
SI (6, C) AND MESON DECAYS 1377

Invariance under C, given in. SU(6) by CpC '= e
—*r'2&&

)(e' '2 then implies that

8= —6) C= 0.
These have the solution u=0, s= —t.

The condition that the set of currents transform as
states of a representation contragredient to the meson
representation gives, in general, a set of recursion re-
lations for the various terms in (11).The only restriction
relevant to our calculation is that there exists in the
representation only a single 35, and that X'~s does not
connect 35 to itself, i.e., that

DJ A y~ Ay D p

Examining the (35 35 ) contribution to these
equations we find from Kq. (11) that, independently of

the requirement of charge-conjugation invariance, (15)
gives four equations for s, t, I which are satisfied only

by the values s=t=N=O. Thus, at least to first order
in momenta, the coupling is identically zero.

It seems likely, therefore, that there do not exist any
three-meson couplings in SI.(6,C) but we have been
unable to prove this assertion in general.
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A modification of the Omnes method is used to solve the singular integral equations for the 3-3 partial-
wave amplitudes of photoproduction. The effects of multipion production are assumed to be negligible. The
method requires a knowledge of the phase at all energies. Consequently, it is necessary to treat the cor-
responding pion-nucleon scattering problem to determine the eBect of the high-energy behavior of the phase
on the solution for the scattering amplitude at low energies. The sharply resonant nature of the problen
suggests an approximation in the form of solution, rather than in the Born terms, which leads to relatively
simple expressions for the ratios of the 3-3 photoproduction amplitudes to the scattering amplitude and for
integrals involving the 3-3 amplitudes, In addition, a modified Chew-Low formula can be derived which
should satisfactorily represent the 3-3 phase shift throughout the resonance regions. Finally, the cross
sections are calculated in the 3-3 approximation and the results compared with experiment.

I. INTRODUCTIO5'

~CONSIDERABLE attention has been directed to-~ ward the determination of the amplitudes for
photoproduction of pions from nucleons by the tech-
nique of dispersion relations. The formulation of the
dispersion relations for this process, and the first
attempts to evaluate them, were made by Chew, Gold—
berger, Low, and Nambu' (hereafter referred to as
CGLN). These authors obtained the integral equations
for the photoproduction partial-wave amplitudes from
the connection between the phases of the photoproduc-
tion and pion-nucleon scattering amplitudes provided
by unitarity. ' Only those contributions which involved
the resonant 3-3 phase shift were retained under the
integrals and each contributions was expanded in in-
verse powers of the nucleon mass M. The E-wave ampli-
tudes generated by the nucleon total magnetic moment
were determined in the static limit (1/M -+ 0) from a

& G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).

~ K. M. Watson, Phys. Rev. 95, 228 (1954).

comparison with the corresponding static-limit equa-
tions for the pion-nucleon scattering amplitudes. ' In
contrast, those amplitudes generated by the nucleon
charge were evaluated by analogy with the cutoff model.

The various attempts to improve upon the CGLN
results for the 3-3 amplitudes have met with only
quali6ed success. These attempts invariably employ,
with CGLN, the assumptions that multipion produc-
tion effects may be neglected and that the 3-3 resonance
exhausts the dispersion integrals. In addition to these
assumptions, however, these treatments also involve
either some assumption about the ratios of the photo-
production to the scattering amplitudes or some type
of approximation for the inhomogeneous terms in the
dispersion relations. In line with the latter approach,
Solovyov and Tentiukova4 applied the Omnes method'

' G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956}.
4 L. D. Solovyov and G. N. Tentiukova, Zh. Eksperim. i Teor.

Fiz. 37, 889 (1959) LEnglish transl. : Soviet Phys. —JETP 10, 634
(1960}g.' R. Omnes, Nuovo Cimento 8, 316 (1958).
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to the static-limit integral equations while Dennery'
used simple pole fits to the Born term. Along diQ'erent

lines, McKinleyv found an integral equation for the
ratio of the magnetic-dipole amplitude generated by
the magnetic moment to the scattering amplitude and
solved it by numerical iteration.

In spite of the efforts of these authors, the situation
with regard to the 3-3 amplitudes has not been clarified.
On the one hand, there is a lack of qualitative agreement
between the results of McKinley and Dennery for the
energy dependence of the ratio of the magnetic dipole
amplitude to the scattering amplitude. On the other
hand, the 3-3 charge amplitudes found by CGLN
vanish at the resonance energy, where one would
ordinarily expect an enhancement. The present in-
vestigation is an attempt to resolve these uncertainties
in the 3-3 photoproduction amplitudes.

