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The weak (strangeness-changing) —electromagnetic decays of the hyperons of the type B —& Bv are con-
sidered in a broken SU(3)oxSU(3) model. Various sets of assumptions regarding the transformation prop-
erties of the particles, the breaking, and the Hamiltonian are examined and for each a set of sum rules for the
decay amplitudes is obtained.

I. INTRODUCTION

INCR the assumption that the weak hadron currents

~ ~ ~

~

~

generate the algebra of SU(3)SSU(3) has recently
found wide application in weak. -interaction physics,
several authors have investigated the possibility that
the SU(3) 3SU(3) may be an approximate invariance
group of the weak Hamiltonian. Iizuka and Miyamoto'
investigate the possibility that SU(3)SU(3) may be
an exact invariance group of H„and found that the
nonleptonic decays cannot be correctly described in
such a scheme. Later, Schechter and Ueda' found that
broken chiral SU(3)8SU(3) can be used to obtain a
new sum rule for the hyperon nonleptonic decays which
is in rough agreement with experiment.

The purpose of this paper is to investigate the
application of the group structure of broken chiral
SU(3)SU(3) to the weak-electromagnetic processes
which have recently been examined with a current
algebra approach by Graham and Pakvasa. '

II. THE SU(3)QxSU(3& MODEL

The space-time structure of the weak-electromagnetic
(WE) Hamiltonian is assumed to be given by"

EIwrs=Ã(A+Bus) o„.NF„„, .

*Work supported in part by an institution grant from the
National Aeronautical and Space Administration, Grant No.
NGR 15-005-021.

' J. Iizuka and V. Miyarnota, Nuovo Cimento 36, 676 (1965).' J. Schechter and Y. Ueda, Phys. Rev. 148, 1424 (1966).' S. Pakvasa (private communication).' R. H. Graham and S. Pakvasa, Phys. Rev. 140, 81144 (1965).
~ M. Hirooka and M. Hosoda, Progr. Theoret. Phys. (Kyoto)

35, 648 (1965).

where E is a baryon 4-spinor. Before examining the
SU(3)3SU(3) structure of this Hamiltonian, let us
review the model.

According to the model of Marshak, Mukunda, and
Okubo' the SU(3)SU(3) algebra is generated by two
sets of SU(3) matrices, A„' and B„",which satisfy the
commutation relations

[A„~,Ap j=b„Ap~ bpsA„, —
[8;",Bp ]=3„Bp" Spy" B„—

LA„s,Bp,"j=0.
For every SU(3)cglSU(3) tensor, primes are used
throughout this paper to indicate those indices trans-
formed by 8„&' and the unprimed indices are trans-
formed by A„~. Under parity I' and charge conjugation
C, the generators are transformed:

I': A~~ 8„.", B~' ~ A~,
C: A„&—+ —8 "' 8 &'~ —A ."'.

An irreducible representation of SU(3)SU(3), (pq, ps)
is transformed according to

In the notation of Schechter and Ueda, ' a four-
component baryon spinor E&' transforms under
SU(3)SU(3) as

fs"
Es = —i~sg's. )

' R. E. Marshak, N. Mukunda, and S. Okubo, Phys. Rev. 137,
$698 (1965).' J. Schechter and V. Ueda, Phys. Rev. 144, 1338 (1966).
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where f and g are two-component spinors, and a
[(3,3*),(3*,3)] baryon assignment is indicated. Since

¹ =(Xp)+y4, then

El~ (1 y—age' f.. o~gq. ',
&e(1+ps)&a'-gb".2f~"

It is seen, for the [(3,3*),(3*,3)] baryon assignment
that f (3*,3) and g (3*,3). Since (fXg)=(3,3*)
+(3,6)+(6*,3*)+(6',6), it is impossible [in the limit
of exact SU(3)9)SU(3) symmetry) to construct a
Hamiltonian which transforms as (X,X'), where) and X'

are SU(3) representations of zero triality. The same is
true of the [(3,6),(6,3)]baryon assignment. It is neces-
sary then to break the symmetry. The simplest possible
breaking is (3,3~)+(3*,3),

Z( ."+~."')

but in addition (6,6~)+(6~,6) breaking

p, v

has been considered.
In thecaseof an [(8,1),(1,8)]baryonassignment, one

can construct, in the unbroken case, only one interaction
which, in fact, transforms as (8,8). For the case of
breaking as above, no appropriate terms can be con-
structed. For this assignment, however, the decay
Z+ —&py is forbidden, and since this decay has
been observed, ' this assignment is given no further
consideration.

