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Four-Dimensional Symmetry
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We study the symmetry of scattering amplitudes at vanishing momentum transfer. We show that the
little group of the Poincare group corresponding to vanishing four-momentum (isomorphic to the homo-
geneous Lorentz group, or, by analytic continuation, to the four-dimensional rotation group) is in general
not a symmetry of the scattering amplitude. However, the spectrum of the amplitude is classi6ed according
to the larger symmetry. Regge poles occur in families; the members of the family follow the 6rst one in
integer steps at vanishing momentum transfer and are classified according to a new quantum number de-
rived from the higher symmetry. We derive a one-parameter "mass formula" describing the deviation of
the slopes of Regge trajectories from the value required by the higher symmetry. The theory is applied to
the problem of the high-energy scattering of particles of arbitrary mass, and leads to an unambiguous asymp-
totic expression for the scattering amplitude. We analyze the implications of the new symmetry for the
spectrum of hadrons. The predicted new Regge trajectories lead to observable particles and resonances;
their coupling strength is determined by the symmetry in terms of the parameters of the "parent" trajec-
tories. In particular we assign the S'(1400) resonance to the second "daughter" of the E trajectory; the
symmetry breaking turns out to be small, and the decay width of E'(1400) is computed in satisfactory
agreement with the experimental result.

r. INTRODUCTION

HE object of this paper is to study a new type of
symmetry of scattering amplitudes. It is well

known that a scattering amplitude at fixed and nonzero
energy-momentum four-vector E„ is invariant (or
covariant) under the little group of the Poincar6 group
belonging to E„.For any nonvanishing timelike E„, the
little group is known to be (or to be isomorphic to) the
three-dimensional rotation group. If, however, E„=o,
the corresponding little group is much larger and. in fact
is isomorphic to the homogeneous I.orentz group. ' It is
not immediately evident that this larger group is of any
significance for physical scattering amplitudes. To be
sure, if one expects some immediate physical conse-
quences, one must put the energy-momentum four-
vector of a crossed channel equal to zero, corresponding
to zero transferred momentum. (The point where E„of
the "direct" channel vanishes is not in the physical
region if at least one of the scattered particles has a
nonvanishing mass. ) Even so, as a scattering amplitude
on the mass shell depends on two invariants (e.g., the
Mandelstam invariants s and l) only, putting l= 0 does
not necessarily mean that in the crossed channel the
energy-momentum four-vector vanishes but only that
it is lightlike.

Nevertheless, it is well known that the Bethe-
Salpeter amplitude describing the scattering of equal-
mass particles does possess a larger symmetry at
vanishing E„, at least as long as one considers the
Bethe-Salpeter equation in the generalized ladder
approxlIl1atlon.

Some time ago we pointed out' that such a higher
symmetry leads to very interesting physical conse-

f On leave of absence from the Central Research Institute for
Physics, Budapest, Hungary.' E. P. Wigner, Ann. Math. 40, 149 (1939).' G. Domokos and P. Suranyi, Nucl. Phys. 54, 529 (1.964); G.
Domokos, Acta Phys. Austriaca, Suppl. 1 (1964).

quences. In particular we found. that every singularity
in the angular momentum plane "induces" a series of
other singularities of the same nature (poles induce
poles, branch points induce branch points, etc.); more-
over, the "induced" singularities follow the "primary"
one at unit steps. This situation can be described more
easily in the language of the four-dimensional symmetry:
It simply means that there is one singularity in the

complex four-dimensional angular momentum variable,
which, when decomposed according to the "ordinary"
angular momentum, gives rise to the series described
above.

Soon after the paper' appeared, several authors in-
vestigated the possible consequences of such a higher
symmetry on scattering amplitudes. ' The difference be-
tween the latter approaches and our own is that whereas
the authors mentioned. in Ref. 3 worked directly with
the homogeneous Lorentz group (2), in Ref. 2 we
considered a scattering amphtud, e in the Euclidean re-
gion of momenta, thereby converting the higher-
symmetry group into 504. The difference between these
approaches is, however, only technical in nature, as will
become evident from the exposition of the present paper.

Quite recently Freedman and Wang, e investigating
the asymptotic behavior of the scattering amplitude of
particles of unequal masses, found that the usual
analyticity requirements are consistent with a Regge-
type asymptotic behavior if one assumes a series of
Regge poles instead of just one, the "daughters" of the
leading pole following the "parent" pole at unit in-
tervals. Freedman and Wang suggested. that this
striking analogy with the situation described in Ref. 2
is not accidental and that in fact a Regge-type behavior

s M. Toiler, Vnivereity of Rome, Report No. 84, 1965 (un-
published); Va. A. Smorodinskij, M. Uhlir, and P. Winternitz,
Dubna Report No. E-1591, 1964 (unpublished). References to
earlier papers are quoted in these works.

4 D. Z. Freedman and J. M. Wang, Phys. Rev. Letters 17, 569
(1966); Phys. Rev. 153, 1596 (1967).
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is a consequence of the four-dimensional symmetry of
the amplitude. We shall show that the conjecture of
I''reedman and Wang is indeed correct: Their result
is an immediate consequence of the four-dimensional
kinematics.

The approach adopted in Refs. 2 and 4 indicates
already that in order to establish the invariance of a
scattering amplitude under 504 (or Z, respectively), one
must make extensive use of its analyticity properties.
Therefore, it seems, this symmetry is most naturally
described in the framework of an analytic 5-matrix
theory. (We do not see, e.g. , any immediate possibility
of deriving it from a Lagrangian approach: The sym-
metry in question is not a straightforward consequence
of the symmetries of the Lagrangian and the canonical
commutation relations. ) Thus this symmetry occupies a
rather unique position in the family of the symmetries
of the scattering matrix.

The difhculties in investigating the invariance are of two kinds.
First of all, roughly speaking, "there are not enough variables
left" in an amplitude on the mass shell: It depends on, say, the
c.m. energy and the scattering angle only (more precisely on the
direction of a three-dimensional unit vector and the energy),
whereas in order to obtain the four-dimensional symmetry one
expects a dependence on a four-dimensional unit vector. This
extra degree of freedom is furnished by an analytic continuation of
the amplitude in the masses of the external particles. The other
problem can be illustrated on a familiar example.

Suppose we have an electron moving under the influence of a
homogeneous external electric field E (along, say, the s direction)
and of a spherically symmetric potential (Stark eRect). In the
presence of the electric field the Hamiltonian, and consequently
the scattering amplitude, has an axial symmetry only, due to the
presence of the term 1 E in the Hamiltonian. (Here 1 is the
induced dipole moment of the atom. ) We want to discover the
spherical syrometry of the system in the limit as

~
E

~

~ 0. First of
all, we have to require that H ~ 0 along a axed direction. Then,
still with E/0, we subject the atom to a general rotation. Obvi-
ously, if the axis of the rotation is not parallel to R, the scattering
amplitude will not be invariant with respect to this transformation.

Technically, one anticipates the larger symmetry even in the
presence of the electric field and considers the matrix elements of
the various operators between angular momentum eigenstates. As
long as the field R is present, the rotational symmetry is "broken"
and there are nonvanishing matrix elements between diRerent
values of the angular momentum l. One has to show then that as
K ~ 0, the off-diagonal matrix elements of the observables tend to
zero; in particular that the spectrum of the Hamiltonian goes over
smoothly to the degenerate one (levels with the same l but
diRerent values of the magnetic quantum number m become
degenerate).

For "well-behaved" potentials this is indeed the case, in conse-
quence of Riesz's celebrated theorem on analytic perturbations.

Our treatment of the broken four-dimensional sym-
metry follows the same pattern. Introducing a con-
venient set of variables, we investigate the pertinent
analytic properties of the scattering amplitude of
spinless particles. The analytic properties we find are
sufhcient to guarantee that in the limit of vanishing
total energy-momentum vector the matrix elements of
the scattering operator become diagonal in the four-
dimensional angular momentum. However, as a conse-
quence of the singular behavior of the try, nsforrnation

formulas between the standard kinematical variables
and those adapted to the four-dimensional symmetry,
the full amplitude is not invariant (or, in a different
language, the amplitude which is invariant does not
have the correct continuation to the mass shell) with the
exception of the equal-mass case.

In the face of this difhculty, we start "experimenting"
with models. We find that in spite of the trouble with
the full amplitude, the spectrum as determined from a
Bethe-Salpeter equation shows the larger symmetry as
expected. In particular, we rederive and generalize our
earlier result' that Regge poles occur in families, which
are classified according to representations of the four-
dimensional rotation group (or, equivalently, the homo-
geneous Lorentz group).

Next we turn to investigate some properties of the
families of Regge trajectories, neglecting for the time
being the eGects of symmetry breaking on the tra-
jectories. To this end we construct an expansion of the
scattering amplitude adapted to the broken symmetry;
roughly speaking we expand the amplitude so as to
exhibit the structure of the spectrum, but do not expand
the residues of the poles; this kind of expansion turns
out to be identical to the one used in the second paper
of Ref. 2 and also in the papers of Ref. 3. We find that
the residues of the poles of odd order (as defined in that
section) vanish in the equal-mass limit. Furthermore,
we show (neglecting the symmetry breaking) that poles
of odd order cannot correspond to real particles although
they seem to play an important role in the crossed
channel.