The present approach differs from those of other
authors in that it will be unnecessary to make approxi-
mations for the Born contributions to the integral
equations. Furthermore, no assumptions will be made
concerning photoproduction-to-scattering amplitude
ratios, although we will derive from our solutions rela-

tively simple expressions for these ratios. The two
assumptions we shall make which have already been
used by the previous authors are (1) that the equality
of the 3-3 photoproduction and scattering phases, pro-
vided by unitarity at low energies, may be extended to
all energies and (2) that only the 3-3 state contributes
appreciably to the dispersion integrals for the ampli-
tudes at low energy. The method to be used is a modi-
fication of the Omnes solution of singular integral
equations for functions whose phase is known on the
interval of singularity. Because the singular interval in
the case of photoproduction extends to energy regions
in which the phase is not known, it will be necessary
to treat the corresponding problem for pion-nucleon
scattering in order to determine the eBect of the un-

known "high"-energy behavior of the phase on the solu-

tion for the 3-3 scattering amplitude in the energy
region from threshold through the 3-3 resonance.

II. KINEMATICS AJfD DISPERSION RELATIONS

Our notation is basically that of CGLN. ' In what
follows, all kinematic quantities refer to the barycentric
system. In this system the diGerential cross section may
be written

(2.1)

where the decomposition of the total amplitude into
the usual Pauli spin matrices is given by

S(4r) =io e5'&+4r" «4r" (kXe)mu/qk
+i(4r k) q sr~/qk+i (4r .q) q ez4/4/'. "(2.2)

' P. Dennery, Phys. Rev. 124, 2000 (1961).
7 J. M. McKinley, University of Illinois Tech. Report No. 38

1962 (unpublished). Part of this work is reproduced in Rev. Mod.
Phys. 35, 788 (1963).

yp —& m'p
=5+&%

VS ~7'S
vp~x+s

=%2(rome —
) .

(2.4)

To make use of the unitarity condition, one must
decompose the photoproduction amplitudes into photon
multipole eigenamplitudes which correspond to transi-
tions into eigenstates of the final pion-nucleon system
with a definite total angular momentum J, isotopic
spin X", and parity. The correspondence between the
isospin (+, —) amplitudes and the eigenamplitudes
with eigenvalues T= ~ and T=-', is given by

&'/'= P+—F—, F'/'= F++2F-, (2 5)

while the amplitude 5" corresponds only to the value
T= &. The complete angular momentum decomposition
of F into photon-multipole eigenamplitudes was given

by CGI.N. Here, however, we are concerned only with

the J= ~3, even-parity part of the amplitude
defined by'

$38

4x

dQq.
— L3«. q' —(~ q)~ «'X"(«',k) (26)

The amplitude P' may be expressed in terms of the
CGLN multipole amplitudes M~ '" and E~+'", which
correspond to transitions induced by magnetic-dipole
and electric-quadrupole radiation, respectively. Ke will

find it convenient to deal not with these multipole
amplitudes but with the linear combinations

—(~ 3/2 p 3/2)//ih

4t 2= (Mg~'/2+F4~'/2)//thk,
(2.7)

We have set 8=&=1 and all energies are expressed in units
of the pion mass.' S. Gartenhaus and R. Slankenbecler, Phys. Rev. 116, 1350
(1959); 116, 1297 (1959).

In these expressions, e is the photon polarization vector
and q and k are the barycentric momenta of the pion
and photon, respectively. The magnitudes of these
momenta, together with the pion energy co, and the
initial and final nucleon energies Ei and E are related
to the total barycentric energy 5"by the expressions'

0= (W' —M')/2W, a),=0+1/2W, q= (/d, '—1)'", (2.3)

Eg= 8"—k, E= lV—o)q,

where M is the nucleon mass. If F is decomposed into
linearly independent isotropic matrices according to

F=P+8pg+P 2[rp, rg]+Prp,

then the connection between the F (e=+, —,0) and
the amplitudes of the four possible charge configurations
are given by
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where

k(W) = (W M—) (E&+M)'~'(K+M)'~'/2W. (2.8)

In terms of these amplitudes the parts of F'" which, by
unitarity, have the 3-3 phase are given by

can be made in Eq. (2.10), then the solution to the re-
sulting integral equation can be written

1 " sin8(co')
4'()=4* ()+"'"'- d ' ""' 4* ( '),

I

Fr"=3 cos8(Mr+'"+Er+' ') =3ctkk$2 cos8,

FP =2Mr+'~'= ctk(kct 2+br),
%333= —3 (Mr+'" —Er~'") = 3qk—gr,
$433=0.

