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We continue our discussion of the scattering of three nonrelativistic spinless particles interacting via
two-body Yukawa potentials, The on-energy-shell T matrix is studied as a function of the total center-of-
mass energy E for fixed physical values of the vectors y;=k;(2m;E) ~~~, y =h (2m;E) ~i'~, i=1,2,3. Here
h; and k are the initial and final momenta of the particles, respectively, and m; are the masses. We show
that T (8) can be written as the ratio of two Fredholm series, each of which is uniformly convergent with
respect to E for all values of E on the physical sheet including the real axis. Since we have previously seen
that each term in these series satisfies a dispersion relation in 8 with no complex singularities, it follws that
the full three-particle amplitude satisfies such a dispersion relation.

I. INTRODUCTION

''I part I of this work' we studied the scattering
- amplitude for three free, nonrelativistic particles

interacting via two-body Yukawa potentials. Ke wrote
the on-energy-shell amplitude as a ratio of two Fredholm
series and showed that each term in these series satished
a dispersion relation in the total center-of-mass energy
E for fixed physical values of the vectors

y, = (2m;E)—
&k;,

y, '= (2m,E)—lk, '. i= 1, 2, 3

srs, is the mass of the ith particle and k; and k, ' are its
initial and 6nal center-of-mass momenta. We then

argued that since the Fredholm series are uniformly

convergent, the Ml three-particle scattering amplitude

satisfies the same dispersion relation as the individual

terms in the series. In the present paper we shaH give

detailed proof of the convergence of the Fredholm
series for the on-energy-shell amplitude for aH values

of E on the physical sheet including the real axis. We
shaH always keep the y vectors fixed and physical.

In order to simplify our proofs we shall only consider

the case of simple, two-body Vukawa potentials.
However, all of our results would remain valid for a
super-position of Yukawa potentials.

Faddeev has previously shown that the on-energy-

shell amplitude exists for real energies for a much wider

* Work supported by the U. S. Air Force Once of Research, Air
Research and Development Command, by the National Science
Foundation, and by the Atomic Energy Commission, Contract
AV(1&-&)-S81.

'M. Rubin, R. Sugar, and G. Tiktopoulos, Phys. Rev. 146,
1130 (1966), Hereafter referred to as I.

class of potentials than we shall consider. ' However, in
order to complete the proof of our dispersion relation,
we need to show that the amplitude exists for complex
values of E. In addition, we think that it is worthwhile

to present our existence proof for real E since it appears
to be much simpler than Faddeev's. The simplicity
arises from the fact that we are dealing with a class of
potentials that is analytic in the momenta. As a result,
we can distort the contours of integration away from
the singularities in the Green's functions and thus get
simple bounds on the integrals which occur in the
problem. This procedure was not available to Faddeev
because he did not make any assumptions of analyticity
for his potentials.

Since we have been able to show that the Faddeev
equations have a Fredholm solutions even for real

energies, aH of the powerful tools for the numerical

and theoretical analysis of Fredholm integral equations
can now be applied to the three-body problem.

In Sec. II we shall briefly discuss the two-body prob-

lem in order to present. our techniques in a familiar

setting, and to collect results which will be needed in

our discussion of the three-body problem. In Sec. III
we show that the on-energy-shell three-body amplitude
exists in the entire upper half of the k=E'I' plane,

including the real axis, with the possible exception of the

imaginary axis for Imk) (g—,)p, which is the location

of the left-hand cut.
Finally, in the Appendices, we give the details of

obtaining bounds on the integrals that arise in the text,

~ L. D. Faddeev, Muthemuticu/ Aspects of the Three-Body
ProbIem in the QNuntern scattering Theory (Publications of the
Stoklov Mathematical Institute No. 69, 1963. (English transl, :
Israel Program for Scientific Translations, Jerusalem, Israel,
1965.)
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and we present detailed proofs of the existence of the
various amplitudes at their threshold energies.

II. BOUNDS OF THE TWO-BODY AMPLITUDE

In this section we shall consider the scattering ampli-
tude for two scalar particles interacting by a Yukawa
potential,

(ylvly')=v(y, y')=g[(y —y')+t ]-'. (2.1)

Our starting point is the Lippmann-Schwinger equation
for the off-energy-shell scattering amplitude

t(y, y', k') = V(y, y')+ d'qV(y, «)(q' —k') 't(«, y'; k')

integrable operator. ' This means that if we take matrix
elements of each term in the series for Ã between square
integrable functions, the resulting series will be uni-
formly convergent.

From Eq. (2.3) we see that the on-energy-shell
amplitude can be written in the form

t(kgb, kgb'; k') =(kgb
l Vlkgl')+(kg1l VGovlkgl')

+ Q (kill VGA;Vlkgl')/ Q D, , (2.8)
i=0 j'=0

where A' and A are unit vectors in the direction of the
initial and final momenta, respectively. But4

= V+ VGpt

We are using units in which k= 2m= 1 (m is the reduced
mass), and we shall consistently neglect numerical
factors such as coupling constants and 2g's. We wish
to show that the on-energy-shell amplitude, t (kgb, kgb'; k')
exists in the upper-half k plane, Imk&0, and that the
off-energy-shell amplitude is a square-integrable func-
tion of either of its momenta in this region.