Encouraged by the previous results, we continue the
"theoretical experiment" with the Bethe-Salpeter equa-
tion and 6nd that one can derive a remarkably simple
"mass formula" for the Regge trajectories; the four-
dimensional symmetry to lowest order is broken by a
"dipole term, " affecting the slope of the trajectories in
a definite way. The lowest-order symmetry-breaking
term contains one free parameter, which has the same
value for the whole family of trajectories generated by
one four-dimensional pole.

As a first application of the theory, we show that the
higher sylnmetry resolves the difficulties connected with
the asymptotic behavior of unequal-mass scattering
amplitudes, and thus verify the conjecture of Freedman
and Wang. 4 We then investigate the implications of the
higher symmetry, on the particle spectrum; the "in-
duced" or "daughter" trajectories of even order should
give rise to observable particles in the timelike region,
with coupling strengths predictable from the parameters
of the "parent trajectory. " In particular, we And that
the X'(1400) resonance can be consistently assigned to
the first even daughter of the nucleon (X ) trajectory
with a reasonably small symmetry breaking. The pre-
dicted decay width is in fair agreement with the
experimental result.

gn the 4st section. wc suognarize our results and.



discuss brieQy some questions related to the dynamics
of hadrons.

In the following section we start by briefly sum-
marizing without proofs the mathematical apparatus
necessary for our investigations. We do not claim to
present essentially new results there, although many of
the results presented are scattered in the literature. As
far as we know, however, the explicit expression of the
matrix elements of the hyperspherical functions four
Eq. (2.13)j has not been given previously. The reader
familiar with the representation theory of the Lorentz
and four-dimensional rotation groups may proceed
directly to Sec. 3.

2. SUMMARY OF SOME MATHEMATICAL
RESULTS

A. Representations; Clebsch-Borden Series

The group 504 is compact, its unitary representations
are finite-dimensional. ' The six generators M„„can be
grouped into two vectors:

3fi M2i, ——(cyclic),

E;=Sf;4.
It is customary to introduce the linear combinations

'V= -', (M—N) 'V=-'(M+N),

that satisfy the independent SU2 commutation relations:

f"V;,"'Vej=ie;i i"Vih„„(r=1, 2) .

Correspondingly the irreducible representations (I.R.)
are classified according to the eigenvalues j~, 32 of
'V'= ji(ji+1)l and 'V'= j2(j2+1)l with ji, j2——0, —'„1,

~ .. The "V2 are simply related to the Casimir operators
F= —3f M&' and C= —e&'& 3l M; indeed,

YVe introduce two other labels jo, e so that acting on
an I.R.

F= ——,'Pe(I+2)+ je'jl,
G= (x+1)jel.

Here I stands for the unit operator. In view of the
previous equation, we have

j (j+1)=-'U'+ ( +2)j—-'( +l)jo,
j (j+1)=-'Ljo'+ ( +2)3+l( +1)jo,

which establishes the relation between the two ways of
labeling the I.R.

The product of two I.R. reduces to a sum of I.R.,
each occurring with multiplicity one. The easiest way
to analyze the contents of the product of two I.R. is by

We use a canonical basis for the I.R. and label the basis
vectors within an I.R. by the three-dimensional "angu-
lar momentum" / and "magnetic quantum number" m.
Given an I.R. (ji,j2) the possible values of / are

f=ii+i2, ji+j2 1, "—, lji—j~l.

(The easiest, but not the only possible, way of proving
this statement is through the use of spinor calculus. ) In
terms of the labels jo, e we have

&=jo, je+1, je+2, ) & ~

In this basis the Clebsch-Gordan coeKcients (CGC) can
be factorized according to the Wigner-Eckart theorem;
in an obvious notation we have

Ãgjog Ng jog sjo = (limi, lgns2i tm)
kgmj 32mp /m

@13ol +23Q2 @30

(X
ll lg

the first factor being a CGC of SUe. (In what follows we
shall have to deal with I.R. with jo——0 only; hence we
simplify the notation by suppressing the label jo
everywhere. ) Familiar orthogonality properties of the
CGC follow from their dehnition.

According to Acyl's unitary trick' we obtain the I ie
algebra of the proper homogeneous I.orentz group 2+(I)
by putting iV, -+ iX, ; the unitary I.R. of 2+(t') are
obtained by the replacement m= —1—iX and are
classified as follows:

jQ=O)

jQ f 2 $ 0 0 ~

jQ=O

jo=0

—QO (gQ 00

—ao (gg oo

X&0

0& —ik~ 1

trivial rep. ,
double valued,

single valued,

single valued,

single valued.

We mention already here and shall repeat occasionally
the important fact that the spherical functions and their
matrix elements of S04 and 2+(1') can actually be
continued into each other by the replacements indicated
above. This forms the basis of the statement made in the
Introduction, namely, that our results are equivalent to
those obtained by working directly with 2+(l') instead
of 504.

using the SUgXSU2 labeling (ji,jm). We have, namely,
in an obvious notation

(ji',j2')N)(ji",j2")=ZO+ (ji j2)

I
ji'—ji"

I

~ ji~ ji'+ ji"
[
j2'—je"

[ 5j u~j 2'+i2"

~ For the representation theory of 804 see, e.g., G. Racah,
Nuovo Ciinento, Suppj. 14, 75 (tN9).

' H. Weyl, C)assicul Groups (Princeton University Press,
Princeton, Neer Jersey, 1947), Chap. IX.



1390 G. DOMOKOS

Knowing the analytic properties of the various matrix
elements in question, the proof of equivalence in each

case is an easy exercise and is left to the reader.

M„„=i '(x„g„x„g—„). (2.1)

The functions of the four-dimensional sphere are eigen-

functions of the operators

—F=-,'M„„M„„J'=I;pI-; p and Lip

(i, k=1, 2, 3); the eigenvalue of G being zero. We

introduce polar coordinates of the unit vector e„as
follows:

e4= cosp,

ep= sinP cosg,

ei= sinP sing cosQ,

ep= sinP sing sing,

(2 2)

the four-dimensional volume element becomes d'p
=p'dp sin'pdp singdgdit, with p= g(p'). Here 0&p & pp,

0&p&ir, 0&8&or, 0&pp&2m. . Denoting the spherical

harmonics by Z„i (Pgp)—=Z„i (e„), we can write the

first eigenvalue equation as follows:

FZ„,"(Pgy)+-;~(~+2)Z„;(Pgy)

/8' 8 1—=
~

— -+2 cotP—+ -J' Z„,"(Pgy)
(gp' gp sin'p

+-,'e(~+2)Z„,-(Pgy) =0. (2.3)

The set of orthonormal solutions of Eq. (2.3) thus can

be written in the form of a product:

Z.i"(pgy) =p.i(p)I', "(g,y) (I=0, 1, 2, " ) (2.4)

where the second factor is a three-dimensional spherical

harmonic, while two equivalent forms of p„i(p) are the

following:

(m+ 1)1'(I+1+2))
'"

p. (p)=
1(~—l+ 1)

X (sinP) "'F„+i~p i'+""(cosP) (2.5a)

ol

(++1)I'(I—l+ 1)q 'i'
!p (P) 2i+i/P

~1'(nyt+2) i(
&(I'(l+1) sinP'C i'+'(cosP) . (2.5b)

Here F„"(x)and C„"(x) are I.egendre and Gegenbauer

B. Spherical Functions

In a canonical basis, and for I.R. with j0=0, the

components of the four-dimensional angular momentum

M„, (p, v= 1, 2, 3, 4) act as differential operators:

sin'PdP dQ Z~i *(PQ)Z~ i (PiQ)

=g„„,g„,g„, , (vi=0, 1, 2, ) (2.7)

(did being the surface element of the three-dimensional

unit sphere). Of particular importance is the function

Z„o',. its expression is very simple:

sin(I+1)P
Z-o'(P) = (2 ')-'"

sinp

The addition theorem reads

Z.,P(&)= P P Z„,-*(P8 y')Z„,"(P'8"y"), (2.S)
g+1 l=p m l=

with

cosy= cosP' cosP"+sinP' sinP" cosg,

cosg= cosg' cosg"+sing' sing" cos(P' —Q") .
(2 9)

Equations (2.8) and (2.9) are equally valid for SO4 and

g, with the replacements indicated above.

