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We continue our discussion of the scattering of three nonrelativistic spinless particles interacting via
two-body Yukawa potentials. The on-energy-shell 7" matrix is studied as a function of the total center-of-
mass energy E for fixed physical values of the vectors y;=k;2m;E)™12, y,/=k;’ (2m;E)™2,i=123. Here
k; and k;’ are the initial and final momenta of the particles, respectively, and #; are the masses. We show
that T(E) can be written as the ratio of two Fredholm series, each of which is uniformly convergent with
respect to E for all values of £ on the physical sheet including the real axis. Since we have previously seen
that each term in these series satisfies a dispersion relation in E with no complex singularities, it follws that
the full three-particle amplitude satisfies such a dispersion relation.
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I. INTRODUCTION

N part I of this work! we studied the scattering
amplitude for three free, nonrelativistic particles
interacting via two-body Yukawa potentials. We wrote
the on-energy-shell amplitude as a ratio of two Fredholm
series and showed that each term in these series satisfied
a dispersion relation in the total center-of-mass energy
E for fixed physical values of the vectors

yi= (2m:E)7ik;,

1.1
vi=QmE%k!. i=1,2,3 (1)

m; is the mass of the ith particle and k; and k,’ are its
initial and final center-of-mass momenta. We then
argued that since the Fredholm series are uniformly
convergent, the full three-particle scattering amplitude
satisfies the same dispersion relation as the individual
terms in the series. In the present paper we shall give
detailed proof of the convergence of the Fredholm
series for the on-energy-shell amplitude for all values
of E on the physical sheet including the real axis. We
shall always keep the y vectors fixed and physical.

In order to simplify our proofs we shall only consider
the case of simple, two-body Yukawa potentials.
However, all of our results would remain valid for a
super-position of Yukawa potentials.

Faddeev has previously shown that the on-energy-
shell amplitude exists for real energies for a much wider

* Work supported by the U. S. Air Force Office of Research, Air
Research and Development Command, by the National Science
Foundation, and by the Atomic Energy Commission, Contract
AT(11-1)-881.

1 M. Rubin, R. Sugar, and G. Tiktopoulos, Phys. Rev. 146,
1130 (1966). Hereafter referred to as I.
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class of potentials than we shall consider.? However, in
order to complete the proof of our dispersion relation,
we need to show that the amplitude exists for complex
values of E. In addition, we think that it is worthwhile
to present our existence proof for real E since it appears
to be much simpler than Faddeev’s. The simplicity
arises from the fact that we are dealing with a class of
potentials that is analytic in the momenta. As a result,
we can distort the contours of integration away from
the singularities in the Green’s functions and thus get
simple bounds on the integrals which occur in the
problem. This procedure was not available to Faddeev
because he did not make any assumptions of analyticity
for his potentials.

Since we have been able to show that the Faddeev
equations have a Fredholm solutions even for real
energies, all of the powerful tools for the numerical
and theoretical analysis of Fredholm integral equations
can now be applied to the three-body problem.

In Sec. IT we shall briefly discuss the two-body prob-
lem in order to present our techniques in a familiar
setting, and to collect results which will be needed in
our discussion of the three-body problem. In Sec. IIT
we show that the on-energy-shell three-body amplitude
exists in the entire upper half of the k= EY? plane,
including the real axis, with the possible exception of the
imaginary axis for Imk> (v/3)u, which is the location
of the left-hand cut.

Finally, in the Appendices, we give the details of
obtaining bounds on the integrals that arise in the text,

2 L. D. Faddeev, Mathematical Aspects of the Three-Body
Problem in the Quanium scattering Theory (Publications of the
Stoklov Mathematical Institute No. 69, 1963. (English transl.:
Israel Program for Scientific Translations, Jerusalem, Israel,
1965.)
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and we present detailed proofs of the existence of the
various amplitudes at their threshold energies.

II. BOUNDS OF THE TWO-BODY AMPLITUDE

In this section we shall consider the scattering ampli-
tude for two scalar particles interacting by a Yukawa
potential,

(lVIp)=Vp)=gLo—p’+uT.  (21)

Our starting point is the Lippmann-Schwinger equation
for the off-energy-shell scattering amplitude

t(p,p’; B)=V(p,p)+ f d*qV (p,q) (¢*—k2)~"t(q,p’; &?)

= V+VGol. (2.2)

We are using units in which =2m=1 (m is the reduced
mass), and we shall consistently neglect numerical
factors such as coupling constants and 2z’s. We wish
to show that the on-energy-shell amplitude, ¢ (k4 k#4’ ; k2)
exists in the upper-half & plane, Imk>0, and that the
off-energy-shell amplitude is a square-integrable func-
tion of either of its momenta in this region.
The solution to Eq. (2.2) can be written formally as

t1=V+RV=V4+VGV+VGRV, (2.3)
where the resolvent R is given by
R=VGo+VGR=VGo+RVG,. (2.4)

It is well known that if the kernal VG, is square
integrable, i.e., if

GoV||2=tr[GoVVGot
GV ][*=tLGoVVGo'] 25)

- [ty i<,

then R will have a Fredholm solution which can be
written in the form?

R=N/D,

]

N: ZN'-’ D=ZD,‘.

=0 =0

(2.6)

The D; are numbers which depend only on %2, and the
N; are square-integral operators. Since

[GoV|[P=n*/uImk, 2.7

R will exist in the half plane Imk>¢>0. In this region
the series for D will be uniformly convergent in %. In
addition, the series for V will be a relatively, uniformly,
absolutely convergent series with respect to %k in any
part of the upper half plane, and N will be a square

8 ¥. Smithies, Integral Equations (Cambridge University Press,
Cambridge, England, 1958). The explicit form of N; and D; for
the two-body problem is given in Ref. 1.
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integrable operator.® This means that if we take matrix
elements of each term in the series for NV between square
integrable functions, the resulting series will be uni-
formly convergent.

From Eq. (2.3) we see that the on-energy-shell
amplitude can be written in the form

L(RARA ; k2) = (k| V| ')+ (kA VGOV | k')

+ ¥ (VG |#il)) 3 Dy, (28)

=0

where 7’ and 7 are unit vectors in the direction of the
initial and final momenta, respectively. But*

g EIOS R

Smfu— (Imk)* 12, w>Imk (2.9)
and

e e I O

<#72(Imk)~[u?— (ImE)2 2. u>Imk.

As a result, the on-energy-shell amplitude exists and is
given by the ratio of two uniformly convergent series
in the strip

p—e>Imk>e, €>0. (2.10)

In order to show that the on-energy-shell amplitude
exists in the entire upper-half £ plane and on the real
k axis, it is convenient to introduce an operator which
is defined by formally rotating the contours of integra-
tion in Eq. (2.2)

to(p,p’; &%)
= g[(p— p/)282i9+“2]—1+ fdaq[(p_ q)262i9+ﬂ2]—-1

Xe(g2e0— ) o (4,0'; )
= Vot ViGalo. (2.11)

In analogy with Eq. (2.3) we can write the solution to
Eq. (2.11) in the form

to="Vo+VoGoVo+VoGsRs Vs,

(2.12)
Ry+VoGo+VeGoRo= No/D.

