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The general conditions under which the total cross sections are independent of spin are discussed. It is
shown that the forward elastic scattering matrix is proportional to the unit matrix in the helicity space if
and only if the crossed channels either do not flip helicities, or do not flip helicities more than 1 and have the
quantum number P= (—1)~. This theorem follows directly from the Trueman-Wick crossing relations.
In particular, the theorem implies that the total cross sections are spin-independent at the high-energy
limit if the forward elastic-scattering amplitudes are dominated by the Pomeranchuk trajectory.

ECENTLY, Hara' suggested that at very high
energy, the total cross sections for the scattering

of particles of definite helicity are independent of the
helicity states and are factorizable. (In order to avoid
confusion, let us emphasize that the total cross sections
mentioned in this paper are different from the spin-
averaged total cross section. ) His theory is based on the
following assumptions: (1) At very high energy, the
contribution of the Pomeranchuk trajectory dominates
the forw'ard elastic-scattering amplitudes. Since the
complex angular momentum n(/) associated with this
trajectory is 1 at t =0, the crossed channels (the particle
and its own antiparticle) do not flip helicities by more
than 1.' (2) The residue functions of the Regge trajec-
tories, are factorizable. ' 4 His proof depends essentially
on the theorem that if one of the incident particles has
spin zero, then the forward (spin-nonflip) elastic-scat-
tering amplitudes are spin-independent if the crossed
channels do not Rip helicities. Hara's result is well

known for spin 0, spin —,
' and spin -'„spin —,

' scattering,
and in a stronger form: n(0) need not be unity for the
leading even signature trajectory. It is natural to ask. the
following questions. Is u(0)=1 really necessary for
higher spins9 Under what kind of general condition are
the total cross sections independent of spinP These and

other related questions are answered in this paper. It
would be clear later that the condition n(0) =1 is really
necessary for the cases of higher spins and that the spin
independence of total cross sections does not require
the factorization theorem of the residue functions.

According to the optical theorem, the total cross
sections„are proportional to the imaginary part of the
corresponding (spin-nonflip) forward elastic-scattering
amplitudes. Therefore, the spin independence of the
forward

' elastic-scattering amplitudes automatically
implies the spin independence of the total cross sections.

Let us now de6ne our notations. The energy variable
will be suppressed throughout this paper. We consider a
two-body reaction a+b —& a+b where the incoming

(outgoing) particles a and b have the helicity states
* Supported in part by the Office of Naval Research.
' Y. Hara, : Phys. Letters 23, 696 (1966).
'M. Gell-Mann, Phys. Rev. Letters 8, 263 (1962).
' V. N. Gribov and I. Ya. Pomeranchuk, Phys. Rev. Letters 8,

343 (1962).
4 Y. Hara, Progr. Theoret. Phys. (Kyoto) 28, 711 (1962).
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n (a*) and P (P*), respectively. The forward scattering
amplitudes are denoted by P(u*P*,nP). The crossed
channels correspond to a+a —+ b+b where a means
the antiparticle of a. The crossed-channel scattering
amplitudes (corresponding to the forward scattering)
are denoted by T(n'n", P'P") where n', n", P', and P"
are the corresponding helicity states. We sha, ll base our
discussions on the following two theorems.

Theorem 1. The forward elastic-scattering matrix (in
the helicity space) is proportional to the unit matrix
if and only if one of the following two conditions is
satsifled: (a) the crossed channels do not flip helicities

~'=~", P'=P"). (b) The crossed channels do
not flip helicities by more than 1 (i.e., ~n' —n"

~
&1,

~P' P"
~
& 1)—and have the quantum number E (parity)

= (—1)~ where J is the total angular momentum.
Theorem 2. If the crossed channels do not Rip helicities

by more than 1, then we have Pe J"(n*P,nP)= & * C
where C is a function of the energy.

The proofs of these theorems depend entirely on the
Trueman-Wick crossing relations. ' They are valid at
all energies (including the high-energy limit). The
detaiJs are given in the Appendix. A special case of the
first theorem was discussed by Peierls and Trueman. '
They proved that if the crossed channels have the
quantum number GP=+1 and do not flip helicities,
then the forward elastic-scattering matrix is a multiple
of the unit matrix.

I-et us now discuss the particular case where the spins
of both particles are less than 1.This case is particularly
simple because the crossed channels can not flip helici-
ties by more than 1. Therefore the total cross sections
are spin-independent if the crossed channels are
domina, ted by Regge trajectories with positive parity.
This result is not new. However, in the case with higher
spins, the crossed channels in general would Rip
helicities by more than 1 for any 6nite energy. This
is precisely the reason why the condition n(0)=1 for
the leading Regge trajectory is really necessary for
higher spins. It has been pointed out by Hara' that the
Regge trajectories with n(0)=1 do not flip helicities

'T. L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322
(1964).