The solution to Eq. (2.2) can be written formally as

t= V+RU= V+ UGpV+ VGpRV, (2.3)

where the resolvent R is given by

2Lts2 —(Imk)'] 't2, te) Imk (2.9)

llGpvlkgl)ll'= dgqlq2 —k'l 'l (q kn)'+t—e'l

&sr2(Imk) ~Lp2 —(Imk)2]—2. te)Imk

As a result, the on-energy-shell amplitude exists and is
given by the ratio of two uniformly convergent series
in the strip

R= VGo+ VGoR= VGo+RVGo. (2.4) p, —e& Imk& e, c&0. (2.10)
It is well known that if the kernal VG0 is square
integrable, i.e., if

IIGo Vll'= trLGp VVGp'7

dsqdsq'l («—«')2+te27 glq2 —kpl 2& po

then R will have a Fredholm solution which can be
written in the form'

In order to show that the on-energy-shell amplitude
exists in the entire upper-half k plane and on the real
k axis, it is convenient to introduce an operator which
is defined by formally rotating the contours of integra-
tion in Eq. (2.2)

ts(y, y'; k')

= aL(y —y')'e"s+t '7 '+ d'ql:(y —«)'e"s+t 27 '

Xe'"(q'e'*' —k')-'tg («,y'; k')

= Vg+ VgGgtg. (2.11)
D= QD;. (2 6)

The D; are numbers which depend only on k', and the
S; are square-integral operators. Since

flGoVII'= ~'/t Imk, (2.7)

R will exist in the half plane Imk& e)0. In this region
the series for D will be uniformly convergent in k. In
addition, the series for N will be a relatively, uniformly,
absolutely convergent series with respect to k in any
part of the upper half plane, and 3l will be a square

I'". Smithies, Integral Equations (Cambridge University Press,
Cambridge, England, 1958). The explicit form of E; and D; for
the two-body problem is given in Ref. 1.

ts = Vs+ VsGsvs+ VeGsRe Vs,

Rs+ VeGe+ VsGeRe= Ns/Ds.
(2.12)

d3qp3q~
l
(««~)2e2ss+te2

l

2
l

q2e2%3 k2
l

2

&c~Lte cos28 Im(ke s)7-',

4 The details of obtaining bounds on the integrals that arise in
this section are given in Appendix I.

In analogy with Eq. (2.3) we can write the solution to
Eq. (2.11) in the form
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d'q
I
(»le" —kn)'+ p'

[

IIG, vs&ll

&C2Lp' cos'8 —(Im(ke —'e))'1—',
(2.13)

d'qi q'e"' —k'I-'[(qe" —k~)'+t '!-'

&C,(im(ke ")Lp' cos'8 —(Im(ke —"))']'l—',

where CI, C2 and C3 are constants. t '
is clear from our

nts that the on-energy-shell quantityprevious arguments a
( @ ke 'et'' k') exists and is given y e raty~ke 'n, e

e stritwo uni orm y'f 1 convergent series in the 'p

p cos8—e) im(ke —'))», e)0. (2.14)

D;=Dy;, i=0, 1, 2,

(k6!VGpi7;V IHl'&=( 6k[ V»G»X»&Ve[kA'&. ,2.15)

1 convergent, it followsSince the series are all uniform y co
»»tl ke '9V; k') is the analytic continuation o

t(H. ,kn', k'). By rotating 8 through t e ang e

—~/2+»&8&m. /2 —e e)0, (2.16)

at the on-energy-shell amplitude exists in the
half k plane inc u ing e

of that part of the imaginarythe possible exception o a

stri and the one de6ned by Eq. (2.10) are shown

verla of the two strips.
w

'
is heM fixed in the region

erm in the series for or

the contours of integration t..roug
1

'
of the integrand. As a resucrossing any singularities o

in the region of overlap

0 The limits for which Imk) p, , and the point k=
~ ~

jn order to present the te q ' . In the
chni ues whic we wi use

roblem in a familiar setting. n e
bd bl h11r on the three-bo y pro em

on — gy ll ther thanon off-energy-she, ra erneed explicit bounds on — gy er
-bod am litudes. %e s a co ec

uture reference. e rsthese results here for futu
h th ff-energy shell amplitude, t p, p, , is a

le L' function of p (p ) in the f
b b dd'dplane Im k&~&0. The norm can be oun e

dent of p' (y).

d'Pi t(p, p', k') I'

d'
I v(y, y')+~v(y, y') I'&2 d'pi v(p, p') I'

2%-2

~'p 1~v(p, y') I'& [1+ll~ll'3 (2 17

In the last line o q.f E (2.17) we have made use of the
Schwartz inequality in the form

II«[1'&ll'& ll~ll'I! v
I
y'&ll'. (2.1s)

ion in which VGO is square integrable the only

bounded by a constant i t ere are n
and by the expression

In Ref. 3 it is shown that

II&Il'& ll VGoII' expL1+ II VGoII'j
= (7r'/p Irnk) expL1+m-'/p Imk]. (2.19

lmk

lm(ke ' ) jocose

ID-'(k ) I
&c,+g

C; —:D~ '(k'), (2.20)

lm(ke l ) o

lmk p

Rek

8's are theif there are. e; s. Th C 's are constants and the 8,'

binding energies. As a resu tlt

27r2

d'pit(p, y' k') I'& — L1+E~D~—'(k')j,
p

Imk) e)0. (2.21)