(2 9)

where
1 dc' 8(M )

a(a)) =—
I

GO
—(d

and where, for real or&1,

(2.12)

1 " Imp, (ce')
ctrc = clrcr+

7f' y CO
—M

(2.10a)

where the inhomogeneous terms ctr;r can be written

4r r = ctrr rr+4rr& err = ck2rr+ ck~r+P/cd . (2.10b)

In these expressions, the P;s are the Born projections
(see Eq. (A1) of the Appendixj, the p;r. are the 3-3 pro-
jections from the left-hand cut, and p is given by

p=—
/

7l y 0)
Imp, (ce') . (2.10c)

The left-hand-cut contributions are typically less
than 5% of the full amplitude. It is therefore consistent
with our approach, insofar as we have already neglected
the contributions to these integrals from other states,
to retain only the static limit of these terms. The results
of a 1/M expansion for the ctr;r„ in the limit M-+ ~,
are given by

1 " Im(2k'p, '—$r')
dM

9m. M +CO

(211)
1 " Im Q 2'—2$r'/k') Im(2/2' —pr'/k')

d(u' +
9~ COcd +cd

Omnes' has shown that if the phase 8 of P; is known
in the interval (1, ~), so that the substitution

Imp;=p, e "sin8

The amplitudes 5; (i = 1, 2, 3, 4) are linear combina-
tions of four crossing-symmetric invariant amplitudes
which satisfy the fixed-momentum-transfer dispersion
relations given in CGLN. These amplitudes have
singularities corresponding to (1) single-particle ex-
change —the so-called Born terms, (2) exchange of two
(or more) particles in the physical region, and (3) the
analogous two-particle singularities demanded by cross-
ing symmetry —which we call the left-hand-cut terms.
By employing the projection operator defined in Eq.
(2.6), one can obtain the dispersion relations satis6ed
by the p, (i= 1, 2).

If w'e retain only the 3-3 amplitudes under the dis-
persion integrals, we find the expressions (ce= W—M)

1
4 r(~)=

2m.i
,4'r(~')

gG)
I

1 GO
—M

where the contour CI encloses only the singularities of
Q, r, then the integral equation has the solution'0

, 4'r(ce )
(2.13)

This form of the solution is valid whenever Eq. (2.12)
hold and also in some cases where the phase is
discontinuous.

In order to apply Eq. (2.13) to the photoproduction
amplitudes, one must know the phase at all physical
energies. This information is available from phase-shift
analyses of pion-nucleon scattering only up to 600 MeV
(pion lab energy). " If we assume, however, that the
Omnes method yields physically meaningful solutions,
then we may hope to learn something of the unknown
portion of the phase from a consideration of the
scattering amplitude, which satisfies a dispersion rela-
tion similar to those for the photoproduction ampli-
tudes. Our rationale is the following: If we can use the
Omnes method to "solve" the scattering equation,
i.e., to determine the function A(a&), then, by unitarity,
we can use the same 6 to evaluate the photoproduction
amplitudes. Our plan therefore is to construct that
part of 6 which is generated by the unknown, high-
energy behavior of the phase in such a way that the
solution reproduces the scattering amplitude at low
energies, where it is known.

III. THE 3-3 SCATTERING AMPLITUDE
AND PHASE

The dispersion relations satis6ed by the 3-3 scattering
amplitudes may be obtained by projection from the

' W. R. Frazer and J.R. Fulco, Phys. Rev. 117, 1609 (1960).
"Recent phase-shift analyses indicated that there is no inc-

elasticity in the 3-3 state below T =700 MeV. Thus, at least up
to this energy, the 3-3 scattering and photoproduction phases
are equal.

p(a&) = limr1 (co+ie) ib-
e~o

This solution is valid, according to Omnes, if 8 is con-
tinuous and if 8(~)=0. Alternatively, if the inhomo-
geneous term P;r has the integral representation
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O. I5 TAaLz I. 3-3 phase shift above resonance.

O. I 0—

0.05—

Lab pion energy
yreV)

220
294
307
310
370
395
430
460
525
600

2.27
2.66
2.72
2.74
3.04
3.16
3.33
3.47
3.78
4.11

(Phase shift) 533
(degrees)

111.5~5'
128 ~6b
132.6~2'
133.2+1.70

147.7+3~
147 ~6b
150.6~3~
160 ~2d
155 3+2 5'
157 a 5~

0
1.5

I f

2,5
l

5.5
l
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H. Y. Chiu and E. L. Lomon, Ann. Phys. {N.Y.) 6, 50 (1959).
b H. L. Anderson and W. C. Davidson, Nuovo Cimento 5, 1238 (1957).
e H. H. Foote, O. Chamberlain, E.H. Rogers, H. M. Steiner, C. Weigand,

and T. Ypsilantis, Phys. Rev. Letters 4, 30 (1960).
d W. D. Walker, J. Davis, and W. D. Shepard, Phys. Rev. 118, 1612

(1960).
e M. E. Blevins, M. M. Block, and J. Leitner, Phys. Rev. 112, 1287

(1958).