6R. F. Peierls and T. L. Trueman, Phys. Rev. 134, 82365
(1964).
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by more than 1. According to the second theorem, if
we assume that the elastic-forward-scattering amplitudes
at high energy are dominated by exchanging Regge
trajectories with u(0)=1 (they may have diferent
parities, G-parities, etc.), then the total cross sections
averaged over the helicities states of the particle b

are independent of the helicity states of the particle a
at the high-energy limit. If we further assume that these
Regge trajectories have positive parity, then the total
cross sections are independent of the helicities of both
particles.

It is clear that our conclusion does not depend on
the factorization theorem of the residue functions of the
Regge trajectories. However, if we do use this theorem
and further assume that the residues of diferent
trajectories are not related to each other, then we have
to associate a kinematic factor t'~' for each residue func-
tion which flips odd-helicity states t i.e., T(u'u", P'P") = 0
if u' u"=odd a—nd/or P' —P"=oddj. " ' This means
that the trajectories with u(0) =1 actually do not flip

any helicities. This argument was used by Hara to
show that the total cross sections are factorizable and
spin-independent at high energy if the leading tra-
jectories have a(0) = 1.
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APPENDIX

The proofs of the Theorems 1 and 2 are given in this
Appendix. The scattering amplitudes satisfy the follow-

ing crossing relations':

T( ' "PP")= 2 ~("' )~(P"P)d( ' *)&(P'P*)
a,p, e+,p+

X F(a*p*,up),

where d(u"u) =d~ " (~/2), d(P"P) =d~'p" p(m/2), and
J (J') is the spin of the particle a (b). Let us define
&=u' —u", X=p' —p". If X+p is an odd integer, then
T(u'u", p'p") vanishes identically for allenergies, because
of the kinematic factor ~t'~ . ' Conservation of angular
momentum gives F(u*P*,uP) =F(u*P*,uP)b *,p p The.
condition

T( ' "PP")=(-1)"-"T(-'- ",-P'-P")
follows from the parity conservation. ' Besides, we have

d(u'u) = (—1)' d( —u'u) = (—1)'+"d(u' —u)

Y. Hara, Phys. Rev. 136, B507 (1964).
g I.. L. C. Wang, Phys. Rev. 142, 1187 (1966).
9 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).

and

Q»» d(uu )$(au )= /~AN»» .

= Z d(u' ')d(P'P*)F( *P*, P)b- . ,p-p'

Applying p„»d(u', u+ j) to both sides, we have,

F(a+j,P+j,u, P)d(P', P+j )

T( ' ",P'P")d( " )d(P"P)~(", +j) (1)
e I ~II pip

The erst part of Theorem 1 can be expressed in terms
of these notations:

Theorem 1(a). If T(u'u", P'P") =M(u'P') b; be p,
where M(u'P')=—T(u'u', P'P'), then we have

F(a+P~,aP)=F(JJ',JJ')b, bpp»

and

T( I II P/P/I) F(JJI JJI)b (3)

Proof. From Eq. (1), we have

F(+&,P+&, P')d(P', P+~)
= [P ~ M(a'P') d(u'a) d(u', u+j )jd(P'P) .

Because of the fact that d(P', J'+ ~j ~)
—=0 if j&0 and

d(p', J')+0 if
~

p'
~

(J',"we can write either

g M(u'J')d(u'u)d(u'u*) = b F(ap, up)a'

ol
P M(u'P')d(u'a)d(u'u~) = b...F(~', J') .

Equation (4) implies F(ap, ap) =M(uJ'), while Eq. (5)
implies F(uJ', uJ') =M(up'). Therefore, M(up) is inde-
pendent of p. The fact that M(up) is independent of a
can be proved in the same way.

The second part of Theorem 1 is:
Theorem 1(b). If the crossed channels correspond

to P= (—1)~ (I. is the total angular momentum) and
T(u'u", P'P") =0 if Il ~)1 and/or lal) 1, then Eqs. (2)
and (3) are true.

Proof. I.et us rewrite the crossing relations in the
form

T"( ' ",p'p")= T( ' ",p'p")~T(— ' ",p'p")— —
LI~(—I).—."3d( " )~(p''p)

O. ,P,O, ~,P*

Xd(a'u*)d(P'P*)F (u+P+,uP),
which means t see Eq. (1)g

F( +jp+j p)d(p'p+j)D~( —1)'j
T'(u'u"P'p")d(a"u)~(P"p)~(u', u+j) (6).

»

'0 M. E. Rose, Elementary 1"heory of Angular Momentum (John
Wiley 8z Sons, Inc. , New York, 1957).