Ei is a constant independent o p'.f k or '. Similarly

d' 'it( p'k')i'& $1+EiD~ ( )' k' . (2.22)P "y&

I IG. 1.The regions in which t an 8
g''IG. . e

' ' '
nd t are given by

t eraiooh t' f two Fredholm series. 1 h lds for the half-on-energy-shellA similar resu t o s
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amplitude t(y, M; k') in the strip defined by Eq. (2.10). where

d'p
I t(y, kti; k')

I
'&2ll v

I
k~) II 2[1+ll&ll aj

&Ks[1+KtDi2 '(k') j, (2.23)

where E2 is a constant. In general

fts
f= f28

31&

0
E= Eg2Gp

.t3gGp

A A

A

4li

tggGp t~2Gp

~23Gp

~3IGp

d'p It(y «k') I'&Ks[1+KtD& '(k')) (2.24)

in the strip ta —0) Im
I «I & e.

In addition to being an 1.2 function of y or y', t (y, y', k')
can be bounded independent of y or y' in the half
plane Imk& e&0.

I t(y, y', k') I'
=

I v(y, y')+ «ov(y, y')+ «o«(y, y') I'
&2I vG,zvls+2I v+vG, vl'
&2ll&ll'llvl1')ll'IIGovl y)ll'+&I vf'+4I voovl'
&Ka+K4D22

—'(k') . (2.25)

t,, (k') are operators in the three-particle Hilbert space
which are related to the two-partic1. C OG-energy-shell
amplitudes by

(«'«;«. I t', (k')
I «« '«.')

= t;;(l («'-«, ), l («'' —«'); k' —s&0')

X~ («0—«s) ~ (3.3)

Gp is the three-particle free Green's function. We have
factored the momentum-conservation delta function out
of the amplitude, so in any intermediate state there are
only two independent momenta. Since we are in the
center-of-mass system,

K3 Rnd E4 Rlc constRnts. SIITlllRIly, In the strip p —6

&Imk& e

3

P «;=0. (3 4)

t(y, kn;ka Is(Ks E tr
' ka . 2.26) Since all of the elements in E are disconnected, it

The same techniques can be used to obtain bounds on cannot be a square-integrable kernel. We therefore
the amplitudes on the rotated contours. For example, iterate Eq. (3.1) and. write

d'pits(y, y'; ks) Is&
27r2

[1+K01Dtt '(k'))
p cose

Im(ke *0))e&0. (2.27)

f= (1+E)t+K'f

= g K-i+K4(ft(K2+Ka)t,

In Appendix II wc extend Rll of these bounds to where
include the limit k —+ 0. R=Ks+K'(ll= X/S. (3.6)

III. THE THREE-BODY AMPLITUDE

In this section we shall consider the scattering
amplitude for three free particles interacting via two-
body Yukawa potentials. In order to simplify the
kinematics we shaB only consider the case of equal mass
particles, but the generalization of the proof to arbitrary
masses will bc obvious. We shaH always work in the
three-body center-of-mass system, so the vectors
defined in Eq. (1.1) will satisfy the relations

3 3

E )"= Z )''=0,

Our 6rst task is to find a region in the upper half k =E'~'

plane in which E' is an I.' operator, i.e., in which

flKsl f2= tr[KsK+2]&

A typical term in the trace is'

I= «[t»oot28G0G0" tsatGOt t»t]

(3.7)

(3.S)

There are also terms of the form trLt»GotaaG0Gott»8Gott»t j;
however, making use of Schwartz's inequality we see that

trLt»GotaaGoGottaatGort»" ]
d'gad'gad'lfl'd'lfa'(qaqaqa

I t»GotaaG0 I
ql'qa'qa')

E X'= Z X"=1

y' y "&-' ~=1 2 3

We are using units in which &=2m= j..
Our starting point is the Faddeev equation

(3.2)

x(ql qa qa I
Go't»tGott»'

I qlqaqa)
I/u

d3g1d3q3 d~q1 d3fft3 &q&qsq3 &Io~o43Go q1 q2 q3 &

1/2
daga"daqa" l(qa" qa" qa"

I
Go't»'Go't»'

I qlqaqa) I'

dattadalfad'qa'dalfa'l(qaqaqa lt»GotaaGol q1'qa'qa') I'

1/2

x d'qld'18d'qa lpqa l(qa qa qa IGottra'Go't»tl qaqaqa) I'

=I trl t»GotaaG0G0'taa'Go"tlat'jl"' I trLtaaGotlaGOG0't18"Go'tla'3]'".

So, it is sufhcient to consider the trace given in Eq. (3.8).
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lmk
/

l lm(ke ' )
/

/

/
/ l~ pease

I lm(ke 'e)

/

/
I

pe
Rl. —Bm case sine3

R.Re(ke-' }

I
k~iAP

Fzo. 2. The regions in vrhieh
fq is given by the ratio of two
Fredholm series.