Now*

VG| [?
= /d3qd3q’l (q___ q')zemﬁ—yz |—2 ] qzezia_kzl——z
<Cy[u cos?0 Im (ke~®) 1,

¢ The details of obtaining bounds on the integrals that arise in
this section are given in Appendix I.
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Vel A)]|?

- f a%q| (qe¥— k) Hu |~
(2.13)

<Co[u? cos®— (Im(ke=®))2 ]!,
|Gs VERY||2

= /d"’q[ g2e*— k2l—2[ (qet®— )2+ |—2

L Co{ Im(ke~)[u? cos0— (Im (ke~*))* ]2} 1,

where Cy, C; and Cj are constants. It is clear from our
previous arguments that the on-energy-shell quantity
to(ke=®7, ke~®#’, k?) exists and is given by the ratio of
two uniformly convergent series in the strip

ucosf—e>Im(ke ) >e, €>0. (2.14)

This strip and the one defined by Eq. (2.10) are shown
in Fig. 1. Note that for —r/2<6<w/2 there is always
a region of overlap of the two strips.

It was shown in I that if % is held fixed in the region
of overlap, then for any term in the series for D or
(k#t| VGoNV |k#’), one can simultaneously rotate all of
the contours of integration through an angle 6§ without
crossing any singularities of the integrand. As a result,
in the region of overlap

Di=Dy;, i=0,1,2,---

(R VGN V| EAY= (k| V iGaNo:iVo | kA').  (2.15)

Since the series are all uniformly convergent, it follows
that ty(ke=®#, ke~ ; k?) is the analytic continuation of
t(k#,k# 5 k?). By rotating 6 through the angles

—7/2+e<0<7/2—¢ >0, (2.16)

we see that the on-energy-shell amplitude exists in the
entire upper half & plane including the real axis, with
the possible exception of that part of the imaginary

Imk
Im(ke™1®) = pcose
e
-
e
// N
Pid Im(ke"'®)=0
P
<
___________ - Lae L lmk=p
-
-
//
< ® Rek

T16. 1. The regions in which ¢ and # are given by
the ratio of two Fredholm series.
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axis for which Imk>yu, and the point £=0. The limit
k— 0 is discussed in detail in Appendix IT.

We have gone into considerable detail in providing
the existence of the on-energy-shell two-body amplitude
in order to present the techniques which we will use in
the three-body problem in a familiar setting. In the
course of our work on the three-body problem we shall
need explicit bounds on off-energy-shell, rather than
on-energy-shell, two-body amplitudes. We shall collect
these results here for future reference. We first note
that the off-energy shell amplitude, i(p,p’,k?), is a
square-integrable (Z?) function of p (p’) in the half
plane Imk>e>0. The norm can be bounded indepen-
dent of p’ (p).

/d3p|t(p,p’; k|2
=/d3z>l V(p,p’>+RV(p,p’)|2S2/d31>| V(p,p')|?

2m?
+2/d3P|RV(P,p')l@-—[l-l-“RH?]- (2.17)
m

In the last line of Eq. (2.17) we have made use of the
Schwartz inequality in the form

IRV [ p)E< IRV P72 (2.18)
In Ref. 3 it is shown that
V1< VGl expl1-+] VGl
= (r4/u Imk)exp[1+7*/u Imk]. (2.19)

In the region in which VG, is square integrable the only
singularities in D~*(k?) are poles which occur at solutions
of the homogeneous equations,?® i.e., at bound-state
energies. Since D—1 as k*— o, D7(k?) can be
bounded by a constant if there are no bound states,
and by the expression

Ci
D) <Co+ X |m _ D), (2.20)
Py

if there are. The C,’s are constants and the B;’s are the
binding energies. As a result

2V
/dSP [t(p,p; &%) 2S_7%[1+K1DB—2(k2)] ’
7

Imk>e>0. (2.21)

K is a constant independent of % or p’. Similarly
2x?
/ @' [t(p,p'; B) P <—[1+K:Ds (k)] (222)
7

A similar result holds for the half-on-energy-shell
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amplitude ¢(p,%# ; %) in the strip defined by Eq. (2.10).

[aiucop; 1<y miTs-+IRID

<K 14+KDg2(k%)], (2.23)

where K, is a constant. In general

/ a*p|1(p,q,k?) |2°< K J[1+K1D52(F)] (2.24)

in the strip p—e>TIm|q|>e.

In addition to being an L? functionof por p’, ¢(p,p’; £%)
can be bounded independent of p or p’ in the half
plane Imk>e>0.

[¢(p,p"; &%) |2
=V (p,0)+ VGV (0,0)+VGoRV (p,p") |*

<2|VGoRV |242|V+TVGoV |2

S2RIFIVIDMNEIGV | D)4 V24| VGV |2

<Ks+KiDg (k). (2.25)
K3 and K, are constants. Similarly, in the strip p—e
>Imk>e

[t(pkit; B9 |2<Ks+KsDp2(R?).  (2.26)

The same techniques can be used to obtain bounds on
the amplitudes on the rotated contours. For example,

2m?

[1+K01DB'—2(]32)] .
Im(ke=?)>e>0.

[aslutops s
L cosf
2.27)

In Appendix II we extend all of these bounds to
include the limit 2 — 0.

III. THE THREE-BODY AMPLITUDE

In this section we shall consider the scattering
amplitude for three free particles interacting via two-
body Yukawa potentials. In order to simplify the
kinematics we shall only consider the case of equal mass
particles, but the generalization of the proof to arbitrary
masses will be obvious. We shall always work in the
three-body center-of-mass system, so the vectors
defined in Eq. (1.1) will satisfy the relations

3 3

2 yi= 2 yi'=0,

=1 =1

3 3

2 yi= 2 y*=1, 3.1)

=1 =1

yiza yi,2S%7 i=1: 2; 3.
We are using units in which z=2m=1.
Our starting point is the Faddeev equation
f=i+Kf, (3.2)
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where

0 t12Go  £15Go
K=|lGy O t33Go] -
t31Go EuGo O

£;;(k?) are operators in the three-particle Hilbert space
which are related to the two-particle off-energy-shell
amplitudes by

(9:9;9¢| 2 () | 00" 0"
=1;;(3(0i—qy), 3 (a0’ — ;) ; B2—3q?)
X&(qg—aq). (3.3)
Gy is the three-particle free Green’s function. We have
factored the momentum-conservation delta function out
of the amplitude, so in any intermediate state there are

only two independent momenta. Since we are in the
center-of-mass system,

(3.4)