F1G. 1. Plot of g(co) =co(~,—co}/(or,q'cot533) versus co. For the
resonance energy we have used ~„=2.07, The experimental points formula3
are those of Table I.

q' cotbsi ——3(v(~„—~)/(4f'~„), a „)ie, (3.4a)

fixed-momentum-transfer dispersion relations for the
invariant amplitudes Lsee Eqs. (3.3) and (3.4) of
Ref. 12]. In line with our treatment of the photopro-
duction amplitudes, we retain only the 3-3 amplitude
under the dispersion integrals and we use the static-
limit of the small left-hand-cut terms. The result of this
projection is that the amphtude f, defined by

2W fit~2 2W e'~» sinh33
(3.1)

(8+M) g' 8+iV

has the integral representation

(3.2a)

where

fr =fa+0r. . (3.2b)

The small term P& is given by

1 " Im.g(co')
lPz =— dM

9m M +M
(3.2c)

do)'e ~&"'&fr(a)')
(3.3)

where the contour Cz' encloses the singularities of the
inhomogeneous term fr

The 3-3 phase shift 53~ which appears in Eq. (3.1) is
well. represented below resonance by the Chew-I. ow

"G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957).

while the Born projection may be found in Eq. (A2) of
the Appendix. If b is the phase of P, then Eq. (3.2) has
a solution similar to that for the photoproduction
amplitudes, namely

where ~e„ is the resonance position and f is the pion-
nucleon coupling constant. Ke will use the values
(o„=2.07 and f'= .0802.

Some experimental values of the phase above reso-
nance are shown in Table I, where one can see that 83g

tends to approach x. To illustrate this tendency more
clearly, we have plotted the function $(&o) =ie(u&,—~e)/

(~,q' cot53~) in Fig. 1. Instead of having the constant
value 4f'/3 predicted by Eq. (3.4), the values of $

computed from the phases of Table I decrease rapidly
toward zero."A zero in $(~) somewhere in the interval
5&co&10 is seen to be consistent with the data.

Two of the simplest assumptions one can make con-
cerning the very high-energy behavior of the phase shift
are (1) that 8i3 passes through n at some point ce and
subsequently approaches x from above, and (2) that
63g turns over and. approaches zero from above. These
assumptions, however, have consequences which diKer
little from one another —at least insofar as they aAect
the construction of the Omnes solution for the scatter-
ing amplitude in the low-energy region. That this is
so follows from the fact that there is an important dis-
tinction between the phase 5 of the elastic scattering
amplitude f and the corresponding phase shift 633. The
distinction is important because it is the amplitude
phase which must be used in the Omnes method. While
the only condition on the phase shift is that of con-
tinuity, from Eq. (3.1) we have Img&0 —that is,
the amplitude phase must satisfy the requirement
0&5&ir(mod2m). Thus, whenever 83i passes through
some multiple of m. , 5 must have a discontinuity. One can
readily show that if 6 has the discontinuity —m at co,
then the function e~ and, therefore, the solution for f,

"The tendencey of P(co) to approach zero persists even in the
more recent phase-shift analyses. See, for example, P. Auvil,
A. Donnachie, A. T. Lea, and C. Lovelace, Phys. Letters 10,
132 (1964l.
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8=0, or &or,

where a is to be found from the condition b (2.74) =0.74m,

in agreement with the 310-MeV phase shift of Table I.
The phase given by Eq. (3.4), which is to be used as
input in the Omnes solution, agrees with the experi-
mental values for 833 throughout the region where they
are known.

It is not to be expected that our assumption correctly
describes the behavior of the phase at high energies,
where inelasticity is certain to play a role, but it should
be sufficient to account for the eGect of that behavior
on the Omnes solution at low energies.

We now turn to the determination of or . If the 3-3
phase were known for all energies, then it should be
possible to write down an Omnes solution for the
scattering amplitude itself, as in Kq. (3.3).This solution
would automatically have the correct phase and, if the
Omnes method is correct, it would also satisfy the
unitarity condition on the scattering amplitude. In the
present case, where the high-energy behavior of the
phase is not known, we can construct solutions using
the known phase at low energies. By varying the high-

energy behavior of the phase, we would arrive at a
family of solutions which have the correct phase at low

energy, but not all of which satisfy unitarity there. If
our assumption concerning the high-energy behavior of
the phase is reasonably correct, then one of these
solutions will satisfy unitarity reasonably well at low

energies. In particular, one can always find a solution
which satisfies unitarity exactly at some particular
energy. The natural choice in the problem at hand is
the resonance energy. At resonance the scattering
amplitude satisfies the condition

and we will require our solution for f(a&) to satisfy this
condition. With our representation for the phase above
resonance, this condition leads to a unique value for or .