R Re(ke 'e&

In Appendix III we show that J is bounded by

J(g(jp[g2+ (j+2i/2 )2]U2}—i (3.9)

Since

(kik2ka I Q K"iIki'k2'ke')
where C is a constant and k =2+iI. The bound holds in
the entire upper half k plane, I&~&0, except for the
segment of the imaginary axis for which 8 &I&0,
where 8„is the largest binding energy in the problem.
~e no« that IIK'll'~ o as

I
&

I
~ ~, so it will be easy

to prove the convergence of the Born series at high
energies.

In order to complete the proof of the existence of the
on-energy-shell amplitude, we must show that the
vectors K2/, Ikik2ke), KRIkik2k3), and {kik2k3IK' have
finite norms. In Appendix III we show that the norm
of each of these vectors can be bounded by a constant
in the strip

(v'2)u —~&» e& o

E&e&0. (3.10)

=(kik2kaI Q K'"iIki'k, 'ka')

+ P (k,l,l, I
K'iV;(K,+K,) iI k,'k, 'k, ')/

i=0

g X);. (3.11)
j=0

It was shown in I that the individual terms in the series
for & and (kikmke I

K'&(K'yK') ilki'ke'ke') are analytic
functions of k for 6xed physical values of the vectors

y; and y, and k in the strip defined by Eq. (3.10).

The bound also holds on the imaginary axis for (+3~)p
&I& (-',8 )'I'. It follows from our discussion in Sec. II
that the on-energy-shell three-body amplitude exists
and. is given by the ratio of two uniformly convergent
series in this strip.

f(k) (kik=,ks I f I
k,'k, 'k, ')

= Q Ke"te+Kee(Rg(Ke'+Kg')fy, (3.12)

where

(e'q e I ie';(&') I
«''rl 'a~')

=&e'~(-'(q —e ) -'(q ' —a~'); ~'—$~~'e"')

X&'(qa —qa'), (3.13)

G eaN[q 2~2~8+ q 9~2~8+. (q + il )meline $2$-i

We shall be interested in both positive and negative
values of 8. However we cannot rotate contours of
integration through an arbitrary negative angle since
we will eventually encounter the resonance poles of the
two-particle $ matrices. However, since all resonances
have a finite width (zero-energy resonances will not
prevent us from rotating contours), we can always
rotate through a 6nite negative angle —00 before
encountering the first resonance pole. We shall only
consider values of 8 greater than —80.

In Appendix III we show that

IIKeII'~~(1~ '"' [(1+~2~"")'
+ (I R

I
—v2IeI sine I)']'~'}—' (3 14)

where ks @=R+iI.For m./2 —e&8&0, the bound. holds

in the 6rst quadrant of the ke " plane above the

is also an analytic function of k in this region, it follows
that f(k) is.

In order to show that the amplitude exists in the rest
of the 6rst quadrant of the k plane, we shall use the
rotation of contour argument introduced in Sec. II.
In analogy with Eqs. (2.11) and (3.2) we write
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hyperbola RI=B sin8cos8. J3 is the largest binding
energy in the problem. For 0&8&—80, the bound holds
1D thc rcgloD of the k8 '~ plaDc bounded by thc llDcs
Rek=0, I= e&0, provided we exclude small semicircles
about the points k=i8,'~'. 8; are the two-particle
binding energies. We note that ~(Egg~(' —& 0 as k —+ ~.

In Appendix III we also obtain bounds on the norms
of the vectors Egng

~
kikgkg), Eg'ig

~
kikgkg), and (kikgkg

~

XEgg. For s/2)8&0 we find that the norms can be
bounded by a constant in the region bounded by the
curves (see Fig. 2a).

Rl= ',8 'sin-8 cos8+ e,

I= (gg2)p cos8—e,

For 0&8&—80 the norms can be bounded by a constant
in the region bounded by the lines

I= (gz)gg cos8—e,

(3.16)

provided we exclude small semicircles about the normal
thresholds k=iB ~' and the anomalous thresholds
whose positions are given in Eq. (3.20). (See Fig. 2b).

It follows from our previous discussion that the on-
energy-shell quantity

(3.»)
exists and is given by the ratio of two uniformly
convergent series in the regions defined by Eqs. (3.15)
and (3.16).

fg(k) =(kik,k, ( g Eg"tg~ ki'kg'kg')

+ Q (kikgkg ( Eg'za;(Eg'+Eg') tg )
ki'kg'kg')/

Q Sgg. (3.18)
jM

It was shown in I that the individual terms in the
series for fg(k) are analytic functions of k for fixed,
physical values of the vectors y; and y, and k in the
regions given by Eqs. (3.15) and (3.16). As a result
fg(k) is an analytic function of k in these regions.

It will be noted that for e./2&8& —8g there is always
an overlap between the regions in which f(k) and fq(k)
exist. It was shown in I that if k was held 6xed in the
region of overlap, then for any term in the series for
f(k) one could simultaneously rotate all contours of
integration through an angle 8 without crossing a
singularity of the intearand. As g, result, in the region.

of overlap

(k,k,l,
~
Ega, (Eg+Eg) i~ k,'k, 'l, ')

=(k,k,k,
i
E 'X;(E '+E ') i

i
k 'k 'k '),

7 (3.19)
(k,k,k,

~ Q E-i~k, 'k, 'k, ')

=(kikgkg
~ g Eg"ig

~

ki'kg'kg'}.