Making use of the second solution D„of the equation

for the Gegenbauer functions, we can construct the

expansion
1

= P Z„p'(t)D„(s),
n,=o

(2.10)

with t=cosp and D„(z)=2'"iris—(s' —1)'"$"+' (We

could construct a more general expansion involving

Z i, but we shall not need it.) The expansion (2.10)

(being an analog of the familiar Heine's expansion) is

convergent in an ellipse with foci at cosp= &1.Dn the

standard notation, our Z„pP(x) and D„(s) are pro-

portional to the Jacobi functions of the first and second

kind F o" '"&(x) and (s' —1)'"Q i'" '"&(z) respec-

tively. ]An analytic continuation can be obtained by the

Watson-Sommerfeld method, i.e. , by writing (2.10) in

the form of a contour integral:

1 j.
dv cotmZ„p (t)D„(z) (2.11)

2Z c

7 A. Erdelyi, W. Magnus, H. Oberhettinger, and F. Tricomi,

Higher Transcendental Functions (McGraw-Hill Book Company,

Inc. , New York, 1953), Vol. I; I. S. Gradshtein and I. M. Ryzhik,

Table of Integrals, Series and Products (Academic Press Inc. , New

Vork, 1965).' See, e.g., H. Joos, I'ortschr. Physik 10, 65 I,'1962).

functions, respectively, as defined, e.g., in Ref. 7. )The
solutions (2.5a), (2.5b) are valid for any value of I and

/; if e, l are integers, the Taylor series of P +J~~
"+'"'

and C„ i'+' terminate. ]
From (2.5) we get the condition already known:

0& i &m (rt, l integers) . (2.6)

On setting p=ip (0&/& pp), n= —1—i& (0&&&pp),

we find the basis functions of unitary representations

of the homogeneous Lorentz group. ' This replacement

is but a trivial generalization of Weyl's unitary trick. '
The normalization condition reads as follows:



and suitably deforming the contour. Asymptotic esti-
mates of the functions of the 6rst and second kind are
the same as in the case of the familiar functions I'I, and
Q~. In fact it follows from the general theory of hyper-
spherical functions' (of which the functions of the three-
and four-dimensional spheres are special cases) that the
exponent of the leading term in their asymptotic series
both for It ~

—+m and ~s~
—&~ is independent of X. (The

asymptotic behaviors of Z„o' and D„can be most easily
read o6 from their de6nitions. Ke shall not need the
asymptotic behavior of the more complicated functions. )

C. Matrix Elements of' Syherical Harmonics

In order to 6nd the matrix elements of the spherical
harmonics of 504, we remark that the Wigner-Eckart
theorem allows us to factor out a Clebsch-Gordan
coeKcient of the three-dimensional rotation group.
Moreover, from the definition of the Z„~, we see that
even the reduced Inatrix elements can be factorized.
Thus using the well-known expression

(p' yg) Ig~g — gQ P' w114F' taP WEB

( 1)~~+x —eu l(~l)~i+
,i

we can write

(e'l'm'; e"l"m"
~
nlm)

sjn2PJP dQg z~
m g &

m g

= (&~--"),.'"'(n'l'; n'V'~~nl),

so that we have to compute the last factor only. For the
representations considered in this paper, the latter is
given by the expression

(eV; e'V'((ni)

'&lP. (WP; WP. e). (2.»)

Equation (2.12) Is obviously syIQmefrjc jn fhe variables
(n'l'), (n'V'), (el). The integral in (2.12) can be easily
evaluated with the help of the following trigonometric
expansion~ of the Gegenbauer functions:

F(i+1+k)F(n+1—k)C.-i'+'(cosP)= Z
&=o k!F(n—l+1—k)fF(l+1)j'

Xcos(2k —n+l)P.

Inserting this expansion into (2.12), the integral can be
evaluated in an elementary way. The result stated in a
manifestly symmetric form reads:

L (n'+ I) (e"+1)(e+1)F(e'—I'+ I)F(n"—l"+1)F (e—l+1)j'"
(e',l'; n'V'~~nl) = (2 )-'"

F (l'+ 1)F(l"+1)I'(l+ 1)EF(n'+l'+ 2)F (e"+l"+2)F(n+l+2) )'»

XF(l+l'+l"+3)
1 coss.{k+4'+k" '(e+—n'-+n")+ I (i+/+I") )

~'.~".~=0 k'!k"!k! F(k'+k"+k ,' (n'+e"+—n—)+I'+l"+l+2)
F(l'+1+k') F(l"+1+k")F(l+ 1+0)F{e'+1—k') I'(e"+1—k")F(n+ 1—k)X

I'(-', (e'+e"+n) —(k'+k"+k)+2)F(n' —l'+1—k')I'(e" —I"+1—k")I'(e—l+1—k)

Finally let us record the important selection rule

(nV;n V ((nl)=0

e'+n, "+n=0 (mod 2) . (2.14)

small, it is easier to evaluate the integral in (2.12)
directly rather than to use Eq. (2.13).

3. THE PROBLEM OF THE INVARIANCE OF THE
SCATTERING AMPLITUDE

This follows jmmediately from (2.12), ta!ring Into ac-
count that p & js sn even (odd) fullctloI1 of cosp If n Is
even {odd).

For integer values of (n', l"), (e",l"), (e,l) the series
(2 13) tcrmjnates. n', n", e have to satisfy a triangular
inequality, otherwise t!Mmatrix element (2.12) vanishes.
Quite often, If at least onc of thc quantuIII numbers ls

9 G. Szego, Am. Math. Soc. Colloq. Publ. No. XIX (1938).

We consider the scattering of spinless particles. The
truncated Green's function T describing the scattering
process is an invariant function of three independent
momenta. As we have already mentioned in the Intro-
duction, we shall work in the Euclidean region 8 of the
momenta, i.e., replace pIO by pl4 I'pI0, etc. T——he possi-
bility of continuing the Green's function to 8 has been
widely discussed in the literature and we take it for
granted. As in h the symmetry group of T becomes
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compact, this procedure simplifies the form of most of
the expressions. I.et pi, qi', p~, q2 be the momenta of the
incoming and outgoing particles, respectively. On the
mass shell let pP=p22= —M', qi2=q22= —p'. For the
sake of brevity, sometimes we shall call the particles the
"nucleon" and "pion, " respectively. If the momenta of
the external particles are on the mass shell, T is equal
to the scattering amplitude. We conveniently choose the
three independent momenta E, p, p' according to the
definition

p, = -', E—p, qi ———,'E+p,
p&=kE p & q&=2E+p .

(3.1)

qp pi
cosp=

2pg( —I)
(3 2)

q2 p2
cosp'=

2p'g( —e)

where p=g(p') etc. is the modulus of the four-vector

p„. In h both p and g(—u) are real."
With the definition of n as given above, the other two

Mandelstam invariants s and t are

—x= (p+ p')', —&= (p p)', —

and the cosine of the angle between the unit vectors e„
and e„' becomes

In order to investigate the analytic properties of T
that are relevant for the symmetry under consideration,
we introduce polar coordinates according to (2.2) and
investigate T as a function of E', p', p" and the two unit
vectors e„=p„/g(p'), e„'=p„'/g(p").

I.et us choose a coordinate system where E4——E,
Eq 0(k= 1, 2, ——3). (In the Minkowskian region of mo-

menta this choice corresponds to the center-of-mass
frame. ) I.et us quote first of all the necessary kinematic
formulas that follow from Eq. (3.1) and connect. the
variables used in this section with the standard kine-
matical invariants. We identify the square of E„with
the Mandelstam invariant u, by putting —E"=n. Then
from (3.1) we have

p'=~(pP+qi+IN) &

p"=-,'(p"+qP+k~),

form

T(e„',e„)= P (e'~T(l) ~ri)Z„.~ *(o„')Z„p(e„). (3.3)
nl nlrb

(We adopt the convention that variables in which the
amplitude is diagonal are written as an argument;
further, we suppress variables which have the same
values on both sides of the equation. ) To this end we
have to investigate the analytic properties of T in the
components of e„and e„'.

(b) Next we shouM show that the ma, trix element
(n'

~
T(l) ~e) becomes diagonal in n and independent; of

l at u=0, so that the expansion (3.3) would degenerate
into

T(1=0, e„', e„)=p T(N=O, e)Z„O'(7) (3.3')

(after using the addition theorem for the hyperspherical
functions). At this point we could repeat all the familiar
steps of the three-dimensional Regge theory: show that
T(N=O, n) defines an analytic function of m, rewrite
(3.3') as a Watson-Sommerfeld integral, isolate the
contributions of the poles, etc. We shall see, however,
that although the partial-wave amplitudes become
diagonal, the expansion (3.3) does not go ower to (3.3'), so
that the amplitude —with the notable exception of the
equal-mass case—is not imuriaet under 504 at N=O.
Interestingly enough, the higher symmetry still mani-
fests itself in the spectrum: A study of the Bethe-
Salpeter equation shows that at m= 0 the spectrum (i.e.,
the poles or branch cuts) appear as simple singularities
in the m rather than in the l plane; or (in slightly a
different language) in the l plane they show the pattern
required by the higher symmetry.

Ke outline the steps to be followed.

(a) In order to prove the existence of the expansion
(3.3), we have to locate the singularities of T in the
components of e„and e„', As far as the dependence on
the angles 0' and p is con.cerned, the situation is well
known; indeed it is connected with the existence of a
three-dimensional partial-wave expansion.

Therefore let us focus our attention on the dependence
on P and P'. As Eqs. (3.2) show, when we vary P with p'
and keep I fixed, this amounts to saying that we vary
the external masses so that the sum of their squares
remains constant.

"The external "masses, " i.e, , the
~ ~ (—gP)'& are pure imaginary in G.

quantities

cosy=—(e„e„')=
(P (pi'+qi')+N)L2(p~'+q')+Nl)'"

After this preparation we can proceed to investigate the
invariance of T under SO4 at the point N, =O.