In general, the evaluation of solutions having the
form of Eq. (3.3) involves the performance of a com-
plicated integral around the contour CI' after a detailed
analysis of the singularity structure of the inhomo-
geneous term fr Here, however, . it is possible to
circumvent both of these complications. This follows

have the expected zero at or . It follows that under
either assumption (1) or (2) above, the amplitude phase
rises through m./2 at ~„and decreases through vr/2 at
some or . This behavior is illustrated in I'ig. 2. Conse-

quently, the Omnes solutions for the two cases diGer

appreciably only in the vicinity of or .
On the basis of these arguments we can adopt the

simpler assumption (1) and represent the phase above
resonance by the expression

1 M~ —M (Q)q—Q

833=s 1——
I

~ (~&~
~ (3 4b)

2 M~—N„kM —6!

R EG ION OF K NOWN PHASE+
1r

Fxo. 2. Behavior of the amplitude phase above the region of
known phase. The short-dashed curve represents the extension of
the phase shift under the assumption that it passes through ~ at
~, while the solid curve gives the corresponding amplitude phase.
The dashed curve is the phase in the case where the phase shift
drops rapidly toward zero.

from the fact that the phase b rises rapidly through vr/2

at or„and, according to our assumption, falls rapidly
from m to 0 at or . Thus, for the purpose of calculating
h(co) away from the physical region we can take 8=s.
for co„&or&or and 8=0 elsewhere in the de6ning in-

tegral. This approximation leads to the result

e ~'"'& = ((o —or')/((o, —s)') (3 6)

for or' suKciently far from the physical region. This
approximate form was compared with e ~ computed
exactly from the phase in Eq. (3.2). lt was found that
the error is (3% throughout the region of the singu-
larities of Pr,' the maximum error occurred at ~=0,
the position of the singularity nearest the physical
region. Therefore, to the accuracy indicated, we can use
this approximation under the integrals in the Omnes
solution.

When e ~~"'& from Kq. (3.6) is substituted into
Eq. (3.3), the only integrals which remain can be
identi6ed with the Cauchy-integral representations for
the inhomogeneous term Pr. The expression which
results for f is

28' e"» sin833

g3

While this approximation is relativistic in the sense that
the inhomogeneous terms may be treated exactly, we
cannot expect it to be correct at very high energies
where the phase is unknown. The principal advantage
of Eq. (3.7) is, of course, that the solution in the physical
region involves the inhomogeneous term only in the
physical region.

Another advantage presented to us by Eq. (3.7) is

that certain nonsingular integrals involving the 3-3
amplitudes, such as the one which appears in Eq.
(3.2c), can be evaluated in closed form. For example,
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I'Io. 3. Chew-Low Plot: q' cot883/cc versus co. The solid curve is.
the prediction of Eq. (3.13) for the values c0,=2.07, co~=638,
and fs=0.082. The experimental points are from the compilation
of McKinley (Ref. "/l.
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one can readily obtain the approximate formula

1 " Imf(co')
do)

Cdtts
—

QPt

&(~) A—(o) = — A(~-), (3.8)

where 0 is not in the physical region. This result follows
immediately when one substitutes Eq. (3.6) for eat'& into
the above solution for P(cr). Similarly, if G is any func-
tion analytic on the physical cut (1, co), then from
Eq. (3.8) and the Cauchy-integral representation for
6 one can obtain the result

d~'G(~') Imk(~') = (~-—~.)A(k-)G(~.) (3 0)

The normalization condition (3.5), when applied to the
expression (3.7) for P, assumes the form

e &c "&=fr(co )(E„+M)q,s/(2W„), (3.10)

ti's(co )
A(~-) =4s(~-)+fz(~-) =—

1—s (~-—~.)/(~-+~.)

and where the principal-value integral for p(co„) is to be

computed with the phase 6 in Eq. (3.4). Equation (3.10)
was solved graphically for ~, Kith the resonance posi-
tion at co„=2.07 and the coupling constant given by
fr=0.082, we found the result co =6.38. In Table IT

The appearance of G(co,) in this result clearly indicates
the sharp-resonance nature of our approximation.

It is now a simple matter to determine the parameter
co . The inhomogeneous term Pr is just the sum of the
Born term and the left-cut term. We can use Eq. (3.8)
to put fr, in the form

1 (co~—cor)
lf ~(~)=- L4s(~-)+4~(~») j.

