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Dynamical Model for the Hyperon Nonleptonic Decay
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A bootstrap calculation is performed for the nonleptonic hyperon decays. These decays can be reduced
to the scattering processes: spurion+baryon ~ pion+baryon. On the assumption that the spurion has
nonvanishing energy and momentum, the partial-wave decomposition is performed. The f/d ratio for the
weak and the strong interaction is obtained from the self-consistency condition by using Nishijima and
Swank s weak Hamiltonian. By taking the spurion momentum equal to zero, S- and P-wave amplitudes are
calculated. The agreement with experiment is satisfactory.

I. INTRODUCTIO5'

HE application of the bootstrap method to the
weak and the electromagnetic interaction has

been carried through by Dashen and Frautschi' by
connecting the weak and the electromagnetic processes
to the scattering problem. As was shown by Sugawara, '
the two-body decay process can be formulated in terms
of dispersion relations. Actually a nonleptonic hyperon
decay can be interpreted as a scattering process:
spurion+baryon ~ pion+baryon, and therefore it can
be discussed by the bootstrap method. In nonleptonic
hyperon decay the interaction involves both the strong
and the weak interactions, so we might expect to obtain
from it information about the coupling-constant ratio
for the weak and the strong interaction at the same time.

In this article we assume the Hamiltonian which was
proposed by Nishijima and Swank. ' Their Hamiltonian
has the following advantages: It is not necessary to
assume the spurion explicitly, there is no difficulty about
CI' invariance as in Feldman, Mathews and Salam's

theory, 4 and the AI=-,' rule holds automatically. Using
the above-mentioned Hamiltonian, we investigate the
bootstrap condition. In our calculation we take the
decuplet and the octet of baryons for the m channel and
that of the E meson for the $ channel. The E* meson
contribution for the t channel is estimated to be negligi-
ble. From the f/d ratio for the weak and the strong
interaction which is determined through the self-
consistency condition, we find that the result is con-
sistent with experiment.

The organization of the material is as follows: In
Sec. II we investigate the kinematical properties of
spurion+baryon ~ pion+baryon scattering, where the
spurion is assumed to have finite momentum. In Sec. III
the dispersion relations for the above processes are dis-
cussed. In Sec. IV the bootstrap conditions for the
hyperon nonleptonic decay are discussed. In Sec. V
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the numerical results are obtained by taking the spurion
four-momentum to be zero.

(2~)'"-2~~(k')E'(p)E (p')-

Xu, (p') p A+'QB—g Iu;(p) (2.3)
V5)

1

where E (p)=(p +m;)'i' E (p') =(p' +m')'i' cia(k')
= (k"+m p')"', m;, m;, and m s being the masses of
particles 8;, 8;, and ~s, respectively. Here i,, J, P denote
the SU(3) suKx for the incoming baryons, the outgoing
baryons and rr mesons, respectively. Q is defined as
Q= re(k+k') where k+P =k'+P'. yq and 1 in (2.3) should
be taken for the parity-conserving and the parity-violat-
ing parts, respectively.

The partial-wave amplitudes are now given by

1 1

fl+
2

dxfPi(x) fr+Pi~i(x) fej, (2.4)

Q. THE DECAY AMPLITUDES

The S-matrix element for the process 8;-+8,+rrs
is written as

(8;(p'),~,(k')
I
s

I 8;(p))= —i(2x)46(p'+k' —p)
X(8,(p'), ,(k') la (0) IB,(p)), (2.1)

where Hs (0) is the weak Hamiltonian. In this article we

adopt the Hamiltonian which has been proposed by
Nishijima and Swank, i.e.,

Hs &*& = X 8 A i'i(x)+X ci V i'&(x) (2.2)

where A „&'i(x) and V„i"(x) are the axial vector and the
vector currents, respectively, which transform like the
sixth component of the octet.

The matrix element can be interpreted as the scatter-
ing process: spurion+ baryon ~ pion+baryon. Al-

though we do not assume the spurion explicitly, we

may perform the partial-wave decomposition of the
matrix element in the same way as the scattering process.