(a) First we have to prove that T, considered as a
function of e„and e„', is expandable into a series of the pR

I
wr

FIG. 1. Reduced triangular diagram for the determination of the
singularities in cosp.
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The loca, tion of the nearest singularities of T in P12

and q~' is determined by the reduced diagram shown in
Fig. 1.The wavy line represents a two-pion state, with
a continuous "mass, " m2, the mass of the internal
"nucleon" line is m~ and the mass of the internal "pion"
line is ~. In general, the internal lines represent any
state with the same quantum numbers as the corre-
sponding particles, thus

p, ~~&,
M &vs~& ~,
2p, f524 Oo .

The diagram of Fig. i 6rst of all generates normal
thresholds in the external masses, located at —q~'=9@'
and —P12= (M+tz)2, respectively. Correspondingly in

Z2 — sg+P + (M+tz) (3.4)

The next step is to investigate whether there are
anomalous thresholds in the z plane. Consider the
discontinuity of the amplitude corresponding to the
diagram in Fig. 1 across the normal cut starting at z2.
As we know that a three-dimensional partial-wave
expansion exists, it is sufhcient to consider the S-wave
part of that discontinuity. A straightforward calculation
shows that this is proportional to the function

the cosP plane we have two branch points. It is con-
venient to introduce the variable z by the definition:
z=p»2( —u) cosp. The normal thresholds in z are
located at the points

Zl= sS—P —9tz

2pl (2222 +pl K ) (pl +Pl +22) (pl +2121 K )+L~( pl Ql a)~( pl K 2121 )]
ln

2pl (2222 +(1 K ) (pl +pl +Q) (pl. +2221 K )—$+( pl gl N)6( pl K &1 )]

with

g(a, b,c)= a'+b'+c2 —2ab —2ac—2bc.

We can insert here the mieimal allowed internal masses,
i.e., I{:=p,m~=M, m~ ——2N.

The singularities are determined by the vanishing of
either the numerator or the denominator in the argu-
ment of the logarithm. p12 and qtz should be expressed in
terms of z, p, N. Introducing the auxiliary variable
x= p' —slN, after some manipulation we find that the
condition for a singularity is

P (z x) —[2 (M2+~2) N]zs+ zlxs+ 2xz (M2 4~2)

+xLN (M2+ 6') (M2 4')2]
z(M' 4tz2—) (I M—' 4ps)— —

+utz2Lu+3(M' —tzs)]=0. (3.5)

The singularity described by (3.5) starts out on the
second sheet in z. The necessary condition for it to
appear on the first sheet is that BF/Bx=0 be satisfied"
besides (3.5) for some x and z=x+(M+@)2. Differ-
entiating (3.5) and solving for x we find

(M' —4ps) L (M+ 2tz) 2+ 2tzs]+m (Ms+ 6tzs)

2 (u+M' —4tz2)

For sufliciently small values of tt, this requires p'&0
which is outside b. (Actually we find that I should lie in
the interval —1.2M'(N(2. 6M' )

We can treat the discontinuity across the cut starting
at zl in a similar way. Thus we have established that if u

"We remind the reader that if the left-hand singularity on an
unphysical sheet encircles the normal branch point, then it
certainly hss an extremnm there: dz/dx=0. Differentiating Eq.
{3.5):de/dx= BF/ex+ {BP/Bz)dz/dx, the condition stated in the
text follows.

1 " T, (t', z,z')dt' 1
T(s, t,z,z') = —+-

@ 4„& t' —t x (~+~)&

T, (s',z,z') ds'

S —S

is iN a stzfftcielztty small 22eighborhood of sero, there are 22o

alomatous simgzdarities irl the z (ar cosP) Ptane. Con-
sequently, the Gegenbauer expansion in cosP converges'
in an elhpse with foci at cosP= +1 and semimajor axis
equal to (p'+9ps —4N)/2pg( —I) (for m&0), deter-
mined by the nearest normal threshold. Moreover, the
expansion in cosP can be continued into the hyperbolic
region up to the physical values of the external masses.

Evidently, the a,nalysis of the singularities in cosP' can
be performed in the same way.

Having shown that an expansion in the "mass-type"
variables exists, we proceed to the next step and (b)
investigate the invariance of T under S04 at N=O. The
crucial point in the demonstration is the well-known
theorem stating that if a function is nonincreasing at
inanity and has no singularities in any Rnite part of the
complex plane, then it is a constant.

Let us observe that (suppressing the variables that
are kept constant) T being an invariant function, it
depends on E„p„=z, E„p„'=z', and on the invariant
momentum transfers. As we have just seen, the singu-
larities in z and z' are located at fj.nite points in the
complex plane. We assume that the dkscoltilsuities of T
across the cuts irz z atld z' decrease at itzf'zrzity. (This is
equivalent to the usual assumption that the amplitude
possesses unsubtracted spectral representations in the
external masses. )

We now construct the matrix element (nz~ T(t)
~
Nr).

First of all we write a dispersion relation for Axed u.
We shall assume that no subtractions are necessary;
subtracted dispersion relations can be treated in a well-
known way.
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(Note that the thresllolds are determined by the infernal (3.8) we have
masses, so they are not changed. ) Using the formulas

—s= p'+ p"+2pp' cos7,

t=—p'+ p" 2pp—
' cosy,

we introduce the even and odd parts, T(+), in cosy of the
amplitude T and expand it into partial waves using

Eq. (2.10):

p~t~ttgttt (6)—

As lu!~0,

dq d)&' D„
Pv'( u)&-

XD.- T.&"(~,~') (3..1O)
PV( u)—

T(+)(cosy,s,s') = p T„"'+)(s,s')Z " 00(y), (3.6) ft (Pv'( —u)& ""
B

Pv'( u)—
T„.-(+) (s,s') = 1+(—1)"

dg T, +' (g,s,s')D~I"

X, I
(3.7)(

x—p' —p"~

thus only the term Too„.&~& survives. Taking into ac-
count the obvious property of the Clebsch-Gordan
coeS.clents

&'0 n n'y

Eo «)
T.(+) (x,s,s') = T, (x,s,s') +T, (x,s,s') .

Equation (3.7) is the analog of the well-known Froissart-
Gribov formula.

We now proceed by expanding T„. according to s
and s'. Ke write

~—0) 81 ~ ( &1

T-- '"(*)=-, ! + d~l +
pp'u k. .. (

T„„„,(I&,I&')

X I

—cosP !
—cosP

pvt( —u) kp'v'( —u)

(3 8)

and apply Fq. (2.10) to each of the denominators. LThe

energy I is supposed to be chosen small enough, so that
the anomalous thresholds have retreated to unphysical
sheets and the integration regions (—00, sl) and (S0, ~)
do not overlap. jThus we obtain the triple series

T(7 PP )= Q Te'e"n"'~n'0 (P)zn"0 (P )~n"'0 (7).
&t~tt+ttt

this shows that

lim(n'l T(u l) l
n)=f'&„„.T(u=O, n).

At this point, however, we encounter an infamous

difhculty.
The formulas (3.2) connecting the pairs of variables

(p, Cosp) all(1 (PI,I1'I ) Rle SlllglllR1 at u= 0. COI1SC-

quently, when we want to go to the mass shell, we have
to let, PI0 ~ —M0,

AD&0
—& —&I', etc., and pass to the limit

u=0 afterwards. (This requires the continuation of the
expansion by means of a Watson-Sommerfeld trans-
formation; this fact is, however, irrelevant to the
following discussion. )

I t ls cvl(lcllt f1oili Eq. (3.2) that oil doing so, cosp RI1(l

cosP' tend to infinity as u~ 0. Using the asymptotic
forIQula

2.rp, +n)
C "(cosP) (cosP)", (lcosp !-+~)

r(n+1)r(Z)

one can check that

&,I"(p,O, &0)=0(lul "") (u-+0).

In order to obtain the matrix element of interest, we

apply the addition theorem (2.8) to the third hyper-
spherical function and couple together the functions of
the "initial" and "final" states. Thus we get

&n. l
T(I)("lni&=

m'n"n"' 0 i i )
~l l ~Ill

X T, „„,(+) (3 9)
O;

Thus the expansion (3.3) couM degenerate into (3.3')
only if the off-diagonal elements (n'l T!n) satisfied thc
inequality

l&n'I Tln&l &~ lul'"'"'" («n', u 0), (3.»)
where A is some constant. The inequality (3.11) can,
however, never be satisfied (excluding some pathological
cases). Indeed, using (3.9) and (3.10) we can easily see
that as I—+0

(n, 'l T !n)= 0(u("+"')&') . (nPn')

with the Clebsch-Gordan coeScients de6ned in Sec. 2 $. Thus the contribution of the oG-diagonal elements to
I.et us look at the expression of T~ „.„"'+'.From (3.3) does not vanish, so the amplitude is not invariant.
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1 1 cosp

pP+m' xpQ( —u) „=, '. x
(I 0).

The series standing on the right-hand side is at least summable,
e.g., in the Abel sense and its snm equals to (l —cosp/x) '.
Inserting this expression and using the definitions of x and p, we

see that the function (p12+m') ' is reproduced by the expansion.
However, if we keep the n=0 term only, we get at I=0

1

(p12+q12)+m2

instead of the original expression. Obviously, this is correct on the
mass shell, if there P12= q12, which is the equal-mass case.