9 (co+co„)

a Quoted results are for the case f' =0.082, nir =2.07, and cot =6,38,

ri(co) = 1+(co,—co)/(2M) . (3.12)

+0%' that g ls known its definition can bc used to
eliminate e' from Eq. (3.7); we thus find the formula

2W (co,—co)ii(co)
(3.13)

&+M (~.—~)4'(~)+ (~-—~.)A(~-)

One can regain the usual Chew-Low formula if one
first goes to the static limit, where gr=4f'/(3co), and
then lets co approach infinity. The result (3.13) is

compared with the experimental phases in Fig. 3.
Although we have required an appmximate knowl-

edge of the 3-3 phase ln order to arnve at the result
(3.13), it may yet be useful in some future analysis of
the scattering data. This is so because the appmxima-
tions used to derive it are mughly independent of the
precise values of co, and co . Thus, Eq. (3.13) may be
fit to the experimental data as a three-parameter
formula. However, because of the fact that from the

we list our results for the left-cut term and the total
lnhoInogcncous tcI'1Tl at u

Ke can put our results in the form of a generalized
Chew-Low formula. H we define a function ii(co) ac-
cording to

Res ~c"&—= e ' cosh=it(co) (co,—co)/(co —co),

1&co&co, (3.11)

then we expect q to be smooth and slowly varying in the
physical region. Furthermore, inasmuch as Eq. (3.6)
is valid for ~&1, we expect to have q~1. Khen we use
the phase of Eq. (3.4) in the computation of ct we find
that throughout the region 1&co&co, rf(co) can be
represented to 2'%%uq by the non-unique form
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present point of view one of the parameters —the zero
position co —is related to the other two by the normal-
ization procedure, a more profitable approach would be
to treat the combined expressions (3.10) and (3.13) as
a two-parameter representation of 533 in terms of ~„and
f' In .this way one might obtain not only a satisfactory
representation for the phase shift but also a more
precise determination of the resonance position and
coupling constant.

0.50

0.40

0.30

IV. THE 3-3 PHOTOPRODUCTION
AMPLITUDES

Now that or and the function e~ have been found, we
can proceed to determine the photoproduction ampli-
tudes p&, @2 de6ned in Eq. (2.7). The Omnes solution
for these amplitudes is given by Eq. (2.13). As in the
case for the scattering amplitude, the approximation
(3.6) can be used to help perform the contour integral.
The photoproduction amplitudes then take the form

a m r a ~m
y;= e~ & "& . (4.1)

As before, all nonsingular integrals involving these
amplitudes can be carried out with the help of Eqs.
(3.8—3.9) with f replaced by P;. In particular, these
equations can be used to determine P and the P,i, (&o)

from Eqs. (2.10c), and (2.11). When the resulting ex-
pressions are inserted into Eq. (2.10b) for the P;r, (~ ),
there remains a pair of coupled linear equations for the
Q,r(~~) in terms of the known P;s(a& ). Given a& and
the resonance position co„, the solution of these coupled
equations is straightforward. Our results, determined
with or =6.38 and co„=2.0'?, are compiled in Table II.

While solution (4.1) for the P; is satisfactory as it

0,20

O. IO

0 '
I.O 2.0V' 3.0 4.0

FIG. 5. Ratios of the photoproduction amplitudes generated by
the nucleon charge to the scattering amplitude. The solid curves
are the predictions of Eq. (4.2). The corresponding predictions
of CGLN (dashed curves) are shown only up to the resonance
position, where they vanish linearly.

$2W/(8+M)]e" » sinbg3

&~™I & m —&r r &m

stands, it is more instructive and more convenient in
practice to work with the ratios of the photoproduction
amplitudes to the scattering amplitude. We can readily
construct these ratios from Eqs. (3.13) and (4.1) and
we find the result

0.90—

0,80

0.70

MAGNETIC MOMENT
CONTR I BUTION S

2f
2 (/p-pn) t

The advantage of a closed form such as (4.2) for the
amplitude ratios is that the dependence of these ratios
on the parameters co„co, and the coupling constant is
made explicit. The ratios predicted by Eq. (4.2) for the
amplitudes generated by the nucleon total magnetic
moment (p) and charge (e) are shown in Figs. 4 and 5,
respectively. Also shown in these figures are the corre-
sponding predictions of CGI.X'; however, the ratios
for the CGLN charge terms are shown only up to ~„,
where they change sign.