So fg(k) is the analytic continuation of f(k).
By rotating contours through the angles s./2) 8) —8g

we see that the on-energy-shell amplitude exists in the
entire first quadrant of the k plane including the
positive real axis, with the possible exception of the
normal thresholds, k =0, k= iB t', the anomalous
thresholds, and the line Rek=0, Imk) (gee)p. In
Appendix V we show that the amplitude does in fact
exist at the normal thresholds, k=0 and k= iB ~2.

There is a slight delicacy associated with the anoma-
lous thresholds. It was shown in I that in general each
term in the numerator series will have anomalous
thresholds. If, for example, we are considering a term in
which particles 1 and 2 interact last then there will be
an anomalous threshold at

k2 — g .— B.(1 g+ 2 (2 3y g)1/9]9 j-1 ~

y '& -', . (3.20)

8, is the binding energy of a bound state of either the
(2,3) or (1,3) systems. The anomalous threshold enters
the physical sheet through the normal threshoM at
k'= —8, when y3' ——~. It moves down the negative k2

axis as y32 increases reaching the point k'= —438; when
y3'=3. There will of course be anomalous thresholds
which depend on each of the y; and y .

We have already seen that the kernel is square-
integrable at the anomalous thresholds. However, in
Appendix 3 we show that the vectors (qiqgqg~E'j
&& Ikikgkg) (qiqgqg IE'ilkikgkg» and (kikgkg IE'I qiqgqg)
all blow up logarithmically at the anomalous thresholds.
But in each case, the coe%cient of the logarithm remains
a square integrable function of the q;. As a result, the
full amplitude will blow up logarithmically at the
anomalous thresholds, but the coeKcient of the log-
arithm will still be given by the ratio of two convergent
series.

Since the on-energy-shell amphtude exists in the 6rst
quadrant of the k plane, it must exist in the second
quadrant because it is given in this quadrant by

We have thus shown that the on-energy-shell ampli-
tude exists in the entire physical sheet of the E=k'
plane with the possible exception of the line Imp=0,
RcI'-'& —+~p2. This line lies on the left-hand cut. This
completes our proof that the on-energy-shell amplitude
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In the quadrant R, I)e)0, IIR(k' —$qi'2)ll'is bounded by a constant, so

J&c' day'd3pd3p'I2p~+'q '2 —&2I
—2I2p'2+ —'q, '2 —p2I 2$(p—yI)2+F2] (A3.4)

In Appendix IV we obtain a bound on this integral and show that

J&C"II@JR'+(I+2'i'p)']'"I ', k=R+iI, R, I)6)0. (A3.5)

In order to complete the proof of the existence of the on-energy-shell amplitude, we must show that the "vectors"
E'tlkik2ka), E'tlkik2ka), and (kik2k3IE' have finite norms. A typical term in the norm of E'tlkik2k') is

Ji= II~»GO'23GO'121kik2ki&ll
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X (-', q' —-', kiP) '(-', g"——,'k»')* 't»(q, k», —',k»')tip*(q', k», 2k»'), (A3.6)

where 2k»2=2(ki —k2)'=k' —2k/. Our choice of variables is shown in Fig. 4.
For simplicity we start by assuming that there are no bound states in the (2,3) system, so there will be no

difhculty with anomalous thresholds.
Since the only terms in the integrand which depend on q& are t» and t»*, one can do the qj integration

immediately using the Schwartz inequality and (2.24)
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For p)-,' Imk') 0. Since ks ——y3k and y32(-,', the bound holds in the strip

R)e)0, (+6)p—e)I&e. (A3.8)

Before doing the q3 integration it is convenient to bound the Green s functions that depend on q3.
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I
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wher«=& (»3+q)/l»3+»i Mi»mizing l~o 'I'with
respect to s without regard to the restriction —1&s&1
gives

[3»P+-'(»3+»)'+(R'+I')(1 —2rs') j'R'+P.
only through t» and t»*, so we can do the q3 integration
just as we did the q& integration. The Fredholm
determinant of t23, D23(k' ——', (q —k3)') can be bounded

by a constant since we have assumed that there are no

q/
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kp
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We have used Eq. (226) to bound
~

312~ in the first
integral. Using (2.23) we see that
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~1 + Cg'
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If we try to bound the integrals in (3.20) by direct
application of the Schwartz inequality, the bound will
blow up in the limit y» ——k»/k-+ 0 (In the physical
region 0&y»2&2.) so we must be more careful. We first
note that

= Lqs —(Reki,)'+ (Imkrs) 212+4LRek» Imkisj'

(Imkis)' I'
q'= q4. (A3.13)

(Rekis)'+ (Imkis)' 82+12

As a result
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The factor v2 arises because 0&y»2&2.
We must now consider the case in which there are

bound states in the (2,3) system. We can then write
the Fredholm denominator of $23 in the form

D22 '(k' —s (q—ks)') =1+ p(x)dx

x k'+-',—(q ks)'—
C;

(A3.18)
s (q—ks)' —O' —8;

The C; are constants and the 8; are the two particle
binding energies. The dispersion integral can again be
bounded by a constant for Imk&0.