4. A "THEORETICAL EXPERIMENT" '

SYMMETRY OF THE SPECTRUM
AT u=o

We have just seen that (perhaps apart from some

pathological cases) the full scattering amplitude is not
invariant under 504 unless cosP=cosP'=0 on the mass
shell, i.e., the masses of the particles are equal both in

the initial and final states.
It is reasonable to expect, however, that although the

amplitude itself is not invariant, the spectrum may
show the higher synunetry. (By spectrum we mean the
positions of the Regge trajectories at N=O, i.e., the
spectrum of the angular momentum. ) Evidently, in
order to investigate this problem, we need some

dynamical scheme which determines the Regge tra-
jectories. I,et us observe first of all that some of the
familiar dynamical schemes can be excluded a priors, as
not having a chance to produce the four-dimensional

sylnmetry. The best known of these "bad" schemes is
the on-shell X/D system of equations in the two-
particle approximation.

It is instructive to see why this scheme is a "bad" one.
As is well known, one starts by writing down a dispersion
relation for the amplitude at constant momentum
transfer or scattering angle and obtains the dynamical
equations by relating the right-hand discontinuity of
the amplitude to the amplitude itself by the use of
unitarity in the two-particle approximation. Now, in

The epsal-mass case is obviously exceptional: On the
mass shell cosP=O; the functions Z„t- do not blow up,
so(u'~T(l) ~u) —+5 „.T(n) is sufhcient to guarantee the
invariance of the full amplitude.

This situation can be illustrated on a simple example. Sup-
pose we want to expand the function (p12+m') '. Using (3.2)
we rewrite it as [pg(—u)] '(x—cosp) ", with x=(p'+m' ——,'u)
&&[pg(—u)] '. Expanding, weobtain

2 g C„'(cosP)Lx—(x2 —1)I/2g +1.
pP+rn' pQ( u)—

If g~0with p1, gp fixed, then cosp~~ and x~~. However&

using the asymptotic formulas

C '(cosp) 2"(cosp)",
(x& $)1/4]m+&-(2x} n-

we obtain the formal expansion

the two-particle approximation, for a suitably nor-
malized amplitude 3 the unitarity condition reads:

2(u+i0, f)—A(u —i0, g)

6(u,M',u')
=i ' '

dP'dg"Z(g, p', g")

T(p', p; E)=XX(p,p';E)

de(p', k; E)T(k,p; E)

t:(-;Z+k)'~~ jL(-,'Z —k) —u j (4~)

lf we take the ladder approximation to the Born term
XE, with exchanged mass m, we get

X=g'/(2w)4i,

&(p,p') =I/L(p- p')'+m'3 (4.2)

In the Euclideanmetric Eq. (4.1) canbe transformed to
an ordinary Fredholm equation with a Hilbert-Schmidt
kernel, so the singularities correspond to bound-state
poles."Let us introduce the notation

&(p,p')
~(p,p') = (43)

E(sE+k)'+~ X(s.—k)'+u']

» a. %.Lee and R. F. Sawyer, Phys. Rev. 127, 226/ (1962).

XA(u+i0, g')A(u i0—, f"),

where'(x, y, s) =x'+y'+s' —2xy —2xs —2ys, f, f', f"are
the cosines of scattering angles, and E is the well-known
symmetric kernel. From the geometrical point of view
dg'dg"K(g, g'g") is proportional to the surface element
of the three-dimensional sphere. Consequently, although
one could continue the unitarity relation below thresh-
old, due to the mass-shell restriction, the "two-particle
unitarity" can never become form invariant under the
four-dimensional group. In other words, th, e mass-shell
restriction precludes the introduction of a sufFicient
number of variables, thus producing the first difhculty
mentioned in the Introduction.

A scheme which does work is the Bethe-Salpeter
equation, where the four-dimensional symmetry had
originally been discovered. A detailed treatment of the
problem has been given long ago (cf. Ref. 2 and the
literature quoted there, see also Ref. 4). Here werepeat
the essential points of the argument; we concentrate on
the problem of the Regge trajectories, and apply a
method which permits an immediate generalization to
treat the breaking of the syixunetry.

Consider the Bethe-Salpeter equation for the off-shell
amplitude of spinless particles. In the momentum
representation it can be written as
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n for the traces:
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'
troducing the nbe written lntIlen the sohltlon cR11 b

I'(p p )=

of L and D(E) is the Fredholmwhere I.~ is the transpose of L an

determinant:

«A)) —= d'k A (k,k),

«~&) —= d'k d'k2 A (kik2)B(k2ki), etc.,

dhobn determinant ln a morewe can rewrite the Fre o
compact forTQ:

= 1——(&L}}+—((&LL}}—((L))')+ "
2f

(4 5)

L(ki, ki) L(ki, k2)

k k) L(k k2)

0' t four-dimensionalthe k.erne1. in oL t us expand now
the pro uc t of one-particlepartia w1 waves. Denoting(

elo ed in Sec. 2,lication of the technique developwehave, yasw, h traightforward application o e

—-u "—-'u u'8(p —
p —ru u pII II I I I I D

Oll "l")(n2'/2', n,Olin, , p,I I I )II)
X(nili I sr si

2

r whereas theis to be sunned over,dummy indexqevery
matrix element o t e
tion has the following snnp e e

l 1
(n V'm

and. anally

(n "f"ns"p"
l
L

l
n'1'm'p'}

ct that l is conserve . Kcorresponding to the fact t a
' . K y

revious section, we can see a
nal in t C IIQ

(
11

Ill L(u /) l
Ipl) ~ g plln, , „"lL(n) p

in to e ratherso u
'

into factors accor ing oso D(u) now is spit in o
than tt:

D(u=0) =g D. ,

'd &n'7'm"p" lZlnbep}

y(nr~plI lnV~ p)
8~~is o 1 in 3, m and.8) ls of course diagonaThe expression (4.8g is o

p . Inserting . in . sinln CIdependent of fs.
the orthogona ity o e
have for the Fredho m

with

'd "&n'p'lL(u, l) ln"p"}p"dp' p"
~l ~It

I II&(&n"p' lL(u, l) ln p)

'dp ((nplL(u, l) lnp) ' (4.9)

'dp &n. l L(u, ~) lnp)+ —,Dg(u) =1——
L n))=— p'dp&plL(n) I p) «c.

d t show: The inter-at we wante o sThis is exactly what

p gg pe oles given y e e
Pre o

d t n infinite seole in the n plane correspon s o a

4e: Th, e flill alnplltude $$ not 111-

e —
' '

al roup, although thethe four-dimenslona gvarlRnt undei e
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spectrum (at least in the present model) is. A moment
of thinking reveals the deeper reason of this remarkable
phenomenon.

Why is the scattering amplitude not invariant even
at I=OP We have seen why in the previous section:
We cannot continue the amplitude onto the mass shell
and go to zero with n afterwards. Thus, loosely speaking,
it is the external mass dependence that prevents the
amplitude from becoming invariant. However, the
Fredholm determinant D(u) does not depend on the
external masses at all. (Indeed, we integrate over the
relative momenta. ) Consequently, there cannot arise the
convergence problem encountered in Sec. 3—and so it is
perfectly natural that D(N) (and its roots as well) show
the higher symmetry in its "full power. "

We conjecture now that this is not a feature of the
particular model considered, but rather a special case of
the general rule. Let us remark immediately that,
knowing the analyticity properties exhibited in the
previous section, it is a, matter of simple exercise (al-
though of a rather tiresome one ) to show that the
general Bethe-Salpeter equation (with the kernel con-
sisting of an arbitrary number of Feynman diagrams
and corrections to the one-particle propagators in-
cluded) obeys the rule just found. Moreover, the bound-
state spectrum has a certain "universality" property.
Whether one considers the energy levels or the Regge
trajectories, one finds that their characteristics do not
depend on the quantum numbers and, in particular, the
masses of the states they are coupled to. (In fact, it is
precisely this universality property which makes, inter
alia, a particle interpretation possible. )

To conclude, we feel that the property of the spectrum
we just discovered is a general one and thus we proceed
by assuming that at @=0 the Regge trajectories show
the pattern required by the 504 symmetry.

S. FAMILIES OF REGGE TRAJECTORIES
AND HIGH-ENERGY SCATTERING

The four-dimensional angular momentum is, strictly
speaking, conserved at N=O only. Thus, in order to be
able to use our formulas, even at I/O, we have to
analyze the "ordinary" angular momentum contents
of an eigenstate of the four-dimensional angular
momentum.

The tra.nsformation function we need can be simply
found from the addition theorem (2.8). Using the
addition theorem for the three-dimensional spherical
harmonics, we can rewrite (2.8) as follows:

and hence, by the orthogonality of the I'&p,

2'"m
(l j n)—= dn I'40*Z 0' —— p„i(8)p.i(8') . (5.1)

I+1

We introduce the quantum number ~ with the de6nition

22=1+K. (5.2)

re=0, 1,2, n —jp. (53)

We "Reggeize" 22 (and consequently /), but K always
remains an integer; tl. is is again evident from the
Bethe-Salpeter equation, cf. Cutkosky" and Ref. 2.
However, if n is "Reggeized, "and so not an integer, the
restriction (5.3) should not be imposed on K. Indeed,
(5.3) follows from the expressions (5.1) and (2.5) only
if 42 andi are integers, otherwise the functions p„ i do not
vanish, however big is ~.