The matrix element can be expressed in terms of
amplitudes 3 and B as

(8 (p'), ~s(k')
I
e (0) I 8'(p))
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where l% stand for the state with the total and the
orbital angular momentum j= /+2 and l, respectively,
x=(p p')/lyl lpl and E).(x) being a Legendre poly-
nomial. Here f; (i=1,2) are related to 2 and B as '"

{[E,(p) Wm, ][E,(p')+m, ]}')'
1

2Ã

III. DISPERSION RELATIONS

Assuming unsubtracted dispersion relations for the
partial-w'ave amplitudes g~~ and h~+, we get the follow-

ing integral representation'.

,1m{a)+" "'(w') }D~+" "'(w')
g)+"""(w)= 2—

k, n

ami —m, B-
X —+ w+ ——,(2.5a,)

4' 2 4' '
nial

Im{g (~-+k) (w~) D (k~a) (w&) }-
dG)

{[E'(p)~~']lE (p') —~ ]}'"
2=

25)

Wm;+m;
X ——+ l

w+ — — —,(2.5b)
4m. 4 2 4)r

where z is the total energy in the center-of-mass system,
and the upper and the lower sign before mi should be
taken for the parity-conserving and for the parity-
violating part, respectively. To remove the kinematical
singularity we introduce the amplitudes g)~ (w) and

h&+ (w) as follows: For the parity-violating part

g)+(w) = f2w/(P')'(P)'{[Ef'(P)+~~][»(P')+m ]}'"1
X[f)+(w)], (2.«)

g)-(w) = Pw/(p')' '(p)' '{[E'(p) —~~]
X [E (p') —m ]}"'][f)-(w)] (2 6b)

and for the parity-conserving part

X[ ~+ '(w)]'""" (31)

where D&~""~'(w) is the D function for the pion baryon
scattering with the angular momentum j=l&-,'. Here
the suffix i, j, k, and e denote the channel. The contour
L runs around the left-hand cuts in g)+&'"&'(w). The
same equation holds for h)+&'"&'(w).

Let us now discuss I'&/2 state spurion-baryon scatter-
ing. For this state D '(w) has poles corresponding to
the octet baryon. To simplify the problem we adopt the
following approximations:

(1) Inelastic processes are neglected.
(2) The lowest-order approximation in the symmetry

breaking interaction is taken.
(3) [Dq (w)]&' &) in the dispersionintegralis approxi-

mated as [D~ (w)]" "=8;,y(w —m), where y is a
constant and m is the octet baryon mass in the unitary
symmetry limit.

Assuming that the dispersion integral in (3.1) does
not change appreciably with m, we evaluate them for
m= m. Then we get the following expressions for

4

&~+(w) = Pw/(p')'(p)'{ [E'(p) —~'][E~(p')+~~]}"'}
XLf„( )], (2.S.)

g &' & ()w)=y'— dw' Img &'-&')(w')

&)-(w) = Pw/(p')' '(p)' '{[E'(p)+~']
X [E,(p') —m, ]}'"][f~(w)]. (2.7b)

(w —m)),

(3.2)

/2~[E, (p')+m;]) '~'
S=

l

—
l go+(m;), (2.8)

/27' [E,(p') —m;]
h, (m;).

mi
(2.9)

' See for example I. Umemura and K. Watanabe, Progr. Theoret,
Phys. (Kyoto) 29, 893 (1963).' M. Gell-Mann and A. H. Rosenfeld, Ann. Rev. Nucl. Sci. 7,
407 (1957).

In this article we assume unsubtracted dispersion
relations for g)+(w) and htw(+), and investigate the
self-consistency condition between the left-hand cut
and the right-hand cut keeping k/0. As was mentioned

before, we take the limit k ~0 after the calculation is

performed. In this limit we get the following expressions
for the 5 and I' amplitudes'.

1
h) &'-&)(w) =y — dw' Imh) "-"(w') (w —m() .

(3.3)

Here m~ denote the mass of the octet baryon which

appears in the intermediate state for the process i -+ j,
It must be noticed that no summation over l is necessary
because only one octet baryon state appears in the s
channel for each process.