Since all of the elements in K are disconnected, it
cannot be a square-integrable kernel. We therefore
iterate Eq. (3.1) and write

f=(+E)H-K?f

7
= Y K"+K*Q(KHK3)E,

n=0

(3.5)

where
R=K+-K*QR=9/D. 3.6)

Our first task is to find a region in the upper half k= E'/2
plane in which K2 is an L? operator, i.e., in which

|K?|)P=tr[K2K 2] < 0 . (3.7
A typical term in the trace is®
J = tr[ }15Got3GoGot fast Gt fot]. (3.8)

8 There are also terms of the form tr[£12GotasGoGottistGottiat];
however, making use of Schwartz’s inequality we see that

tr[£15GotasGoGott1sT Gottrat]
= / B qidqsd® 01 g5 (1023 | F12Got23Go| 41’ 42’ a8")
X{a' a2’ a5 | Go't15TGoltaat | 41q2q3)
< ool [Foee maalnGimtol a'ala) |

1/2
X [/dsq{"ﬁqa" [{a1” q2" a5 | Go't15t Golt1 | 41 G2qs) |2]

1/2
Sl: / SEdPqadqy'd®gs’ | (019243 | 112G obasGo| a1’ a2’ as”) |2]

112
X |: [ Eqdgdq" B [{a)" a2” q5" | Gttt GoThao' | @1 q2gs) [2]
= [tr[£12Got23GoGoltast Golt1at 112 [tr[£10Got1sGoGottist Gottrat 112
So, it is sufficient to consider the trace given in Eq. (3.8).
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a)e>o Imk

. ]
1=Im(ke-'®)
]

b)e<o

I=pcose

Rl-% Bm cose sine

R=Re(ke-i®)

~ -~
“Rek

(a)

In Appendix III we show that J is bounded by
J<CU[RA (I42'2u) ]2y, 3.9)

where C is a constant and 2= R-47. The bound holds in
the entire upper half £ plane, 7>¢>0, except for the
segment of the imaginary axis for which B,>I1>0,
where B, is the largest binding energy in the problem.
We note that ||K?2— 0 as |k| — o, so it will be easy
to prove the convergence of the Born series at high
energies.

In order to complete the proof of the existence of the
on-energy-shell amplitude, we must show that the
vectors K%|kikoks), K%|kikoks), and (kik:ks|K* have
finite norms. In Appendix IIT we show that the norm
of each of these vectors can be bounded by a constant
in the strip

W3u—e>I>e>0

R>e>0. (3.10)

The bound also holds on the imaginary axis for (v/$)u
>I> (4B,,)Y2 It follows from our discussion in Sec. IT
that the on-energy-shell three-body amplitude exists
and is given by the ratio of two uniformly convergent
series in this strip.

f (k) = (klkzka i f I kl'k2'k3'>

7
= (kihoks| ¥ K| ki'ko'ks')
n=0

5 (kokoks| KN (KoK )| kikks')/

i=0
> 0. (3.11)
=0

It was shown in I that the individual terms in the series
for ® and (kik:ks| K91 (K?*+ K?){| ki'ks'k;') are analytic
functions of % for fixed physical values of the vectors
y: and y/, and % in the strip defined by Eq. (3.10).
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I=Im (ke ~i®)

Fic. 2. The regions in which
fo is given by the ratio of two
Fredholm series.

R=Re (ke~i®)

(b)

Since
7
(klkzksl Z K"i[ kllk?.,kS,)
n=)

is also an analytic function of % in this region, it follows
that f(k) is.

In order to show that the amplitude exists in the rest
of the first quadrant of the & plane, we shall use the
rotation of contour argument introduced in Sec. II.
In analogy with Egs. (2.11) and (3.2) we write

fo=l+Kofs

7

= 3 Ko+ Kot Go(K2+KeD,  (3.12)
n=0
where
(@959 | oi; () | ¢/ 9 i)
=it (a0, 30/~ 0)); B~ §g69)
X8 (—ar'), (3.13)

and
G8= e3i0[q12e2i0+ q3262fi0+ (q1+ q3)282i0__k2]—1 .

We shall be interested in both positive and negative
values of §. However we cannot rotate contours of
integration through an arbitrary negative angle since
we will eventually encounter the resonance poles of the
two-particle ¢ matrices. However, since all resonances
have a finite width (zero-energy resonances will not
prevent us from rotating contours), we can always
rotate through a finite negative angle —f, before
encountering the first resonance pole. We shall only
consider values of 6 greater than —6,.

In Appendix III we show that

|1Ks||2< C{Tp cosb [(I+V2u cosh)?
+ (| R| —V2u|sing| )22}, (3.14)

where ke=®= R-+il. For w/2—e>6>0, the bound holds
in the first quadrant of the ke™® plane above the
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hyperbola RI= B,, sinf cosf. B,, is the largest binding
energy in the problem. For 0>6> —8,, the bound holds
in the region of the ke~ plane bounded by the lines
Rek=0, I=¢>0, provided we exclude small semicircles
about the points k=1:iB2 B; are the two-particle
binding energies. We note that ||K¢||2— 0 as k— .

In Appendix IIT we also obtain bounds on the norms
of the vectors Ko2felk1k2k3>, Kgsfel k1k2k3>, and <k1k2k3l
XKyt For m/2>6>0 we find that the norms can be
bounded by a constant in the region bounded by the
curves (see Fig. 2a).

RI=4%B,, sinf cosf+e,

I=(/Pu cosf—e,
Rek=0.

(3.15)

For 0>6> —6, the norms can be bounded by a constant
in the region bounded by the lines

I= (\/%)“ cosf—e )
I=e,
Rek=0,

(3.16)

provided we exclude small semicircles about the normal
thresholds £=¢B;Y? and the anomalous thresholds
whose positions are given in Eq. (3.20). (See Fig. 2b).

It follows from our previous discussion that the on-
energy-shell quantity

f0 (k) = <k1k2k3 l fo | kllkz,k31>

exists and is given by the ratio of two uniformly
convergent series in the regions defined by Eqgs. (3.15)
and (3.16).

(3.17)

7
Jo(k)=(kikoks| > Konls|ki'ky'ks')
n=0
+ §0 (kikoks| KOs (Ko®+Ko®)lg | ki'kyo'ks')/

> Dy, (3.18)
=0

It was shown in I that the individual terms in the
series for fy(k) are analytic functions of % for fixed,
physical values of the vectors y; and y/, and % in the
regions given by Egs. (3.15) and (3.16). As a result
fo(k) is an analytic function of % in these regions.

It will be noted that for =/2>6> —8, there is always
an overlap between the regions in which f(%) and f,(%)
exist. It was shown in 7 that if £ was held fixed in the
region of overlap, then for any term in the series for
f(k) one could simultaneously rotate all contours of
integration through an angle ¢ without crossing a
singularity of the integrand. As a result, in the region

THREE-PARTICLE SCATTERING AMPLITUDES
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of overlap
D= Des,

(kykoks| K491, (K24-K?) 7| ky/ky'ky')
= <k1k2k3 l K0437'9i (K92+K03) fo [ k1'k2'k3’> )
7
(kikoks| 3 K#|ki'ko'ks")
n=0

(3.19)

7
=<k1k2k3| Z Ko"fﬂlkl,k2/k3/>-
n=0

So fy(k) is the analytic continuation of f(k).