In terms of K the selection rule (2.14) can be rewritten
as

K'+2 "+K—=0 (mod 2) . (2.14')

This follows immedia. tely from the definition of ~ and
(2.14) upon observing that conservation of parity re-
quires 1'+i"+ i= 0(mod 2).—

Finally, in order to elucidate further the physical
meaning of ~, let us notice" that in the equal-mass case
the Bethe-Salpeter wave function of index z of two
spinless particles is multiplied by (—1)"upon inverting
the relative time, so it is justi6ed to call it the "relative-
time parity. "Next we isolate the contribution of one
four-dimensional pole from the scattering amplitude.
To this end we take the expansion (3.6) in its Watson-
Sommerfeld form [cf. (2.10)j:

4/2

T&+& (y,s,s'; I)= (2i) '~— T„&+&(s,s'; I)

sin(n+ 1)y
&& cotnm- d22, (3.6')

sing

but unlike Sec. 3, we do not expand the function
T„&+&(s,s', I) further.

Again invoking the results of the "theoretical experi-
ment'"' of the previous section, we assume that T '+~

can be continued in n beyond the region given by a
Froissart-Gribov formula like (3.7), so that we can
isolate the contribution of a pole from (3.6'). Using the

'3 R. E. Cutkosky, Phys. Rev. 96, 1124 (1952).
'4„:Details of the continuation procedure can be found in &he 6rst

paper of Ref. 2.

The significance of ~ from a group-theoretical point of
view is evident: The angular momentum states con-
tained in an I.R. (n, jp) of S04, as we mentioned in Sec.
2, are

fm~ 22 jl+ j2 '+ Iy "'
~ jp=

~ jl $2
~

—dmin

or in other words,

1=n—~,
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factorization theorem of the residues, we find the
contribution of a four-dimensional pole with trajectory
n(u):

2 '" g(s,u)g'(2', u)
T4,.),&+) (p,s,s'; u) = — (Ia e' &"')

r z

sin (n (u)+ 1)y
&& cot(n(u)2r) . (5.4)

sing

In terms of the quantum numbers t and ~ the explicit
expression of the transformation function (5.1) is the
following:

«Iu)—=F .(P)F .(P'),

where F /„(P) can be found from (2.5):
1/2

F/K(P) =2 "(22r) "4
I'( +3+1)I(t+ +3'/2))

)&I"(1+1)(sinP)'C ' '+(c soP). (5.5)

(We used the duplication formula for the I' function. )
Thus using (2.8') we can rewrite (5.4) so as to exhibit
the "ordinary Regge-pole contents" of a four-dimen-
sional pole:

T4 pp)p ( /)2)$ i u)-

I~cia a, &p) ( 1)~

g„(cosP,u)

&& g„'(cosp', u) cot(n„(u)+x)2rP, „&„)(cosO), (5.6)

poles in the / plane with de6nite phase relations. At
u=0, where the spectrum exhibits the S04 symmetry
exactly, the family of Regge poles are spaced at integer
valuesfollowing theleadingpolen()(0)=—n(0). (Freedman
and Wang' call the poles with ~/0 the "daughters" of
the leading or "parent" pole n().) The quantum number
~ is identical to ~ of Ref. 13 labeling the "anomalous"
solutions of the Bethe-Salpeter equation and e„of
Ref. 2.)

(b) The even- (odd-) x poles have equal (opposite)
signature to the parent pole. This is evident from (5.6).

(c) The residues of the odd-x poles vanish for M'=/42.
In fact, for the Gegenbauer functions of integer order

we have'

( 1)k
C22" (t) = F(—k, A+X; —,', t2),

(X+k)&(X, 4+1)

( 1)22]
C„„"(i)= F( 1, u+—~+I; —;;~),

(B(X, 0+1))
(k=0, 1, 2, ),

(5 9)

where 8(x,y) is an Euler integral of the first kind and
F(a,b; c; 2) is a hypergeometric function. In the equal-
mass limit, t=cosP and/or t=c Po'svanishes; this to-
gether with F (/i, b; c; 0)= 1 proves the statement.

(d) The residue functions g„contain the "threshold
factor" (d, (u, M2, /42)/4u) "" automatically as a conse-
quence of the four-dimensional kinematics.

Proof: From (5.8) we see that g„ is proportional to
(sinP) '. It follows from (3.2) that

where we have introduced the notation

n„(u) =n(u) —x, (5 7)

t'u2+ 2(p12+ q12)u+ (q12 p12)2) 1/2

!sinP = (1—cos'P) 1/2=!
~ 4p'u ]

giving the positions of the poles in the / plane, and
with (5.5)

) 1/2

g (P, )=g(s, )2"' "!
ki'( „1 +1)I'( „+ +3/2)l

&(I'(n.+1)(sinP) C„+'(cosP), (5.8)

while g„(cosP,u) = —g„*(—cosP, u) from time-reversal
invariance.

Equations (5.4) to (5.8) are exact at u=0 and at
small but nonvanishing values of I hold presumably to
a good approximation (they imply that the $04
symmetry even at I/O is broken only by the mass
difference M' —p,

' in the residue functions but not by the
trajectories). The expansion as we use it is in fact a
"broken symmetry expansion" tailored to the nature of
the problem: It goes over to the expansion (3.3') in the
exact symmetry limit: u= 0 and pt2= q12, p22 = q22.

I.et us now analyze our results.
(a) We find (as already stated in Ref. 2) that the one

four-dimensional pole is equivalent to a superposition of

On the mass shell (p12= —M', q12= —/42) this becomes

/t'A(u M /4 )) / 2 /

(sinP)
4u ) (-',u—M' —/42) "'

hence the statement follows.

(e) If at u=0 (or, in the present approximation,
anywhere below its threshold) the parent pole n() passes
through an integer value, the residues of all but a 6nite
number of daughters vanish. This is evident, e.g., from
(5.9) and the definition of the hypergeometric function.
In particular, for the Pomeranchuk pole, as n()&»(0) = 1,
only the daughters f~. =0, 1, or in the case of forward
elastic scattering! because of (c}gonly x =0 contributes.
The K= 1 trajectory could, in principle, be observed in
the reaction 1r+1V~ K+ Y&1/2)

**where n&» can be ex-

changed, and the masses are diferent. Many of the
corollaries (a)—(e) of Eqs. (5.6)—(5.8) have been derived
earlier, mostly in a more complicated way; (e) has been
observed independently by Pignotti. "We have listed

"A. Pignotti (private corntnunication).
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these properties partly for the sake of completeness,
partly to demonstrate the power of the present approach.

As an immediate application of the formalism, let us
consider the asymptotic behavior of the scattering
amplitude T as the energy approaches infinity when the
external masses take on arbitrary values. It has been
known for some time that, owing to the singularity of
the kinematic formulas, the asymptotic behavior of the
full amplitude is ambiguous even if the partial-wave
amplitude T(l) could be proven to be a meromorphic
function of the angular momentum t. Solutions to this
problem have been proposed recently by Goldberger and
Jones" and Freedman and Wang. s (It was in fact this
problem which led Freedman and Wang to rediscover
the four-dimensional symmetry, independently of earlier
approaches. ) In order to simplify the writing, let us

concentrate on unequal-mass elastic scattering, i.e., the
particles in the initial and final states are the same (of
masses M and )((), but the particles coupled to the
vertices are different. Physically, this is the case of near-
backward pion-nucleon scattering with the exchange of
the S and/or 6 trajectories.

Assuming that the four-dimensional pole (2(u) domi-

nates, we have from (5.4)

T(,„„)(~)(y,s,s', u)

sin ((2(u)+ 1)7
Xcot ((2(u)sr) . (5.10)

sing

The s dependence comes in through y, defined in Sec. 3.
On the mass shell,

t—s
cosp =

u—2 (~2+&2) u 2 (~2+&2)

with ) = (s—&)/4M, the familiar kinematic variable, and
2, =s'=M' —p'. Expressing further t through s and the
cosine of the scattering angle, we have" near g=0:

cos+~ (s ~~).
2(}if2+@2)—u

Thus inserting into (5.10) we obtain finally

T(+) (y, Ms —)22, M2 —us; u)

(2) '(2 —
l g (Ms-us, u)

l

'
(I~e & a(u))

&~) Z

( 2s ) a(u)

x cot((r(u) )rrl (5.11)
k2 (Ms+us) —u)'

In other words, the fact that the spectrum at (and,
approximately, near to) u =0 exhibits the 50& symmetry
automatically eliminates the ambiguity in the asymp-
totic behavior of the scattering amplitude. (Mathe-
matically, this is due to the fact that cosy tends to
infinity uniformly in the neighborhood of u= 0, whereas
cos9 does not. ) Equation (5.11) shows that the usual
analyticity properties in u (in particular, T should be
regular at u= 0) are compatible with a four-dimensional

pole, but not with a single three-dimensional one. 4

6. VIOLATION OF THE SYMMETRY:
THE "MASS FORMULA"

The four-dimensional symmetry is exact at I=0 only.
We ask now the question: How is the symmetry violated

by the Regge trajectories at u&0? We see from (5.7)
that in the symmetry limit the trajectories run parallel
to each other at unit intervals. We shall restrict our-
selves to the lowest nonvanishing order in the symmetry
breaking and in most cases to the linear approximation
in the Regge trajectories. In order to motivate the mass
formula, we again return to the Bethe-Salpeter equation
as discussed in Sec. 4.