U»ng the orthonormal properties of the d functions,
the crossing relations can be rewritten in the form

Z T(' ",P'P")d(" )d(P"P)
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The following linear combination of Ps corresponds"
to E=(—1)~+' and therefore vanishes: (X+li=even)

cos(8/2) ~"+I"~ sin(8/2) ~~ &~T(n'n", p'p") —cos(8/2) ~i &~

Xsln(8/2) ~ "+&~T( n' —n",p—'p") =0, (7)

where 0 is the scattering angle in the c.m. system of the
crossed channels. In particular, we have T (nn, PP) =0.

Using the relation d(p, J'+
~ j~)=0 if j/0, we have

T (n'n", P'P")d(n"n) d(P"J')d(n'n*) =0,
~l ~l l Pl I

"M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and
F. Zachariasen, Phys. Rev. 133, B145 (1964).

which means T (nn', PP+ 1)d(P+1,J')+T (nn', PP —1)
&(d(P—1,J')=0. Putting P= J' in the above equation,
we get T (nn', J',J'—1)=0. From Kq. (6), we obtain
the desired result Ii (n+ j,P+j,n,P) =0 if j=odd, which
implies that all T vanish. These results together with
Eq. (7) give T(n'n", P'P")=O=T+(n'n", P'P") for
=

~ p j =1.The rest of the proof is the same as those of
Theorem 1(a).

The proof of Theorem 2 follows immediately from
the following relation:

[Z F(n*p,np)]&:-
p

= 2 d(n"n)d(n'n*)L 2 T(n'n", P'P")j
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within the framework of the nonrelativistic quark model, a simple Geld-theoretical prescription is given
for using quadratic mass formulas for all mesons and linear mass formulas for all baryons. It is postulated
that the unperturbed part of the quark-system Hamiltonian possesses SU(6) symmetry with respect to the
spin and unitary spin of the constituent quarks. Quadratic mass relations within meson multiplets as well as
quadratic electromagnetic mass relations are derived, and it is shown that the parameters can be uniquely
fitted to experiment, avoiding the serious discrepancy which exists when such a fit is attempted in the
standard quark-model framework which uses linear mass relations.

I. INTRODUCTION

ECKNTLV many interesting results in hadron
physics have been derived from adopting the

framework of the nonrelativistic quark model. ' In this
Dote we are especially interested in the mass splitting
of particles from this point of view. In the standard
quark modeP the particle masses are given by the
expectation values of the Hamiltonian for the quark
system in the relevant particles states, taken in their
rest frame. This necessarily leads to the use of linear
mass formulas for both mesons and baryons. Assuming,

* Research supported by the V. S. Air Force under Grant No.
AF-AFOSR-385-65.

f On leave of absence from Nihon University, Department of
Physics, Chiyoda-ku, Tokyo, Japan.' For a review, see, for example, the following articles: R. H.
Dalitz, in Proceedings of the Oxford Conference on E/ementary
Particles, 1965 (Rutherford High Energy Laboratory, Harwell,
England, 1966); in Proceedings of the High Energy PhYsics Con-
ference, Berkeley, 1966 (University of California Press, Berkeley,
1967); H. J. Lipkin, in Proceedings of the Yalta International
School, 1966 (unpublished); O' Hara, J. Iizuka, M, Namiki,
S. Ishida and S. Tanaka; Soryushiron Kenkyu 33, 167 (1966);
M. Namiki, %'aseda University, Report, 1966 (unpublished);
G. Morpurgo, Physics 2, 95 (1965).' G. Zweig, CERN Report, 1964 (unpublished), or S. Ishida,
Progr. Theoret. Phys. (Kyoto) 32, 922 (1964); 34, 64 (1963);
Soryushiron Kenkyu 30, 372 (1964).

however, that the quark model leads electively to the
usual Lagrangian 6eld theory of hadrons, we shall give
in the present paper a prescription for using a quadratic
mass formula' for mesons and a linear mass formula for
baryons. We shall show that this procedure improves
the results considerably when compared with the usual
treatment within the framework of the quark model
with linear mass relations for both mesons and baryons.

Let us consider the fundamental Hamiltonian for the
quark system,

H=Hp+) Hp,

where Hp has the relevant symmetry (to be specified
later), and Hp corresponds to the symmetry breaking.
Here we introduced the perturbational parameter X

which will be Anally taken to X=1. Corresponding to
the viewpoint that all hadrons are composed of quarks,
Ho is expected to be effectively represented by the
particle fields p,p (bosons) and pip (fermions) which span
representations of the relevant symmetry. Thus, in the

'The question as to whether a linear or a quadratic mass
formula should be used for mesons, is a mell-known controversial
issue. See for example, F. Giirsey, T. D. Lee, and M. Nauenberg,
Phys. Rev. 135, B467 (1964), or S. Okubo and S. Ryan, Nuovo
Cimento 34, 64 (1965).