We now substitute Eq. (A3.18) and the corresponding
expression for Dsss '[k2—s(q' —ks)2$ into Eq. (A3.6).
In each term which contains a bound-state pole we

apply the Feynman identity to the bound-state
denominator and the free Green's function (-', q' —-', k»2) '.
Ke have
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1
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+2—3y22) —(8/3) xB;] '. (A3.19)

We now make the change of variables q~ q+xks,
q'-+ q'+x'ks. We can now do the qi and qs integra-
tions as before. We will be left with integrals of the form
(A3.14) and terms of the form

(g2+ I2) 1/2

d q q ~ t»(q, k», —',k12')
~ d q~ 4g(q+xks)kr2, -', k12')

~

&& Lti(/ '—q')+/i(q' —
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—(8/3In Appendix II we show that the bounds on the t
matrix given in Eqs. (2.23) and (2.26) hold in the limit We can bound ) t»~ by a constant and do the q integra-
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tion. We then have
1

Ji"&C dxPx'k'yo'+x((g/3)B, +k'( ,'+2—yo'))

negative angle, $k' —ooq'e"']'" can have a negative
imaginary part. However, if we restrict ourselves to
the half plane I&0, then

+2—3yoo] "'. (A3.21) phase [k'——',q'e"']"'& —
~

8
~
. (A3.26)

This integral can be done explicitly; however, for our
purposes it is sufficient to note that it exists for all
complex values of k and goes to zero as

~

k
~

~ oo. We
thus see that J& is bounded by a constant in the region
given by Eq. (3.10).

For future reference we note that the integral can
only blow up if the argument of the square root has a
double zero as a function of x. Such a zero corresponds
to a pinch between the bound-state pole and the free
Green's function. We have seen in I that this pinch
gives rise to an anomalous threshold at the point
k'= —A, Lace Eq. (3.20)]. It is clear that the matrix
element (qiqoqo

~
tioGofooGofio

~
kikoko) goes like ln(k'+A, )

as 0' —& —A; for all values of the q;. Since it is a square
integrable function of the q; for all values of 0'& —A;,
the coefficient of the logarithm must be an J' function
of the q, .

The procedure just outlined can also be used to bound
the norms of the vectors K't~kikoko) and (kikoko~K'.
The results are identical to those just obtained.

We now turn to the problem of obtaining bounds on

the norms of Ko', Ko't'o~kikoko) . These bounds will

go through exactly as the bounds on the norm of E',
K'f~kikoko), except that we must be somewhat

careful in bounding the two particle Fredholm denom-

inators. The bound on D '(ko) given iii Eq. (2.10) is

only good in the upper-half k plane since D '(k') will

have additional poles associated with resonances in

the lower-half k plane.
We are interested in bounding D '(k' —-', q'e"'). (We

have dropped the subscript on Dg since we have seen

that it is the analytic continuation of D.) Let us first
consider the case vr/2)9)0. It will be sufficient to
restrict ourselves to the first quadrant of the ke "
plane. In this case the imaginary part of [k'——',q'e"']'"
is posit:ive, so the bound on D given in. Eq. (2.20)
holds. A typical denominator in Da '(k' ——,'q'e'o) is

d =B +k' —-'q'e"'

=e"'[8;e "o+ (ke ")'—$q']. (A3.22)

If we write ke '~=E+iI, we see that d, can vanish

along the hyperbola

XI=8; sin0 cos0, (A3.23)
provided

R&B '" sin8 I&B'" cos9. (A3.24)

If we wish to bound Da '(k' ——',q'e"') by a constant, it is

clearly sufficient to restrict ourselves to that part of
the first quadrant of the ke "plane above the hyperbola

RI=8 cos0 sin0. (A3.25)

If we now consider rotating contours through a

Since resonances cannot lie on the real axis (zero energy
resonances clearly cause no trouble here) we can always
rotate through a finite angle —00 before encountering
the first resonance. Then for 0& —00, the bound on D '
given in Eq. (2.20) still holds. In this case, d; can
vanish along the hyperbola

RI= B,
~

sin—8 cos8~,
provided

~R~ &B;"'cos8, I&B "~sin9~ . (A3.2g)

We see that Ba '(ko ooq'e' o)—can be bounded by a
constant in the entire first quadrant of the k plane
except for semicircles of radius c about the points

If we restrict ourselves to the regions of the k plane
in which we can bound the two-particle Fredholm
denominator, we can bound ~~Ko'~~' in the same way as
we did ~~K'~~'. Using exactly the same procedure with
which we went from Eq. (A3.1) to Eq. (A3.4) we find

Jo= tl[fo12G8fo23GoG8 $82o Go f912 ]
&C& doq& dopdop&~ 2p2+3q &2 (ke io)2~ 2

y
~

2P&o+. oq &2 (ke
—o)o

~

—2

y
~ (p—p')i+pie —o+~ o. (A3.29)

In Appendix IV we obtain a bound on this integral and
show that

Jo&C"(Ip cos9L(I+2'"p cos8)'

+(~R~ —2"p~sin9~)']'"} ' (A3.30)

We can obtain bounds on the norms of the vectors
Kooto~kikoko), Ko'to~kikoko)and , (k k ik,o~K oby the
same arguments that we used on the unrotated contours.
The norms exist and are bounded by a constant in the
regions given in Eqs. (3.15) and (3.16). We note that
even after rotating the contours of integration we will

always be left with the integral of Eq. (A3.21) after all

of the momentum integrations have been performed.
As a result, the vectors will all blow up logarithmically
at the anomalous thresholds.