If I&0, the kernel is, of course, still diagonal in /,

although not in n. Therefore it is sufhcient to consider
the "partial" Fredholm determinants D~, the implicit
equation D&(u)=0 determines the Regge trajectories.
In the ladder approximation only the matrix elements
of Ii contain the total energy. Remembering the
asymptotic behavior of the functions D (x), we see that
near u =0 the expression (4.6) gives essentially a power-
series expansion in powers of gu. More precisely, using
the orthogonality relations of the Clebsch-Gordan
coefFicients, we find

(n"p"
l
F(l',u)

l
n'p')

pls
~&&'+4(2~) PV'( u) Z ()~2'es"

(p~2+iIf 2)(p~2+u2) ~ i ~ ii i Ip&2+~2.
1 ni' ns' n' (ni" ns" n"

X (nl ll ', 1,0llni li ) 7)„;„;(ns'ls', 1,0ll'ns 'ts')
I

+" (6 1)
p"+us li' ls' t' k li' ls' ))'

'~ M. L. Goldberger and C. E. Jones, Phys. Rev. Letters 17, 105 (1966};Phys. Rev. 150, 1269 (1966}."%e can put cos8= —1 to leading order in s.
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Thus the lowest-order symmetry-breaking term is a
matrix element of a tensor operator with n= 1 (i.e., of
a vector). We now show that the lowest-order correction
to the Regge trajectories vanishes. Again it is sufhcient
to treat the ladder approximation; the general proof
follows the same pattern. First of all let us observe that
if we rewrite (6.1) symbolically as

&n"p"
I
F(t,u) in'p'&

= t'(p" —p')I b..Fp+g/( —u)&n" iFgin')+

as a consequence of the selection rule (2.14) or (2.14')
the nonvanishing matrix elements of Fr are (n'&1

I
Fq

I
n');

correspondingly, the kernel I of the Bethe-Salpeter
equation has an expansion of the form

I
cf. (4.8)]

(n" Il. (f,n) In'
&

=~- "r-p(n)+ V'( —~)&n"
I
I-~ In'& —~&n"

I
I-o In'&+ "

with the same selection rule. Inserting this into the
expression (4.9) of the Fredholm determinant, the
erst-order correction turns out to be

A
ao

D,«&(n) =g( N)—P —— d~ uo(no
i
J., in&&+-

n $f 2f, o

~o d~oL(~& I
L o(n) I &1&

y&nkolLiinko& &&&Irp(n) I
I'oo)&"roo

I

I-&Intro~)]+

This expression, however, vanishes identically, as I.&

does not have diagonal matrix elements. Using the form
(2.14') of the selection rule, we see that the result
remains true if / is complex.

The reader should notice the analogy with the Stark
effect, mentioned in the Introduction: In the absence of
an "accidental" degeneracy, there is no 6rst-order
Stark effect; the reason is the same, viz. , the selection
rule governing electric dipole transitions. One can show'
that if we take into account spin, then the 6rst-order
correction to the fermion Regge trajectories does not
vanish, because of the doubling of states. At any rate it

is reassuring to And that there is no first-order correction
to the trajectories: It would give rise to a dependence
~g(—u), leading to an unwanted branch point at.
@=0.

Let us turn now to the second-order correction, i.e.,
we take into account terms up to 0(n). The selection
rule (2.14) tells us that (n" iloin') has nonvanishing
matrix elements for e"=e', n'~2. The Fredholm de-
terminant D~ now couples different values of e; up to
order u the nonvanishing elements are on the main
diagonal and along two lines parallel to it. Thus the
structure of D~ is the following:

~ ~ ~

D(n —2) —n(n —2(Lo~n —2)
(-n)"'&n —1IL~ I

n —2&

—n(niLo in —2)
0

~ ~ ~

{—n)»o(n —2
~
Lg

~
n —1)

D(n —1)—u.(n —1
I
L2

~
n —1)

( n)"'&nl—L~ln »—
—n&n+1ILo ln —1)

~ ~ ~

-n&n —2 ir., [n&

{—n)»o(n —1)r., ( n&

D(n) n&n [L, [n&—

( )g(»+—n1ILg[n)
~ ~ ~

~ ~ ~

0
—n(n —1iLg in+1)
( n)'»(n I—L&

I n+1)
D(n+1) —n(n+1

~
I,

~
n+1)

4 ~ ~

. (6.2)

Here D(n) has the same meaning as in Sec. 4. Now to ex-
hibit, S, trajeCtOry, We Write: D(n) =—D(t,K) = D(&+K—ao),
exhibiting the zero intercept of the trajectory e. The
factor D is finite if we assume thax the poles of the
amplitude are simple ones. Inserting into (6.2), we have
a secular determinant for the trajectory u„(u) in the
linear approximation. The solution to order I is the
following:

~.(I)=~o K =&~p—+K—
I
r-o

I ~p+K&—
D D 0'o

X Z &~p+Klr-il~p+K'&&~o+K ILrl~p+K& ~ (63)

(The off-diagonal elements of Lo do not contribute t.o
order u.) The second term is just the diagonal matrix

' G. Domokos {to be published).

element of the product I.x I.r. In the notation (n, jp) for
the I.R. of 504, I.q is a tensor operator (1,0); thus
according to the reduction formula

(1,0) (gI (1,0)= (0,0)Q (2,0),

the second term is the sum of a scalar and a tensor term,
the latter transforming in the same way as J2. Thus we
can rewrite the expression (6.3) as follows:

up+K 2 Ap+K
Q„(oo) =Go+Apl K+pgs-

o,o 0 no

%e have used the Wigner-Eckart theorem to write the
matrix element of an irreducible tensor operator as a
reduced matrix element (8~) times a CGC, and discarded
the three-dimensional part of the CGC. Furthermore
we replaced n by an+I, l by no, which is correct to the



159 FOUR —D I M ENS IONAL SYMMETRY 1401

order in u considered. o.~ is the reduced matrix element
of the scalar operator divided by noD'.

It is slightly more convenient to use Eq. (2.13)
expressing the matrix element of a spherical harmonic
directly. We 6nd

so that introducing some other convenient constants,
the expression of the trajectory e„Anally becomes

n (Q) =np K+—'rQ+e(no K)(n—o
—K+1)Q. (6.4)

We recognize that the 6rst three terms in Eq. (6.4) give
the trajectory n„(u) in the symmetry limit and linear
approximation in u, while the term proportional to e

breaks the symmetry. Ke now argue that the form
(6.4) is the most general expression of a trajectory if we
restrict ourselves to the lowest order in the symmetry
breaking. In fact, as ordinary rotational symmetry is
not violated, the only quantity available which breaks
the SO4 symmetry, but not the rotational invariance, is
the Casimir operator of the rotation group, i.e., l()+1)I
for the representations considered —and this considera-
tion leads immediately to (6.4). The reader should
notice the analogy between. these considerations and
those leading to the Gell-Mann —Okubo mass formula,
the SU6 mass formula, "or the general formula for the
Stark splitting of spectral lines. ' It is interesting to
notice that if O.o is an integer, the erst-order symmetry
breaking vanishes for some of the daughters. In par-
ticular, the observable daughter of Pomeranchuk is
symmetric to erst order in u. I et us emphasize the fact
that the parameter e characterizing the syrnrnetry
breaking is common for the whole family of trajectories
generated by one four-dimensional parent trajectory,
np(u).

7. PARTICLE SPECTRUM

What are the implications of the four-dimensional

symmetry on the spectrum of "elementary" particles'
In order to get a qualitative insight into the problem,
let us neglect the symmetry-breaking term in (6.4). In
that approximation the family of Regge trajectories
consists of an in6nite "bunch" of trajectories, running
parallel to each other at integer intervals.

Al/ the interrta1 q»amtur0 numbers irleludk Ng purity urtd

C or G parity are the same for the whole family of tra
jectories. This is a straightforward consequence of the
fact that the complete symmetry group of the scattering
matrix element at a Axed total four-momentum is a

"F.Gursey and I. A. Radicati, Phys. Rev. Letters 13, 173
(1964).

'0 See, e.g. , L.D.Landau and K.M. Lifschitz, Quantum 3IIechaeics
(Addison-Wesley Publishing Company, Inc. , Reading, Massa-
chusetts, 1958), Chap. X.

direct product of the little group of the Poincare group
with the group of rejections and internal symmetries.

There is, however, an important difference between
the trajectories with even and odd ~. The signature of
the odd-x trajectories is opposite to the parent (~=0)
and its daughters with even I~:. Thus if the parent
develops a pole in the amplitude (5.6) at no(N) =s,
s+2, , the first odd daughter gives poles at ni(u)
=s+1, s+3, and so on. Moreover, as is evident
from Sec. 5 the odd daughters are not coupled to a two-
particle channel containing particles of equal mass at
physical values of the angular momentum. In a Bethe-
Salpeter theory the odd-f~: solutions do not seem to have
a nonrelativistic limit and are not normalizable in the
usual sense. (For a recent work on this subject with
references to earlier results see Ref. 21.)