It can be shown that the CGLN prescription for the
determination of the 3-3 charge amplitudes is a special
case of the solution (4.1). This solution may be re-
written in the form

I.O 5.0

0.60— PRES ENT RES U LTS
- RESULTS OF CGLN

4.0

cosh
$,'=e" cosh/, r'(~)+e' (~ —&.)4 r'(~ ) & (43)

r

FIG. 4. Ratios of the photoproduction amplitudes generated by
the total nucleon magnetic moment to the scattering amplitude.
The solid curves are the predictions of Eq. (4.2). The CGLN
results, which predict O.p=np, are given by the dashed curve.

where we have used Eq. (3.11) with ri(~)=1. The
second term in the last expression is finite at resonance
because cosh vanishes there. In the limit ~ —+~,
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1M (eo

g+ p

project out the 3-3 part P'= p"8, so that we have for
the full amplitude

cp cPB+.(1 p38) p

20—

lo— 0 0/ALKER eteI. ( UP 7%)
$ TOLLE STRUP et al. ( UP 7%)
+ BAZ IN AND PINE

~ ALTHOFF et al ~

0 KNAPP et ai.

0
I50

I
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I

25O 300
E {MeY)

I
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FIG. 6. Matrix element squared at 90' for m+ photopro-
duction, The present predictions are compared with various
experiments. References 15-19.

Eq. (4.3) reduces to the expression

Q,'= e' cos5$;s", i=1, 2. (4 4)

'4 J. S. Ball, Phys. Rev. 124, 2014 (1961}."R. L. Walker, J. G. Teasdale, V. Z. Peterson, and J. I. Vette,
Phys. Rev. 99, 210 {1955)."A. V. Tollestrup, J. C. Keck, and R. M. Worlock, Phys. Rev.
99, 220 (1955).

M, Bazin and J. Pine, Phys. Rev. 132, 830 (1963).
'8 K. AlthoG, H. Fischer, and W. Paul, Z. Physik 175, 19 (1963).

An analysis of this experiment is reported in the private report:
G. Holer and W'. Schmidt (Institut fur Theor. Kernphysik,
Technische Hohschule, Karlsruhe, 1963) (unpublished).

~ E. A. Knapp, R. W. Kenney, and V. Perez-Mendez, Phys.
Rev. 114, 605 (1959).

This result follows from the fact that the Born terms
Q;s'(&o) approach zero faster than 1/a& as a& —+~; con-
sequently, all of the non-Born inhomogeneous terms
evaluated by the procedure outlined at the beginning
of the section vanish in the limit ~ —+~. The result
(4.4), however, is just the CGLN expression for the
charge terms and the difference between expressions
(4.3) and (4.4) essentially represents the present correc-
tions to these terms.

A comparison of our results with the photoproduction
cross sections can be made. It should be noted, how-
ever, that such a comparison should be made only after
reliable results have been obtained for the amplitudes
connected with phase shifts other than 533. Because of
the lack of information concerning these other ampli-
tudes, we adopt a procedure similar to that of Ball,"
who retained only the 3-3 amplitudes under the integrals
in the CGI N dispersion relations. Our procedure, en-
tirely equivalent to the one above, is as follows. From
the integral representation for the full amplitude F-, we

For F33 we use Eq. (2.9) together with our solutions for
Qx and $2. The remaining term, (1—p")5:, involves only
nonsingular integrals and so we use Eq. (3.9) in evalu-
ating them.

Our results for the photoproduction cross sections
are compared with experiment in Figs. 6—10. We re-
iterate that these calculations are meaningful only
insofar as the so-called "small phases" can be set equal
to zero. With this limitation in mind we see that our
results are in quite good agreement with the data. How-
ever, the fairly large discrepancies among the results of
the various experimental groups prevent us from
drawing any conclusions about the accuracy of our pre-
dictions for the 3-3 amplitudes. For the case of charged-
pion photoproduction, we show the matrix element
squared at 90' (Fig. 6) and the differential cross section
at 260 MeV (Fig. 7). It can be seen that the theoretical
curves tend to agree best with the higher data in the
vicinity of resonance.

The cross sections for the process yp~ ~Op are re-
ported in terms of the coeKcients in the expansion

=A+8 cos8+C cos'8+

These coeKcients are shown in Figs. 8—10. The predic-
tions for the coefficient A in Fig. 8 appear to be too
large near resonance.

V. DISCUSSION AND CONCLUSIO5S

Our primary aim has been to improve the calculation
of the 3-3 photoproduction amplitudes from the CGI N
dispersion relations. Except for a slight modification,
the method used is that of the Omnes. To carry out
this program we have made three basic assumptions,
each of which compensates for some aspect of our
present lack of knowledge of the photoproduction ampli-
tudes. These assumptions are (1) that only the 3-3
amplitudes contribute appreciably to the dispersion
integrals at energies below and in the vicinity of the
3-3 resonance, (2) that the phase of the 3-3 photo-
production amplitudes is the same as that of the 3-3
scattering amplitude for all physical energies, and (3)
that the eGect of the unknown high-energy behavior of
the phase on the solution for the 3-3 scattering ampli-
tude can be represented by a zero in that amplitude at
some energy co in the physical region. The parameter

in the last assumption is not arbitrary but is deter-
mined from the unitarity condition at resonance.