Let us now discuss the s, t, I channel contributions
for the spurion-baryon scattering.

7 J. Sjorken, Phys. Rev. Letters 4, 473 (1960).

A. 8-Channel Contribution

The lowest-order contribution for I'~~2 state is the
one octet baryon state. As we have adopted Nishijima
and Swank's Hamiltonian, the weak vertex part can
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be related to the vector or the axial-vector form factors. Ezs decay from factors, i.e.,
The form factors are given by

( +(k') lH (0) lK (k))= —},(m '—m ')

Here 1 and p5 should be taken for the vector current
and axial-vector current, respectively, &7„=p„—p„', and
J;z ("' are form factors. The spurion-baryon coupling
constant is now defined by

1 m;m;
A'(v) I» "(o)I&'(p))=

(2~)' ~'(p) ~,(p')

X}(m, ~m, )~...u, (q) u, (p),

where the plus and the minus sign before rn, should be
taken for the parity-violating part and the parity-
conserving part, respectively. Then rj are connected
with the form factors as

p2

~,z
—P, z

(i) P, z
(2) y

nsz+1ni
(3.5)

Here p is the spurion mass which is understood to be
taken p'~m ' in discussing the self-consistency condi-
tion. From this it follows that f/d ratio for the non-
leptonic decays will generally differ from that of the
vector and the axial-vector current.

The amplitudes are now given as

&r;(~G, (p m(+m;. (8)

g) ((~i)(~)—
m —mz

(3.6)

(3.7)

where G,zp"' stand for the octet meson and baryon
Yukawa coupling constant.

3. u-Channel Contribution

j. mez
(a (p') lx.(")(0)I»''(p)) =; —,— u (p')

(2~)' L(p)«(p')

1
X[y„P;(.(')+~„„It,F,(.(s)+&t.F;r.(')] lu;(p). (34)

x -f,(.), (3.g)
(2)r) s[4&p (k')&p)r(k)] &( s

where fp(s) is the 7= 0 part of the E'(p decay form factor,
namely fp(s) = f+(s)+sf (s)/(mrs' m')—.Assuming the
universality for E~s decay, we normalize fp(s) as
fp(0) = f~(0) = 1. The absorptive part is now given as
follows.

Im[Z]= 7rb(t —mx')(—mIP m')}&—G r ("fp(s) (3 9)

Im [23]=0. (3.10)

For the prP decay channel, (3.9) and (3.10) should be
divided by —K2. The X-meson contribution is about
the order of 10%%u~ of the u channel.

The E* contribution for the parity-violating part is
now evaluated by relating the matrix element (prl8„
XA„(p) lE'*) to E*—+Ã7r decay width by means of
the PCAC (partially conserved axial-vector current)
theorem. Evaluating the left-hand cut contribution
from the experimental E* width, we And that it is
about the order of a few percent of the I-channel con-
tribution. ' Therefore we neglect E* contribution in
this paper.

IV. THE SELF-CONSISTENCY CONDITION'

Equating the right-hand side of (3.2) and (3.3) with
(3.6) and (3.7), respectively, we get the eigenvalue
equations for the coupling constants. As was discussed
in the previous section, we neglect the 3-channel con-
tribution in discussing the eigenvalue problem.

Taking the octet and the decuplet contributions for
the left-hand cut, we get the following equations:

[f(d' f') (m~am—z) sd(d'+3@ )—(m„+m, )]A+
=(d+ f)(d' —f)(m~~mz)C; (4.1a)

1
v2 f(d' f') (m~am—z)A+ 8

OV2

1
(d+f)(—d' f')( ~m~— )mCz; (4.1b)

The u channel contribution is approximated by the
octet and the decuplet baryons. In evaluating the [ f(d' f')(m)—v&mz—) sd(d'+3f')(—m—z+mt&)]
decuplet contributions we approximate j= ~ resonance
by the Rarita-Schwinger field. XA ——,'s8=0; (4.1c)

