements, which occur in the second and con-

secutive steps of the iteration procedure.

Vng. 3IMPLE EXAMPLE

Equation (63) is evaluated in this section for the two

limiting cases of large and small k and for a simple

example concerning the interaction potential and the
deuteron wave function. The interaction is

g(e—r&» +e—r&33 +e—r~31 ) (74)

The deuteron wave function is determined approxi-
mately by a Ritz variational procedure;

Xe (r~o) =Ee—&"»'. (73)

y is a parameter that is a function of a and I', and
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E is the normalization constant. c and I' in the poten-
tial are chosen to give the correct binding energy
and (for mathematical simplicity) I"=y. In addition,
the foBowing approximations were made to facilitate
the integrations:

C o(y) = (sinay)/y, (76)

J,„,= (—)"+'(2/o.y) 'i' cos (ky —s-/4)

for E»Eo, (77)

f»+,—(ky)'"+'/(2K+2)!2"+' for E(&Ep. (78)

The quantities of interest are the relative magnitudes
of the coeSuents C),„. In the high-energy limit the
following results were obtained:

E»Eg
I
C, ,~,/Cpp I

=7X10-'

ICp, p/Cool =10 '

ICp.+p/Cool =18X10 '

I Cs,yy/Cool = 2.2X 10

I Cs.ys/Cool =5X10
fess/Coo I

=6X10 '
fcs,gp/Coo I

=7X10 '

Ics,y4/Cop f
=7X10 s

I Cs.+~/C« I
=1.8X 10-'

f Cs,ys/Cool =1.8X10

f
C, ,„/C..I

=1.8X 10-'

Icso/Cool =4X10 4

I Cs, +p/Cool =3X10-s

fcs,g /Cool =3X10-'
lcs +s/Cool =4X10 s.

In the low-energy limit it was found that

E((Eg Icr,pr/Cool =3X10 'E/Eg

ICpo/Cool =7X10 s(E/E~)'

ICp, +p/Cool = 10 '(E/E~)'

For higher values of X, the factor E/Eq occurs with a
higher power.

IX. THE LIMIT OF ELASTIC SCATTERING

The hmit of elastic scattering was C=H),„——0. This
limit must be contained in the function 4 too. It is
obtained by treating the deuteron as a point particle.
This is formally done by letting y go to infinity in Eq.
(75). It can easily be shown that the coupling terms in
Eqs. (35) and (36) vanish in this case, and that the
exact equation for C has the well-known form

h' c9'C 2 84

+I E+E. I—ps(( s)'" y) &—sr((s)"y) jC =0 (.79)

X CONCLUDING REMA.RES

For actual problems one has to use properly sym-
metrized or antisymmetrized wave functions. This is
easily done because the coordinates y, n, and P have very
simple syrnrnetry properties. ' The inclusion of higher
orbital angular momenta is no problem either. In this
case one has to transform eigenfunctions of the orbital
angular momentum +J.or(er, gr, &p,gp), where Hr, q4, t!'p, q4
are polar angles of x~ and x~, to the new coordinates.
The formulas for this transformation are given in Ref. 6,
pp. 22 and, 26.

For nuclear reactions in which one has three outgoing
particles, one can ahvays use the complete orthogonal
system of Ref. 6 to describe the asymptotic behavior of
these three particles. Sy the same arguments which
were given in this paper, one can expect that only Junc-
tions with low values of X are of importance. It was
possible to show this for the decay of C" into three n
particles, for which Dalitz diagrams were measured at
two different energies by Dehnhard. et al."The results
have been published recently. "This decay of C" is the
first example for which the hypothesis of this paper
could be con6rmed. We may hope that there will be
more Dahtz diagrams for three-particle reactions soon.

D Dehshsr&, D. Ksmke, snd P. Krsmer, Ann. phys. (N. y )
I4, 201 (1964}."%'.Zickendraht, Z. Physik 200, 194 (1962}.