In the symmetry limit it is inunediately evident from
the previous considerations that the trajectories of odd
order give rise to ghosts. I et us consider elastic scat-
tering; using the formula C i(x) = (—1)"C„"(—x), valid
for integer e, we have from (5.6) the contribution of the
pole o,„

x!(sin'p) «1+ (—1)"e'~«
IG(s,u) I'

2i

Xcot((x+n„)s )LF(n„+1)]'(—1)"

XLC. "+'(cosP)j'P „(cos8). (7.1)

Ke introduced the abbreviation

2»mg(s I)
G(s,l) =

I
F (no(N)+ 1)I'(no(u)+3/2) 1»'

Now let us suppose that at some value of u, say u&, the
parent trajectory passes through an integer: ne(u~) = 1V.
(For the sake of simplicity we treat the case of a stable
bound state; resonances can be treated in the same
way. )

Expanding the trajectory

(n') 0), we obtain the pole contribution in the partial
wave lo= S—x

—i(—1)
(+)

I
G

I
2g!(sin2p) "Do!)2LC &0+&(cosp)g2

X . (7.2)

Here the superscript (&) denotes the "four-dimensional
signature" of the amplitude, so that %=2k for T&+',

2' M. Ciafaloni and P. Menotti, Phys. Rev. 140, 8929 (1965).



1402 G. DOMOKOS

X=2k+1 for T~ ', so we have the result stated
previously:

Bound. states and/or resonances appear

(even& even)
in T&+&: for lo! ! if x is

(odd) odd)

(even) (odd
in T&

—~: for lo! ! if x is!
4 odd I (even

16gp'2m+ 1q

I'„~ J I,—2 (M'+p')

C)'
M' —p,

'
XC n—a+I (7 3)

[No (2 (M'+p') No)]'"f—

Here qp, Np, Lp=e are the c.m. momentum, mass

squared, and orbital momentum of the parent resonance.
Let us recognize that the first factor is proportional to
the ratio of the barrier penetration factors.

As an illustration of the predictions made by the four-
dimensional symmetry, "let us ask the question: Does
the E trajectory produce observable daughter par-
ticles? The internal quantum numbers are: 8=+1,
I=-,', (three-dimensional) signature =+1.The usual

However, the residues are proportional to (—1)" times
a positive definite quantity. Thus the odd-~ poles in the
physical region violate unitarity, so evidently must be
compensated by some, so far unknown, mechanism. "

We thus suggest that the odd daughters do not give
rise to observable particles although they play a role in
the crossed channel. I.et us concentrate instead on the
low-order even daughters, in particular, ~= 2. They have
the same signature as the parent and in the symmetry
limit run parallel to it. As soon as they appear on the
right half of the angular momentum plane, they should
give rise to observable particles. It follows in particular,
that every resonance with sufficiently high orbital
momentum (starting with /= 2) should be accompanied
by lower spin resonances close in mass to the "parent"
(if the syrmnetry breaking is weak). A quantitative
prediction of the theory (again in the symmetry limit)
is a simple expression, immediately following from (7.2)
and relating the coupling strengths (decay widths, if the
particle is unstable) to the corresponding quantity of the
parent pole. If the parent gives a resonance in /=I. p,

then the "daughter resonances" occur at l=lp=Lp —2,
Lp —4, , 0, and we find for the ratio of the widths:

~M~
I SI

FIG. 2. The E ()-trajectory and its first even daughter E ('),
The superscript indicates the value of ~. The expected position of
E'(1400) is indicated by a circle, while the observed one by a
cross. The dashed line for E (') shows the trajectory with ~=0,
while the E (2) trajectory corrected for the symmetry breaking is
drawn with a full line.

straight-line fit to 1V, (Chew-Frautschi plot) is shown in
Fig. 2, together with the expected first even daughter
trajectory (dashed line) (K=2) in the symmetry limit
[&=0 in Eq. (6.4)]. We write the value of ~ as a, super-
script to the symbol of each trajectory. A resonant state
on & ~0' is the c7 (1688) with j=-', ; in the spectroscopic
notation (12$,2J ) it is F»+. Thus (if c=0) we expect a
I'»+ resonance lying on E &2) at the same mass and
internal quantum numbers. In fact a resonance with
these quantum numbers has been observed, " with a
mass around 1400, MeV. Can we associate 1V'(1400)
with S (2)? According to its quantum numbers, it
cannot lie on other known. trajectories (X~,hq), except
S "' itself, but then it is hard to understand the
"accidental" doubling of the nucleon. If we associate
S'(1400) with the lowest physical state along cV &2',

knowing the parameters of the parent trajectory
(no= —0.37, y=1.02 in units of the nucleon mass
squared), and using the known mass (1400 MeV) we
find from (6.4) that the symmetry-breaking parameter
is indeed, small: e= —0.05 in the same units, i.e., about
5%%uo of the slope in the synunetry limit. (The trajectory
X (') corrected, for the symmetry breaking is drawn in
Fig. 2 with a full line. ) Thus it is not unreasonable to
assign E'(1400) to S '". If we do so, Eq. (7.3) relates
its width in the xS channel to the width of its ' parent"
1V(1688).Numerically we find from Eq. (7.3):

This is to be compared with the same ratio deduced
from the (rather inaccurate) experimental data, '4 giving

~ There is no such trouble in the equal-mass case, because the
residues of the odd-~ poles vanish.

~A more detailed analysis is given in G. Domokos, Phys.
Letters 248, 293 (1967).

~4 A. H. Rosenfeld, A. Barbaro-Galtieri, W. J. Podolsky, L. R.
Price, M. Roos, P. Soding, K. J. Willis, and C. G. Kohl, Uni-
versity of California Radiation Laboratory Report No. UCRL-
8030 {Rev.), 1967 {unpublished).
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Thus the agreement between the prediction and the
experimental result is fair (28'%%uq). [In Eq. (7.3) we
inserted the mass of the parent particle, consistently
with our assumption that the symmetry breaking is
small. ] It is to be emphasized that this ratio cannot be
obtained from other "accepted" symmetry schemes.

It is worth remarking that the E (" trajectory, cor-
rected for the symmetry breaking, intersects its parent
at about I=4.53P. This should give rise to a charac-
teristic anomaly (corresponding to a double pole) in the
j=-,'+ pion-nucleon phase shift. We just mention that
in the meson system the A2 trajectory has the best
chance to produce an observable daughter state. It
should be a 0+ octet, with a mass =1300 MeV. There
seem to be "bumps" around this mass value'4 and
probably they have spin zero, but at present a detailed
analysis is hardly feasible.

8. CONCLUSION

Summarizing, we have shown that:
(a) A four-dimensional symmetry is a meaningful

concept for scattering amplitudes. In the scattering of
particles of unequal mass the symmetry is intrinsically
broken by the mass differences, even at N=O, but still
has a meaning for the spectrum.

(b) The most important prediction of the symmetry
is that Regge trajectories occur in families; each one of
the known top-ranking trajectories is accompanied by
an infinite series of "daughters"; the daughters follow
their parents at integer intervals at I=0. The members
of each family can be labeled by a quantum number
following from the existence of the higher symmetry.

(c) On the basis of the group-theoretical formalism
we deduced a one-parameter formula describing the
deviation of the slopes of Regge trajectories from the
value required by the symmetry. Experimentally, the
syrrunetry breaking in the vrE system seems to be
reasonably small, so the daughter trajectories should
give rise to observable particles with specified quantum
numbers and masses comparable to the parent particles.
The symltietry predicts the coupling strength of a
daughter in terms of its parent's vertex function.

(d) The higher symmetry resolves the long-standing
problem of the asymptotic behavior of the unequal-
mass scattering; thus we have verified the conjecture of
Freedman and Wang. 4

Let us finally reemphasize two points.
(1) As we already mentioned in the Introduction, the

symmetry treated in this paper is entirely different in
nature from other known symmetries. It is neither an
internal synimetry nor a purely kinematical one, but
rather seems to be the result of a delicate interplay
between the (exact) kinematical symmetry and the
analytic properties of a scattering amplitude.

(2) The second remark concerns dynamics. The usual
approximate 5-matrix dynamical equations fail to pro-
duce the four-dimensional symmetry. It is reasonable to
expect that by improving the approximation (e.g., by
including many-particle states, etc.) one will be able to
produce the syrrnnetry in the formalism of the analytic
5-matrix theory as well. "In fact, loosely speaking, the
continuation of a scattering amplitude off the mass
shell probes its rnultiparticle structure (as is by now
evident from the example of ep scattering). The Bethe-
Salpeter equation does not seem to offer a satisfactory
solution to the problem, because (apart from cornputa-
tional problems) it fails to account for the fact that the
hadrons are "Reggeized, " i.e., going "off the mass shell"
their spin changes along with the mass. Nevertheless,
from the point of view of experimenting with models,
the Bethe-Salpeter equation seems to be better than a
nonrelativistic Schrodinger equation in that the former
has at least the same symmetry group as a full rela-
tivistic theory.
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