By rotating contours through the angles 7/2>6> —6,
we see that the on-energy-shell amplitude exists in the
entire first quadrant of the % plane including the
positive real axis, with the possible exception of the
normal thresholds, k=0, k=iB;?, the anomalous
thresholds, and the line Rek=0, Imk>(v/$)u. In
Appendix V we show that the amplitude does in fact
exist at the normal thresholds, k=0 and k=1B}2.

There is a slight delicacy associated with the anoma-
lous thresholds. It was shown in I that in general each
term in the numerator series will have anomalous
thresholds. If, for example, we are considering a term in
which particles 1 and 2 interact last then there will be
an anomalous threshold at

B=—A;=—Bi{1—-§{[y’— (2— 3y P}

y>%. (3.20)
B; is the binding energy of a bound state of either the
(2,3) or (1,3) systems. The anomalous threshold enters
the physical sheet through the normal threshold at
k*=—B; when ys=3. It moves down the negative k2
axis as ys? increases reaching the point k2= —$B; when
ys*=%. There will of course be anomalous thresholds
which depend on each of the y; and y/ .

We have already seen that the kernel is square-
integrable at the anomalous thresholds. However, in
Appendix 3 we show that the vectors (qiq.qs|K?*f
X | kakoks), (019205 | K% | kikoks), and (kikoks| K*| ¢192q5)
all blow up logarithmically at the anomalous thresholds.
But in each case, the coefficient of the logarithm remains
a square integrable function of the q;. As a result, the
full amplitude will blow up logarithmically at the
anomalous thresholds, but the coefficient of the log-
arithm will still be given by the ratio of two convergent
series.

Since the on-energy-shell amplitude exists in the first
quadrant of the £ plane, it must exist in the second
quadrant because it is given in this quadrant by

J®)=f*(—=#%). (3.21)

. We have thus shown that the on-energy-shell ampli-
tude exists in the entire physical sheet of the E=Fk?
plane with the possible exception of the line ImE=0,
ReE< —3u2, This line lies on the left-hand cut. This
completes our proof that the on-energy-shell amplitude



1354 RUBIN,
satisfies a dispersion relation in E. Since the amplitude is
given by the ratio of two uniformly convergent series,
it can only have the singularities of the individual
terms in these series. They were discussed in I.

We recall that tr(K2K*?)— 0 as E— « in any
direction. As a result, the Born series will converge at
large energies and the amplitude will go to the first
Born approximation. In this limit the three-body
Fredholm determinant, ®, goes to 1. Although our
proof of the existence of the three-body amplitude
breaks down along a portion of the negative real axis,
our proof of the existence of © does not, since it depends
only on the existence of tr(K2K*?). As a result, D can
have no essential singularities. Since D goes to 1 at
infinity, it must have a finite number of zeros, so there
will be a finite number of three-particle bound states.®

/d3ql (q— q/)zezio_i_“z[—-z: /d3qlllqllz+ﬂge_2igl_2
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APPENDIX I

In this Appendix we shall give the details of obtaining
bounds on some of the integrals which appeared in our
study of the two-body amplitude in Sec. II. We first
note that

= / d3q"[(¢"*4u? cos®—p? sin?)?+4u* sin® cos?f !

= 21272 (sin%f+ cos®9)2+-sin?0 ]/%/u cos’d,

SO

/dsql (q— q')2e2+p?| 2<C/u cos™.

In addition

Sfd“q”[(q”z—uz sin9)?+ut cos’9 1!
(A1.1)

(A1.2)

/d"‘g] (q_ﬁke—i0)2+#ze~2i012= /d:;q/l (q’—ilﬁ)2+u26"ml 2 — /d3q’[(q’2—12—|—/.¢2 C0520)2+ (MZ sin20—|—2qlz)2]‘1

< [ g/ [(q"— i sin®)*+ (u? cos?-HI%)7 1< 202 (u2 cost— 12, (AL.3)

where ke™?=R-+il, I<pu cosf.
The bounds on the remaining integrals can be
obtained by the same techniques.

APPENDIX II

In this Appendix we shall show that the on-energy-
shell two-body amplitude exists in the limit #— 0 and
that the off-energy-shell amplitude remains an [2
function of either of its momenta in this limit.

We start by considering the operator P, which,
acting on a state of definite momentum, |p), gives

Plp)=|p||p). (A2.1)
We then define

A=P(P+p). (A2.2)

6 It is shown in Ref. 2 that there is a one-to-one correspondence
between bound states and solutions of the homogeneous Faddeev
equations. D can have zeros only at solutions of the homogeneous
equation (Ref. 3).

Now consider the amplitude 4.

A= A"+ ATV GoA (A1)
= AW 4 AVGoA (A7V)

+ATWGAR ATV, (A2.3)
where
R'=A"WGA+A"WGoAR'. (A2.4)
Now
|47V G |P= / d*qd®q’ (1+u/9)"L (a— a')* w71
N X |q2— 2|22 (¢ +u)".  (A2.5)
ow

[ et tuirTam e oG- o6-)
<4 / AL (q—q")*Hu?]20(g*—u?)
1
+- / @*q(1+u/9)%0 (W*—¢%)
"

w2 Ar
< 4[~—+-:| =C. (A2.6)
JI
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So
||A—1VG0A||2SC/d3q’Iq’Z-—k"’l—zq'?(q’—l—u)—?. (A2.7)

Since |¢2—k2|2>[1%/(R2+1%)]q"%, we have

2 2

A=V God |2<C 7

[ ag g
0

2

,‘R2+I2

I2

=C k=R+il. (A2.8)

We note that || A1V GoA ||? exists in the limit 2 — 0 if we
approach the origin in any direction except along the
real axis.

By the same argument that gave (A2.6) we see that

4= )= [ @a(t-tu/o| (ampivrr|-

SCofp2—=IZ V24 Copd(u2— 122, (A2.9)
and that
l4GaY k)
= [ oyl 1] o iy
SC(RQ;;p) (w2—=I1%"2. (A2.10)
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As a result, the on-energy-shell amplitude,

(kA1) k)
=(kA|[VHVGoH VG AR AV kA, (A2.11)

exists in the limit 2 — 0. From our rotation of contour
arguments it is clear that this limit exists even if we
approach the origin along the real axis.