APPENDIX IV

In this Appendix we shall give the details of obtaining
bounds on the integrals which appear in Eqs. (A3.4)
and (A3.29). Let us start with Eq. (A3.4) and write

doqdopd p'~p yq —-'k
~ ~

p'+qo —-'k
)

—o

XI (Ii—Ii')'+~'] ', (A41)

where wehave made the change of variables q= (g~o) qi'.
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thresholds for the scattering of a particle off a two-body
bound state.

Let us start with the limit k —+ 0. We shall consider
fg(k) for negative values of 0 so that we can bound the

two-body Fredholm denominators by constants. First
we consider IIX''ll' for small values of k. We start from
the expression for Jg glvell 111 Eq. (A3.29) and again
do the qi integration making use of Eq. (A2.12).

J (CL1+IIR &II2$ d3q &d3pg3p&
I
2P2+3q &2 $2e—2i8

I

—
2I 2P~2+3q &2 $2e—2ig

I

—2
I
( (p y&. p2 aq 12e2i8)

I

2 (A5 1)

We recall that IIR&'ll' is a function of R'+12/12(ke "=R+iI) and can blow up only when this quantity does.
Frozn Fig. 2b we see that i[Rg II' remains finite as we approach the origin from any direction in the first quadrant
of the k plane.

Making use of Eq. (A3.13) we can bound the two Green's functions by

R2+12 R2+12
I
2P2+. q

2 $2e—2i8I 2( I"2P2+ q
~2]—2

I
2P&2+ q

~2 $2e—2i8I 2( L2P&2+3q 127—2 (A5 2)
I2 12

So

Now

-R2+12- 2

L1+IIRe'I'j d'pd'qi'd'p'pp"+ ,'ql ]-
I2

&&I 2P'+-'vi"& 'I«(»&' &' lvi"e"—') I'L~(p' ~')+ (0~' p') j —(A5 3)

d'Pd'P'd'&i'L2P"+Hi"j 'I 2P'+Bi"j 'I «I'|l(p' —~')

d'Pd'P'&'ci'L2P"+Bi"3 'L2~'+2&i"3 'l«(»1'; &'—2&i") I'

&c(1+IIR.'ll ) d'~. 'd'P'L2P"+l~"3-'L2"+l~ "3-'

=c'C1+ IIR~'ll'3.

We have made use of Eq. (A2.12) in doing the y integration.
On the other hand

(A5.4)

d'Pd'P'd'~i'I 2P'2+~i"3 'L2p'+l~i"3 'l«i'&(~' —p')

&I ~'+~"IIR'll'l d pd P'd ~.'L~p"+ '~'3 L2P+ ~'-] 0-(" P)--
=c Ã+IIR'll'j

We have made use of Eq. (A2.13) in bounding
I
«I'.

As a result
(R2+I2) 2

L1+IIRe'll'jLC2+ IIRe'll'j
12

(A5.5)

(A5.6)

We can also obtain bounds on the norms of Es'«I kikmk3), %'te
I
kikmk3), and (kik2ka

I
Ke' that are finite in the limit

k-+ Q. Let us 6rst consider

~~i= II &»2G«»3G~f~» Ikik2k3) II'. (A5.7)

The choice of variables is the same as for Eq. (A3.6). We first do the qi integration as in Eq. (A3.7) making use of
the bound given in Eq. (A2.12). We then use Eq. (A3.10) to bound the Green's function which depend on q3.

R2+12 (R~+I2)
I q '+-'(q —k~e "')'+(q&+i~q+iskse ")'—k'e '"I '& L-,'q32+-,'(q&+q)'1 '&-' (q3+q)

—'. (A5.8)
I2
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Using Eq. (A2.13) to bound t»8 we have

d3q8d3qd3q'I «8+«I-'I «8+.«' I-'I q' —k,22e-2'Ol-'I q"—k122e-"'I-'I t812(«,k,2, —',k1,'e-"')llt81, («', k12, —2'k» e-"')
I

=C' d'qd q'I «—«'I 'lq' —k»'e "'I 'Iq'2 —k»'e "'I 'lt»2(«, k»)llt8»(«', k») I, (A5»

where C and C' are polynomials in IIRO'll'.

We now make use of the fact that the integrand is symmetric in g and q' to write

~»(2C' q'dq«qlq' —k»" "'I 'lt»2(«»»)l q"dq'did'q'lq" —k»" "'I ' lto»(«'k»)l I«—«'I

qdqdQqlq' —k» e '
I

'lt812(«k12) I
q"dq'Iq" —k»'e "'I 'lt812(«', k») I. (A5. 1O)

Using Eqs. (A3.13) and (A2. 13) to bound the Green's function and t matrix which depend on «', we have

J81(c d q I q k12 e
I I t812(«,k12) I

(A5. 11)

The last step follows from the same reasoning which led to Eq. (A3 16).C"' is a polynomial in IIRO'll' and (R2+I2)/I2
so IIX82tOI k1k2k8)ll' exists in the limit k —+ 0 if we approach the origin from any direction in the first quadrant of
the k plane. Similar bounds on IIE88tOI k1k2k3)II2 and IIEO+'lkrk2k8)II2 follow from the arguments just presented so
the- three-body amplitude exists in the limit k —+ 0.