C. t'-Channel Contribution

The lowest-mass contribution for the parity violating
and parity-conserving parts are X and X~ mesons,
respectively. Let us first discuss the X-meson contribu-
tion. Since the vector current is I=~ current, the
matrix element of the Hamiltonian can be related to

(Q-ss)d(d' —f') (m)vamz)A — 8——

1
(d+f) (d'+3f') (m~am), )C; (4.1d)

SThis agrees with the argument by J. C. Pati and S, Oneda,
Phys. Rev. 140, B1351 (1965}.
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1—d(f' d—')(m~amz)A+ B
43 4'

(d+ f)(d'+3f') (m~am&, )C;
2@3

V. NUMEMCAL RESULTS

We calculate 5 and I' amplitudes which are given
by (2.8) and (2.9) by using the f/d and f'/&f' ratios

(4 1e) which satisfy the self-consistency conditions (4.1) .

where f/d and j'/&f' stand for the f/d ratio for the
strong Yukawa coupling and for the spurion-baryon
coupling, respectively. 8 and 8' come from the decuplet
contribution. The coe5.cients A, 8, and C are related
to G&'& G&'» and G&' & as follows: For the parity-
conserving part C=V2X,G('), and for the parity-
violating part A = —V2y 'I&„G&' /3, B=y 'EG'"&G&"&/3

and C=&2)&„G&'&, where G&'& is normalized as (G&'&)'/

4m = 14.5. G, ~
("' is now defined as

(B&(p')
I
&~& &(0)

I
B&*(p))

1 ( mM& "' (1
G, &.""~;(p')

I
~."'(p')p'

(2z) '(E;(p') E&(p)

where u„(') is the Rarita-Schwinger field, 3f~ is the
decuplet baryon mass, and 1 and y5 should be taken for
the parity-violating and the parity-conserving part, re-
spectively. Here G,«(' ) is equal to G(" multiplied by
the Clebsch-Gordan coeKcient. 6("' is defined in the
same way for the strong interaction. K is now given by
the following equation:

1
di0' Im[gi &'"»(w') j

X'

f &j &aGi &&&

3&&

6,, &
(&o)g,, &

(Io)

E . (4.2)
Lf 4m

In this calculation we have assumed that p, '/m'«1 and
m '/m'«1. It must be remarked that for the parity-
violating part 8=8' and for the parity-conserving part
generally 8/8' in the symmetry-breaking interactions. '

' In order to see this let us expand G;fB(' ) as follows:

G„,p«»=&7;, p& o&+z. (m. —»&) PG;t»&'»j .=,m, ~
~me

+Z&, (~~—~) ~ EG'»&'"'7 .83fb

where 6;fp(") are the coupling constants in the unitary-symmetry
limit. For the parity-conserving part 6';&p('0) =0, because the
current is conserved, while for the parity-violating part Q;«(10) &0.
Therefore, in the lowest order in the symmetry-breaking interac-
tion, 8=8' for the parity-violating part and 8QB' generally for
the parity-conserving part.

1 1
—(
—d f—)(d' 3—f') (m&&em=) A+ B'—

6 2/6
= (+3)d(d'+ f)(mz+m. )C; (4.1f)

1
(d—f) (&—f' 3f'—) (m&,am~) A —B-'

2K3 e8
= ——&E(d'+ f')(mz+m-)C, (4.1g)

v3

f=032, &E=0.68, f'=0 365, a.nd d'=0.775. (5.2)

The decuplet octet coupling constant is now related to
G ' as follows:

G(' )G(' ) =842K„m

X[3f(d'—J')+d(d'+3f')]G&'&E '. (5.3)

To evaluate E which is defined by (4.2) we take the
unitary symmetry limit as m=7.59 and M/m=1. 41."
For these values of the symmetry mass we get

E= 3.60m'/M2—.

The 5-wave amplitudes are now evaluated by taking
Do+&' '&= f&;, in (3.1).Then, by taking the spurion mo-
mentum k —+ 0 or m =m;, we get

'l ~'tp 6 ' ( G'l p(lo)
g~" "(~')=—2 -- +2

4x

X[M&'+mfa; —(m, ns, )(M &

—ns;)M &—
—m. '(M&+m;) j. (5.4)

The numerical results are given in Table I, where we
adjust the parameter X~ from Z+ —& p»' i.e. "

)&p/(4&r)'=0. 14X10 '.