It is now easy to see that ¢(p,p’; &#?) is an L? function
of p in the limit £#— 0. Using the arguments of Egs.
(2.17)-(2.24) we see that (p| A~%|p’) is an L? function
of p whose norm is independent of p’. But

ORI [#plGpl a1 )1:

_—_/d3p(1+#/i’)2lf(l’,l";k2)|2
Z[dspll(p,p’;kZ)P- (12.12)

Similarly, using the arguments which led to Eq. (2.25)
we see that
[e(p,p"; B)|2<C"+C|| R

Similar bounds can, of course, be obtained for f, in the
usual way.

(A2.13)

APPENDIX III

In this Appendix we shall obtain the bounds on the
norms of the kernels and vectors which were quoted in
Sec. II1I.

Let us start with the trace given in Eq. (3.8). We
have

J = tr[ }19GolesGoGotlas'Gol ta5t )= /d3611d3q:¢d391'l13(]3'[112((11‘*‘%(13, Q' 345 2397 | 2

X|toa(@st3a0, @' +3a0; 22— 3009 ? | @+ a2+ (@' + 45)2— B2 2 | 2+ 024 (a0 +q5')2— k2| 2. (A3.1)

Our choice of variables is shown in Fig. 3. Since the integrand depends on q; only through one of the arguments
of 115, we can do the q; integration immediately by making use of Eq. (2.21). We note that in the first quadrant
of the k plane, R, 1>¢>0 (k= R+il), D' (k*—4¢s*) can be bounded by a constant; so in this region

J<C _/ d*qy'd*qsd’qs’ | 1 (Qs 340,05’ + 340 B2 — 500 |2 1+ a5+ (@' + €s)2— k2| 2] qu'2+ g+ (a1 + q5) — 22| 2
=C / g/ dpd’p’ |25 (p,p'; B2 =301 2] 2p°— (B2~ 3912) | ~*| 2p"2— (2= 3912 | 2. (A3.2)

In Sec. IT we used units in which 7=1. In our present units, m=1, the two-particle free Green’s functions for an
intermediate state with center-of-mass momentum p and energy E is (2p*— E)~. Using Eq. (2.3) and the Schwartz
inequality, we see that

/ @*pad*p'(p| GolasGo| p) | *= / @*pd’p'(p| GoV usGot+-GoV usGoR | 1) |2<2 / @*pd*p'T[{p|GoV2sGo| p')|

+ [{p|GoVasGoR | p')|2]< 2 / d*pd®p’ |(p|GoVusGa| )| 214 || R(E2—3q/D)||?]. (A3.3)
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In the quadrant R, I>¢>0, | R(k2—%¢,?)|? is bounded by a constant, so

d SC’/ g/ d%pdp’ | 2p* 5012 — 2| 2| 29§, — 2| [ (p— ')+ w2] 2.

(A3.4)

In Appendix IV we obtain a bound on this integral and show that

TLC" | Tu[RA+ (I+2423 2| =1, k=R+il, R,1>e>0.

(A3.5)

In order to complete the proof of the existence of the on-energy-shell amplitude, we must show that the “vectors”
K?i| kikoks), K| kikoks), and (kikoks| K* have finite norms. A typical term in the norm of K?*#|kikks) is

J1= ”312G0223Gof12 | kxkzkex)I]Z

= / d3q:1d%q3d3qd3q tia(Qi+5 05, 3 (a+ 05— k) ; £2— 3¢5 t0* (1303, 5 (04 qs—ks) ; k2—3¢5?)

X[as*+1(a—ks)*+ (qs+3 (q—ks)) 2= 22T [ as?+ 1 (' — ko) >+ (qs+§ (o' — ks) ) 2— £2 ]+ 1
Xtos(qs+1(g—ks), fks+1q"; £2— 3 (a—ks)Dtos* (a5 +5 (o' — ko), $ks+3q; A2 —3(a'—ks)?)

X (39— 5k192) 71 (59"2— 5k12®)* " 12( 0, Kao, 5o 122 110* (o K12, 5 8107)

(A3.6)

where 1ki?=13 (k;—ks)2=£2—3k42 Our choice of variables is shown in Fig. 4.
For simplicity we start by assuming that there are no bound states in the (2,3) system, so there will be no

difficulty with anomalous thresholds.

Since the only terms in the integrand which depend on q; are #;; and f15*, one can do the g integration

immediately using the Schwartz inequality and (2.24)

l /d391t12(‘h+%q3, 3 (g+as—ks) ; > —3¢sDts* (qu+3 a3, 3 (o' + qs— ki) ; 22— 3¢5)

< ‘/d3q1[t12(q1—§—%q3, 3(atas—ks); k2—3gs) |2

<C.

1/2
l /d391[ t(@i 345, 5(a'+as—ks) ; 22— 3¢5 | 2

1/2

(A3.7)

For u>1 Imk;>0. Since k;=ys% and y;2<%, the bound holds in the strip

R>e>0,

(W 6)u—e>I>e.

(A3.8)

Before doing the g3 integration it is convenient to bound the Green’s functions that depend on qs.

|G*= | @+ (a— ko) + (@S a—3ka) — 2|2

=|fa+3 (0t 0’ —kys (@@ - (1—3y) |*

=[3q+3 (qs+ 9> Rys| qs+q| z— (RR—12) (1 —3y2) P+ [ ys| as+aq| 2 2RIz (1—5y) P,

where z=1;. (q3+q)/|qs+¢q|. Minimizing |Gs™!|2 with
respect to z without regard to the restriction —1<2<1
gives

IZ
(G2 T N O (R (-
> P(RH+I%)(1—-3y4%). (A3.10)
Since y?<%, we have
|Go| < B)V2/I(I24 R\, (A3.11)

Using this bound on G,, the integrand will depend on g3

(A3.9)

only through #23 and f55*, so we can do the q; integration
just as we did the q: integration. The Fredholm
determinant of fs3, Ds3(k2—2(q—k3)?) can be bounded
by a constant since we have assumed that there are no

9
a4 ]
tie
-(97+9%) @ ,
'(ﬂn"'ﬂs’ ‘2l*ﬂa)
q
s 5/5 =3

F16. 3. The diagram corresponding to tr[#15Got2sGoGoltastGoltrat].
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£(9ky)

(g'-k3)
) b
+
@
~(g+95) ke
fos
9 ks

F1G. 4. The diagram corresponding to [|t1sGof2sGotrz | Kiksoks)||.

bound states in the (2,3) system, and
Tm{#—4 (g—k)"]2>0
for Imk>0. We then have

C
JISM /dsQ[%qz—%km”[‘l[tlg(q,kn; 1k

X / a3 |5¢" 2 —%k1? |7t d1a(d Kae; 3R02?) | . (A3.12)

If we try to bound the integrals in (3.20) by direct
application of the Schwartz inequality, the bound will
blow up in the limit y15=~%12/k— 0 (In the physical
region 0<y122<2.) so we must be more careful. We first
note that

|g*—E?|?