The principal result of this investigation is contained.
in the expression (4.2) for the ratios of the 3-3 photo-
production amplitudes to the scattering amplitude.



D ISPERS ION RELATIONS OF P HOTOP ROD UCTION

The present predictions for these ratios are compared
with those of CGLN in Figs. 4 and 5. The significant
features that one observes from this comparison are (1)

COEFFICIENT B
g+.p ~K

20

0
40

-2
Q3

IO

0 I I I I

0 30 60 90 l20 I50 le0
8 (deg)

Fxo. 7. Barycentric difterential cross section at 260 MeV.
The data notation is the same as in Fig. 6.
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Pro. 9. The coeflicient 8 for the process yp -+ w P. The notation
for the data is the same as in Fig. 8.
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Fn. 10. Codkcient C for the process yp -+ ~OP. The notation
for the data is the same as in Fig. 8.

Fxo. 8. The coefficient A in the expansion do jdD~=A+8 cos8
+C cos'8+. - ~ for the process yp -+ m'p. References 20—25.

'OY. Goldschmidt-Clermont, L S. Osborne, and M. Scott,
Phys. Rev. 97, 188 (1955)."D. B. Miller and E. M. Bellamy, Proc. Phys. Soc. (London)
SI, 343 (1963).

~ V. I. Goldansky, B. B. Govorkov, and R. G. Vassilkov, Zh.
Eksperim. i Teor. Fiz. 37, 11 (1959) I English transl. : Soviet
Phys. —JKTP 10, 10 (1960)j.~ K. Berkelman and J. A. Waggoner, Phys. Rev. I17, 1364
(1960)."J.W. Dew ire, H. E.Jackson, and R. M. Littauer, Phys. Rev.
IIO, 1208 (1958).

"Vf. S. McDonald, V. Z. Peterson, and D. R. Corson, Phys.
Rev. 107, 57/ i19S'/l.

that the ratio associated with the magnetic-dipole
amplitude Mi+„'12 (half the sum of the solid curves in
Fig. 4) is smaller than the corresponding CGLN result
by 9% at resonance and decreases relative to the CGLN
result as the energy increases and (2) that the charge
amplitudes do not vanish at resonance —although the
amplitude E~~,'I' does have a zero just above resonance.

A secondary result is the generalized effective-range
formula (3.13) for the 3-3 phase shift. As we indicated
at. the end of Sec. III this formula can be used not only
as a representation of this phase shift that is valid over
a wide range of energies but also as a means for a



PAUL F I NKLER

precise dctemination of the resonance position and the
pion-nucleon couphng constant.

The cross sections shown in Figs. 6—10 were calculated
under the assumption that the only important singular-
ities of the photoproduction amplitudes are the Born
terms and the 3-3 contrlbutlons to the dlsperslon
integrals. Examples of other singularities which may be
important in the region of the 3-3 resonance are the
contributions to the dispersion integrals of the higher-
energy pion-nucleon resonances and effects due to the
exchange of p mesons. %bile p exchange contributes
directly only to the isoscalar (0) photoproduction amph-
tudes, it also contributes to the isospin ~3 scattering
amphtude and thus will RGect the present results for
thc 3-3 Rmphtudc ratios. The contribution of the p
meson to thc 3—3 SCRttcl'lng MIlplltUdc, which hRs bccn

treated by Frautschi and %alecka, has an energy
dependence and sign consistent with a decrease in the
3-3 amphtude ratios below resonance. '6 This contribu-
tion can readily be incorporated into the present ex-
pressions for the scattering Rmphtude Rnd photoproduc-
tlon Rmphtudc ratios) provided thRt R lcdctcrmlnatlon
of the paraInctcl v ls CRI'I'lcd out.
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APPENDIX

The projections for the Born parts of the 3-3 photoproduction amplitude 533 have been given by Gartcn»us
Bnd Blankenbcclcr ln tcrIQs of total mRgnctic moment and charge coDtributlons, The results of these authors
may be written in toms of the Born projections for p~ and. ps, which are given by
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where the Q are the Legendre functions of the second. kind:

a+ 1
Qs(a) =-,' ln, Qr(a) =aQs(a) —1 (m+1)Q„+g(a) = (2es+1)aQ„(a)—mQ i(a}, tv=1, 2, 3,

C

Thc Born contrlbutlon to thc 3-3 scRttcI'lng amplitude ls glvcn by

g2 1 (E M)(W+M)y(W)—
(W—M)a(W) ——-

2 K+M
4

where g is the unrationalized renormalized pion-nucleon coupling constant and where e and y are given by

n=1——',a in[(a+1)/(a —1)j, y=3a+~s(1 —3a') ln[(a+1)/(a —1)j, a=[E(o,—-', j/q',

(A2)
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