Let us now consider the threshold for the scattering of a particle off a two-body bound state. The problem is
similar to the one discussed in Appendix II. In the two-body problem the free Green s function is not square
integrable at k =0. In the present case, the two-body Fredholm denominator, D '(k' ——',q') is not an 12 function of
«at the threshold for the scattering of a particle off a two-body bound state, since D '(k' ——,q') is proportional to
(k2+8 —-', q') '. B.is the two-body binding energy.

Our procedure is the same as in Appendix II. %'e first de6ne the operators P; by

E' I «1«2«8) = I «'ll «1«2«8) i= 1»,3 ~

Suppose the 12 system has a bound state of binding energy B. We de6ne the operator a12 by

12 ( P32 jP k2) /2/(P +t8)
and write

(A5.12)

(A5.13)

@12 0
0 @12.0 0

0
0

~12

(A5.14)

In analogy with Eq. (~A2.3) we consider the amplitude A f
A f=A (1+X)t+ (2EOA ')2f.

The kernel of Eq. (A5.15) is

AE2A-1

(A5.15)

c12$12GOt23GIP12 +o12t12GOt31GO|812

812 t2360/13G0~12
A

@12 $316052360812

C12$1260$316(P12

812 t28GOt12GOG12+C12 t23GOt81G0812

812 $31601126(P12

~12$12G0$236(P12
A A

812 E2360$1260812
+12 t31GOt28GOG12+C12 t81GOt12GOP12,

(A5.16)

We now consider Eq. (A5.15) on a contour which has been rotated through a negative angle, 0. A typical term in
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ffAgKg'Ag 'ff' is

A A h A

Jg ti[/3312«12Gg«23Gg/3312 /3312 Gg ~823 Gg «12 /2312 ]y

f

-,'q 'e"' k2-
d'qid'q, d'qi'd'qg' ftg12(qi+-', qg, qi'+-', q3, k' —2q32e"3) f'fqi'+q32+(qi'+q3)2 —k'e—"'f—'

f
qge"+/3 f'

I
qg'e"+~

I

'
X

I
qi"+qg"+ (qi'+qg')' —k" "'I 'I «23(qg+ 12qi', qg'+r12qi', k' —23qie2") 2I, , (A5. 17)

f

gq "e"3—k2 —2l
f

This integral is the same as the one considered in Eq. (A3.29) except for the factors of
f /3312(qg) f' and

f
/3312(qg')

f

They clearly do not effect the convergence of the integral at ~.
f ag»(qg) f' can vanish in the first quadrant of the

k plane only at the point k2= 8(se—e. Fig. 4b). In that case f/33»(qg')
f

' q3' ' so the qg' integral will still exist.
Similarly, f/33»(q3)tg»(qi+2qg, qi'+-', qg, k2 —2q32e"') f' q3

' at k'= 8, q3—2 —+ 0. As a result, the qg integral is now
convergent, which would not have been the case if we had not introduced A. It is clear that Jg exists in the limit
k'. —+ —8, arid an explicit bound can be obtained by the usual procedure.

similarly the vectors (qiqgq3 f
A gKg'tg

f
kik2k3), (qiq2q3 f

A gKg'«
f
kik2k3), and (kik2k3

f
Eg'A 3

'
f qiq2qg) will now have

finite norms at, threshold. From Eqs. (A5.14), (A5.16), and (A3.6) we see that each «12 which depends on qg will

be multiplied by a»2, so the q& integral will converge. On the other hand, if te» appears in an internal loop then
Dl2 ' and Dl2"' ' will depend on different momenta, so there will be no convergence problems. Again explicit bounds
on the norms of these vectors can be obtained in the usual way.

The on-energy-shell amplitude can now be written in the form

where

fg (k) = (k,k,k,
f Q Kg'«

f k, 'k2'k3')+(kik2kg
f
Kg'Ag '(Rg~A3 (K32+Kgg) « f

k, 'k2'kg')
i=0

(Rg
' AEg'A ' -//-——AK32A 'Ng~.

(A5.18)

It follows from our previous arguments that fg(k) and consequently f(k) exists at the threshold for the scattering
of particle 3 oQ the bound state, 3.

The argument can be repeated at each threshoM. If two systems, say 12 and 23, have a bound state of the same
energy, we write

and then define 2 to be

o12= (2~3'—k' —~)'"/(f'3+~), ~23= (l~i' —k' —&)"'/P'1+A), (A5.19)

0
0

0
~23&12

0
(A5.20)

Our argun-ent now goes through unchanged. Finally if all three two-body systems have a bound state of the same
energy we take

0
0

0
(e ) / sg32—lg

0

0
0

(/331) /312 /323

(A5.21)

and our argument again goes through. It then follows that the on-energy-shell three-body amplitude exists at each
of its thresholds.