=[g*— (Rekag)*+ (Imk1s) P-4 Rekis ImbisJ?
(Imkw) I

= (Rekw)+ (Imkw). AT

¢t (A3.13)
As a result

-71'=/d"Q[qz—k122|*1“12(‘1’k12; 3k12?) |

(R2+IZ) 1/2
S——-I——“— /dSq q‘zllfm(q,km; %klzz) l

X[0(u2—g»)+0(g>—n?)].

In Appendix II we show that the bounds on the ¢
matrix given in Egs. (2.23) and (2.26) hold in the limit

(A3.14)
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k — 0 provided we do not approach the origin along the
real axis. In the present case Imkio/Rekis=1/R>0
since 7> e>0. We then have

(R2+I2) 1/2
J 1’S——I—~[Cx / d3q ¢ (u*—gq?)

+[ / d* q“’(i(qz—u?)}”2

12
X[/dsq'|t12(‘1',k12;%knz)[z@(qz—nz):l ] (A3.15)

We have used Eq. (2.26) to bound |¢:2| in the first
integral. Using (2.23) we see that
(R2+I2)1/2
]IIS _——“"‘I Cl, (A316)

S0
T1<CI4KC"; Viu—e>I>e; R>e.

The factor V2 arises because 0<y12< 2.

We must now consider the case in which there are
bound states in the (2,3) system. We can then write
the Fredholm denominator of {23 in the form

» p(x)dx
o x—k+3(g—ks)?

(A3.17)

Do (B —3(q—ks)?) =1+

T

2 .
¥ $a—k)— By

(A3.18)

The C; are constants and the B; are the two particle
binding energies. The dispersion integral can again be
bounded by a constant for Imk>0.

We now substitute Eq. (A3.18) and the corresponding
expression for Das*1[k2—3(q'—k3)?] into Eq. (A3.6).
In each term which contains a bound-state pole we
apply the Feynman identity to the bound-state
denominator and the free Green’s function (3¢?— 412%™~
We have

[g*— k1 T'[ (q—ks)?— (8/3) (k24 B,) I

1
= / da (q—xks)?— B2 (x2y2+ a0 (3+2y5?)
’ F2—3yd)— (8/3)uB:] .

We now make the change of variables q— q+xks,
q’' — q'+2'ks. We can now do the q; and g3 integra-
tions as before. We will be left with integrals of the form
(A3.14) and terms of the form

(A3.19)

1
T / i f ] s (ks Jao; 3nsd)|
0

X[g*— k2 (x?ys2+ (34255 +2—3y,%)
—(8/3)xB;12. (A3.20)
We can bound |f12| by a constant and do the q integra-
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tion. We then have

1
T<C / dalxkys+o((8/3) Bit- B3+ 2959))
’ 123y V2. (A3.21)

This integral can be done explicitly ; however, for our
purposes it is sufficient to note that it exists for all
complex values of k£ and goes to zero as |k| — «. We
thus see that J; is bounded by a constant in the region
given by Eq. (3.10).

For future reference we note that the integral can
only blow up if the argument of the square root has a
double zero as a function of x. Such a zero corresponds
to a pinch between the bound-state pole and the free
Green’s function. We have seen in I that this pinch
gives rise to an anomalous threshold at the point
k2= —A4; [see Eq. (3.20)]. It is clear that the matrix
element ((h(hq:;l 212G0£23G0i12l k1k2k3> goes like In (k2—|—A l)
as k?— — A, for all values of the ;. Since it is a square
integrable function of the q; for all values of 225 — A4,
the coefficient of the logarithm must be an L? function
of the q;.

The procedure just outlined can also be used to bound
the norms of the vectors K3f|kikok;) and (kikoks| K4
The results are identical to those just obtained.

We now turn to the problem of obtaining bounds on
the norms of K2, K¢*fy|kiksks), - - -. These bounds will
go through exactly as the bounds on the norm of K?
K2i|kikoks), -+ except that we must be somewhat
careful in bounding the two particle Fredholm denom-
inators. The bound on D~'(k?) given in Eq. (2.10) is
only good in the upper-half & plane since D~(k%) will
have additional poles associated with resonances in
the lower-half % plane.

We are interested in bounding D—1(k2—$¢%*¥). (We
have dropped the subscript on Dy since we have seen
that it is the analytic continuation of D.) Let us first
consider the case w/2>6>0. It will be sufficient to
restrict ourselves to the first quadrant of the ke=¥
plane. In this case the imaginary part of [£2—3¢%*7]"?
is positive, so the bound on D given in Eq. (2.20)
holds. A typical denominator in Dp'(k2—3¢%*¥) is

di= Bi+-k*—3¢¢?
= 2] Bie 20+ (ke=)?—34%].
If we write ke~?=R+iI, we see that d; can vanish
along the hyperbola
RI=B;sinf cosf,

(A3.22)

(A3.23)
provided
R>B;'?sing,

I< B2 cosh. (A3.24)

If we wish to bound D51 (k*—35¢%*?) by a constant, it is
clearly sufficient to restrict ourselves to that part of
the first quadrant of the ke=? plane above the hyperbola

RI=B,, cosf sinf. (A3.25)

If we now consider rotating contours through a
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negative angle, [k2—3¢%**? ]2 can have a negative
imaginary part. However, if we restrict ourselves to
the half plane 7>0, then

phase [i2—3g% 2> —[6].  (A3.26)

Since resonances cannot lie on the real axis (zero energy
resonances clearly cause no trouble here) we can always
rotate through a finite angle —6, before encountering
the first resonance. Then for 6> —8,, the bound on D!
given in Eq. (2.20) still holds. In this case, d; can
vanish along the hyperbola

RI= —B;|sinf cosf| , (A3.27)
provided

|R|>B 2 cosf, I>B;"?|sinf|. (A3.28)

We see that Bp1(k2—3¢%*?) can be bounded by a
constant in the entire first quadrant of the % plane
except for semicircles of radius e about the points
k=182

If we restrict ourselves to the regions of the % plane
in which we can bound the two-particle Fredholm
denominator, we can bound ||K¢|? in the same way as
we did ||K?|]2. Using exactly the same procedure with
which we went from Eq. (A3.1) to Eq. (A3.4) we find

Jo= tr[ lp1oGols2sGoGotloasTGo' fg12"]
_<_C’/d3q’,d3pd3p’| 2p2+3q/2— (be=i®)2| 2

X | 29"+ 4q0— (he)?| =
X | (p—p')*Hu2e2?| 2. (A3.29)

In Appendix IV we obtain a bound on this integral and
show that

Jo<L<C"{Iu cosb (I+2"%u cosh)?
+ (| R| — 2t sing] 7T}, (A3.30)

We can obtain bounds on the norms of the vectors
K92iglk1k2k3>, Kngelk1k2k3>, and <k1k2k3[K94 by the
same arguments that we used on the unrotated contours.
The norms exist and are bounded by a constant in the
regions given in Egs. (3.15) and (3.16). We note that
even after rotating the contours of integration we will
always be left with the integral of Eq. (A3.21) after all
of the momentum integrations have been performed.
As a result, the vectors will all blow up logarithmically
at the anomalous thresholds.