B. P-Wave Decay Amplitudes

In getting the solution of (4.1) for the parity-
conserving part, we fix f/d ratio for the strong inter-
action by (5.2). The solutions are given as

f'/d'= —4.22 or 0.894. (5 5)

Assuming that the scalar spurion-baryon coupling is Ii
dominant, we adopt f'/d'= —4.22. Since the f'/d' ratio
is determined from the self-consistency condition, the
P-wave amplitudes can be evaluated from (3.3) by

"The result is rather sensitive to m and m/M. Here we deter-
mined these values from the condition g0+(Z+ —+ nm. +) =0.

"Units in which A=c=m o=1 are adopted throughout this
paper.

A. 8-Wave Decay Amplitudes

Taking the unitary symmetry limit for the octet
baryon mass in (4.1), we get the following solutions for
the f/&f ratio:

f/d = f'/d'= (6++21)/3. (5.1)

Assuming that Yukawa interaction between the octet
baryons and the pseudoscalar mesons is D dominant,
and normalizing f and d as f+d=1, f'+d'=1. 14, we
get
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TA&LE I. Calculated values of S- and P-wave amplitudes,
and comparison with experiment.

Theory

SX102

Experiment'

A —+ pm
Z+~ nx+
Z+~ p~0
Z —+ nm.

—+ h.x

A —+Pm
Z+~ n~+
z+ —+ pm'
Z nm.

~Am

1.00
0.00—1.48{input)
2.08—1.99

PX10'
0.93(0.63)
1.8 (input)
1.31{1.11)
0.00(0.29)
0.41(0.47)

1.51 +0.023
0.01 +0.032—1.48 +0.13
1.76 +0.016—1.98 +0.028

0.57 +0.025
1.81 +0.033
1.11 +0.178,1.48+0.134—0.015+0.037
0.40 +0.035

a The experimental values taken from J. P. Berge (Ref. 12). We change
the sign for Z0+ and g:, and adopt units such that k=c =7N&0=1. The
theoretical values in the bracket for P waves are obtained by taking the
g-channel contribution.

taking x =m;. Therefore,
0;) G;ip('&

ht &'"&l(m;)= (5.6)

VI. CONCLUDING REMARKS

As summarized in Table I, the result is consistent
with experiment. 's The f'/d' ratio for the matrix ele-

"We take the experimental result from J. P. Serge, in Proceed-
ings of the XIII International Conference on High-Energy Physics,
Berkeley, 1966 (University of California Press, Berkeley, California,
1967).

The results are summarized in Table I. The t-channel
corrections are evaluated by neglecting the 6nal-state
interaction. Normalizing f'+d'= 1, we get the parame-
ter) g as

)ts/(4rr)&=0. 67&r,'10 ',
where P+~ rrrr+ data are used as the input data.

ment of the axial-vector current which is given by (5.2)
agrees with the recent experimental analysis of the
hyperon leptonic decay. According to Brene et al.",
n=0.665~0.018, while from our calculation we get
n=0.68. The condition f/d= f'/d' for the parity-
violating part indicates the dynamical origin of the
Lee-Sugawara relation" for the hyperon nonleptonic
decay.

For I' waves, the adoption of Nishijima and Swank's
Hamiltonian is essential to get the I'-dominant solu-
tion. " If we assume the current-current interaction,
we get the same f/d ratio for the parity-conserving
part as for the parity-violating part. Then Z++ and
Zo+ become very small. The decuplet contributions are
very important to get an agreement with experiment. "
Their result, however, does not satisfy the self-consist-
ency condition.

As compared with the dynamical theory of hyperon
nonleptonic decay which has beenproposed so far, ' " '~ "
our theory is an improvement in the following respect:
The theory is formulated in a self-consistent way, and
therefore it contains only two parameters A, g and A.~.
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