APPENDIX IV
In this Appendix we shall give the details of obtaining
bounds on the integrals which appear in Eqgs. (A3.4)
and (A3.29). Let us start with Eq. (A3.4) and write
7= [@apmy eyl el
XL(p—p)+u?12, (Ad1)
where we have made the change of variables = (v/3)q1'.
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Applying the Feynman identity to the denominators
in Eq. (A4.1) allows us to do the p, p/, and q integra-
tions. We have

5 b
J'= / d3qddpddp’ 11 dx:id(1— 3 xg)xsD6
i=1

=1

5 3
=K [ II dzd(1— ¥ a)asd=32C—32,  (A4.2)
7=1

=1

where
D=wi[p+g— 3T w4 ¢ — 3]
Fas[p 22—k | wa p2+ ¢ —35*]
“+s[ (p—p')*+w7],
1—xs 0 0

0 x1t+xatas —x5
0 —x Xgt+xatxs

= (1—x5)[ws(1—ws)+ (w1tw2) (x5424) ],
C=p2xs—L(R2—I?) (1 —x5)—iRI (w1+x3—x2—xy4) ,

and

d= (A4.3)

k=R+iI.

We now perform the x5 integration with the aid of
the 6 function, and make the change of variables

x=x1+xe a5+ x4,

Yy=x1F+x3—Xs—x4.

a=x1—x&3,

b=x2—x4.

The a and b integration can be done immediately to give

1 z
J'=8K / do 52 (1—2) (1—3) / dyC-2
0

—Z

X [[x—3a2—3y?]"2—[x(1—x)]V2]. (A44)
Since |y| <x and #<1,
[e— 32—y —[x(1—a) 2<Fa®2.  (A4S)
As a result
1 =
0 —z
4K R
i “l[——] . (A4.6)
Riy Re4- (I4V2u)?

Since 7/2x> sin~x for 0<x<1, we have the result
quoted in Eq. (A3.5).

J' SK'[TW[ R+ (I+V2p)],

or (A4.7)
JLC"[Tp[ R+ (T +V2u)7].

The integral given in Eq. (A3.24) can be bounded
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in a similar manner. We have

]0’= /d3qd3?d3pl l P2+ q2_%k2e—2i9]—2

X l P’Z‘*‘ qz_ %kze—zia l —2 I (p—- pl)2+ﬂze——2i0 [ —2

6 6
= / d3qddpd?p’ 1] dxd(1— X x;)Dg®
=1 =1

6 6
= | I dud(1— 3 @)ds32Ci—o2, (A4.8)
=1 =1

where

DB —_ x1[p2+ q2 —_ %k2e—2‘[0]+x2[?2+ q2_ %k*?eQWJ
+x3[P/2+ qz _%k2e—2i0]+x4tpf2+ g2__ %k*ZeZiG:l
s (p— ')+l e[ (p—p')*+p27],

do= (1 —w5—ax6)[ (xs+26) (1 —x5—25)

+ (w1tax2) (w5+24) ],

Co= (x5+x6)u? c0820— 1 (w5 —xe)u® sin26
—3(A—ws—x6) (R2—I?)—i(x1+2x3—22—x)RI ,

and ke~®=R+-iI. We now perform the x¢ integration

with the aid of the é function and make the change of
variables

(A4.9)

x=2x1F%o+a3+%s, a=x5—xg,
Yy=x1+x3—x2—2x4, b=1x9—2x3, (A4.10)
C=X9—X4.

The b and ¢ integrations can be done immediately.
Making use of Eq. (A4.5) we find

1 P (1—2)
Jo’S_K/ dx x’lf dy/ da Cy3%2,
0 —z —(1—2)

The remaining integrals are straightforward. We find

(A4.11)

8K 2ue~®+I+iR
Ji'< —————[e”"” ln(————-——)
RIu sin26 V2ue~®4T—iR

VZue®+T—iR
4-¢i ln(—'—-——>:| . (A4.12)
VZue?+-I+iR

Using the fact that 7/2x>sin% for 0<x<1, we have
Jd' <K' /I cosf (I+V2u cosh)?
+ (| R| —V2u|sing|)?]¥2,  (A4.13)

This completes the proof of Eq. (A3.30). We note that
both J” and J4' are finite in the limit £ — 0 as long as
we do not approach the origin along the I axis.

APPENDIX V

In this Appendix we shall show that the three-body
amplitude exists at the three-body threshold and at the
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thresholds for the scattering of a particle off a two-body  two-body Fredholm denominators by constants. First
bound state. we consider ||Kg||? for small values of #. We start from

Let us start with the limit £ — 0. We shall consider the expression for J given in Eq. (A3.29) and again
fo(k) for negative values of § so that we can bound the do the q; integration making use of Eq. (A2.12).

]asct1+llRolllzjfdsqlldspdsPll2P2+%q112__k26—2i91—2|Zplz_l,_%qlm_kze—zial——zlta(p,p/; kz—%gl'2em)!2. (AS.I)

We recall that ||Ry||? is a function of R*4-I2/I*(ke~*=R+iI) and can blow up only when this quantity does.
From Fig. 2b we see that ||Ry'||? remains finite as we approach the origin from any direction in the first quadrant

of the % plane.
Making use of Eq. (A3.13) we can bound the two Green’s functions by

2 12 RZ I2

2.1 3, /1272 /213,12 p2,—2i8|—2<
2 [2p*+30:"712, IZP +3q.°— ke l ="p

|2p245q1"2— k2|2 < [2p°+3¢:/%12. (AS.2)
So
R2+I2 2
Jo=C[ 7 ][1+IIR0’I2] / d*pdiqd*p'[2p"* 430, 1
X[2p2+30: 712 te(p,0’; k2—541"2*%) | 2[0(p*— ) +0(u>—p%)]. (AS.3)

Now

Jit= / 090 g T2 300 T L2+ 30T o] 05— i)
< f B pd Y g T2 30 T L2+ 30 T o (pod' s B34

SCUHIRD [ datapTap™+100 T Toun+ 00T

=CT1+|[Rs[*]. (AS.4)

We have made use of Eq. (A2.12) in doing the p integration.
On the other hand

Ii= [y T 0T b 0 )

S[C/_l__Cu”RB/“2]'/‘d3?d3p/d3qll[2plz+%qllj—2[2P2+%q112]-20(’u2_p2)

=C1[Cot||R||2]. (AS.5)
We have made use of Eq. (A2.13) in bounding |#|2.
As a result
(R2+I2)2
Jo< C—p—fl'*‘”Rv'”Z][Cz-i—||R0'||2:|- (AS.6)

We can also obtain bounds on the norms of K¢| kikoks), Ko*f| kykoks), and (kikoks| K4? that are finite in the limit

E— 0. Let us first consider
Jo1= || 8512Gots2sGolora | kukoks)||2. (AS.7)

The choice of variables is the same as for Eq. (A3.6). We first do the q; integration as in Eq. (A3.7) making use of
the bound given in Eq. (A2.12). We then use Eq. (A3.10) to bound the Green’s function which depend on gs.

R*-I? R24-1?

( )
[%Qaz-l-‘li(Qa+‘I)2:|_254—I—2—‘(‘I3+(1)_4- (AS5.8)

@+ (o s ) (qrHaHEkee ) — ke

I2
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Using Eq. (A2.13) to bound 4,3 we have

Jo<C f @qsd*d’q’ | qs+q| 2| g5t o' |72 P — Ra’e ™ |7 g2 — ka®e ™ |7 tg1a(g Kao; SRrs’e ) [tona( g Kz Fhase ) |

=C'fd3qd3q'l q—q' |7 @2 — ke 2 | 7| ¢ 2— k1a%e 2 |71 tp1a (g, ki) || for2(q Ka2) |, (AS.9)

where C and C’ are polynomials in || Ry'|[2.
We now make use of the fact that the integrand is symmetric in q and ¢’ to write

00

q
Jn<2C / ¢°dqdQq| ¢*— kig?e 2| 7| tp12(q, k12) | / q%dg'dQ'q' | ¢*— ki’ |1 |tg1a(q' K1o) | [q— |
0 0

00

q
=4’ / 9dgdQq| ¢*— k1z?e | | tp12(q k12) | / g'%dq’ | ¢'*— ke |7 tp12(q’ ko) | . (AS.10)
0 0
Using Egs. (A3.13) and (A2.13) to bound the Green’s function and ¢ matrix which depend on q’, we have
191SC"/d3q|q2— k1o%e28| =1 fp12(q, k1) |

<c”. (AS.11)

The last step follows from the same reasoning which led to Eq. (A3.16). C"”" is a polynomialin || Ry'||? and (R*+12)/I*
so || K| kikoks)||? exists in the limit £ — O if we approach the origin from any direction in the first quadrant of
the % plane. Similar bounds on ||Ke?fs| kikeks)||? and ||Kst*|kikoks)||? follow from the arguments just presented so
the three-body amplitude exists in the limit £ — 0.

Let us now consider the threshold for the scattering of a particle off a two-body bound state. The problem is
similar to the one discussed in Appendix II. In the two-body problem the free Green’s function is not square
integrable at £=0. In the present case, the two-body Fredholm denominator, D—1(k2—%¢?) is not an L? function of
q at the threshold for the scattering of a particle off a two-body bound state, since D~*(k?—3¢?) is proportional to
(k*+B—2%¢®). B.is the two-body binding energy.

Our procedure is the same as in Appendix II. We first define the operators P; by

Pi| 010205)= | qil| q19205), i=1,2,3. (A5.12)
Suppose the 12 system has a bound state of binding energy B. We define the operator a2 by
o= (§P2—B—k)"/ (Ps+u) (A5.13)
and write
aiz 0 0
A=10 ap™? 0 . (A514)
0 0 012"1
In analogy with Eq. (A2.3) we consider the amplitude 4 f.
Af=AQ+K)iHH (AK2A)AS. (A5.15)
The kernel of Eq. (A5.15) is
AK247!
a12flzGofzaGoalg“l'l—flnfmGoislGoam_l N g12flzGofalGW1g_l . 111231%60323G0012_1
= 012-1{2360151360012 012_1tszotmGo(}m'f‘fl12_1t23GotzuGollm ) fl12_ltzaGoiszo(f12 .
a1 E31Gota3God 12 @19 151G ot15G o012 @12 3G obasGo 1o+ @15 E1G oF12Go1a
(A5.16)

We now consider Eq. (AS.15) on a contour which has been rotated through a negative angle, 6. A typical term in
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”AngZA g~1”2 18

Jo=tr[ aoi2lo1aGolorsGoasis as1s’ —'Gotlons' Gotloratanat ],

3g¢e— k=] |
= | d3q:d*qsd?qy/d%qs - lfﬂlz((h"f‘%(h, a3 qs; B2—35gs2e*?) ] 21 g g2+ (91/+93)2—k26_m|—2
| gae®+p |2
’ i 4 A 2! 1 ’ / 1 7 i [ q?),ezg_i—ﬂ ! :
X | 1%+ q5" %+ (g +¢5) 2 — B2 20 | 2| gos(qs+ 347, @'+ 51 s B2—3q1e2?)2 | ———————— (A5.17)

]%q3'2em— k2—B[

This integral is the same as the one considered in Eq. (A3.29) except for the factors of |a2(gs)|% and | ag2(gs) |2
They clearly do not effect the convergence of the integral at . |agi2(gs) |2 can vanish in the first quadrant of the
k plane only at the point k2= — B (see Fig. 4b). In that case |as2(gs’)|?~gs""? so the q4 integral will still exist.
Similarly, |as12(ga)ler2(d1+34s, A1’ +350s, B2—35¢5%*") |2~ ¢572 at k*= — B, ¢;> — 0. As a result, the q; integral is now
convergent, which would not have been the case if we had not introduced 4. It is clear that J,’ exists in the limit
k*— —B, and an explicit bound can be obtained by the usual procedure.

Similarly the vectors (qiq2qs | 49K o*lo| kikoks), (q10203| 46Kl | kikoks), and (kikok; | K944 | q1q2q5) will now have
finite norms at threshold. From Eqgs. (A5.14), (A5.16), and (A3.6) we see that each /2 which depends on q; will
be multiplied by ag1s, so the qs integral will converge. On the other hand, if /512 appears in an internal loop then
Dyo7t and D15 will depend on different momenta, so there will be no convergence problems. Again explicit bounds
on the norms of these vectors can be obtained in the usual way.

The on-energy-shell amplitude can now be written in the form

7
fo(k)=(kikoks| 2 Ksils| ki'ko ks )+ (kikoks| Ko*As ' Red s (Ko Ks*) b | ki'ko'ks") (A5.18)
=0

where
Re1=AKPA7 I+ AK@A R4

It follows from our previous arguments that fy(k) and consequently f(%) exists at the threshold for the scattering
of particle 3 off the bound state, B.

The argument can be repeated at each threshold. If two systems, say 12 and 23, have a bound state of the same
energy, we write

aw= EP2—k—B)"/(Ps+n), awn=GP2—k—B)"?/(Pi+u), (A5.19)
and then define 4 to be
012023—1 0 0
A= [ 0 Go3d197t 0 ] . (ASZO)
0 0 a1 a0t

Our argurr ent now goes through unchanged. Finally if all three two-body systems have a bound state of the same
energy we take

(012) P 0 0
A= 0 (a23)3’2—‘a12—‘a;;1*‘ 0 } ’ %> 0 (A521)
0 0 (031)3/276(1/12_1(123“1

and our argument again goes through. It then follows that the on-energy-shell three-body amplitude exists at each
of its thresholds.