Now let us investigate the transformation properties
of the weak-electromagnetic Hamiltonian. The electro-
rnagnetic interaction is assumed to transform with re-
spect to SU(3)SSU(3) as' [(8,1),(1,8)]. This assign-
ment conserves parity I, and CI since

[(8:1),(1 8)]-[(8,1),(1,8)],
L(8,1),(1 8)]~ [(8,1),(1,8)].

Similarly the weak interaction is assumed to transform
as'(8, l), which is seen to conserve CE and to have
indefinite transformation properties with respect to
parity:

(8 1)~ (1 8) =2[(8 1)+(18)]
+5[—(8,1)+(18)],

CE: (8,1) —+(8,1).
For the over-all transformation properties of the

weak-electromagnetic Hamiltonian, everything in the
product

[(8,1),(1,8)]3(8,1)

' M. Bazin et u/. , Phys. Rev. Letters 14, 154 (1964) j U Nauen-
berg et cl, Bull. Am. Phys. Soc. 10, 466 (1965).

9 M. Gell-Mann, Physics 1, 63 (1964).This follows from the as-
signment of the generators to (8,1)+(1,8).

must be considered, except, of course, (1,1). Such a
Hamiltonian does not have as simple transformation
properties as we would like. Therefore it is convenient
to write the effective weak-electromagnetic Hamiltonian
Hwm as

HWE Hl+H21

where

Hr (8,8)

and

H, (p, 1), p=8, 10, 10*, 27.

Let us assume, then, that this process is dominated by
either H~ or II2. We would prefer to choose II~ on the
basis of simplicity, since with IJ& we have only one
representation to consider. However, it turns out that
with a [(3,3~),(3~,3)] baryon assignment, H2 together
with CP invariance requires that all parity-violating
amplitudes vanish. For this reason and for completeness,
the Hamiltonian II~ will also be given consideration.

Therefore, for the case of Hj we assign the weak
interaction to the unprimed octet and the electromag-
netic interaction to the primed octet of (8,8'). Note
that since the two octets are not identical, (8,8') still
has indefinite transformation properties with respect to
parity. In terms of tensor indices, then, the Hamiltonian
II, transforms as T2~"'. For the Hamiltonian II2, the
term H2(8, 1) will transform as TP and the terms
H2(10,1), H2(10*,1), and H2(27, 1) will transform as
1'„31,with appropriate symmetry of the indices.

Furthermore, we assume TL(1) invariance, "or sym-
metry under the interchange of indices 2 and 3, as in
Ref. 2. The use of TI,(1) invariance in SU(3)SSU(3)
should be valid, because in each case this transformation
actsononlyoneSU(3). Thatis tosay, TL(1) invariance
interchanges the unprimed indices 2 and 3, and in no
way does it mix primed andunprimed indices. If TL(2)
invariance were assumed then, of course, the parity-
violating (pv) and parity-conserving (pc) amplitudes
would be exchanged.

III. SUM RULES FOR B—+ B~

The possible decays of this type are

g+- pp

A, ~ ey,

~~0 ~ g0~

The individual cases for baryon and breaking as-
signments are given below.

I S. P. Rosen, Phys. Rev. 137, 3431 (1965).
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With a [(3,3*),(3",3)] baryon assignment and
(3,3~)+ (3*,3) breaking the Hamiltonian can be written

( )[(f~g)(3,3»&T(3*3)1(8,8)

+()2[(foe)(3 ()) &.&&(3*~3)j(88),
+ [(f-C)(" )~2'(3*3)j(., )

+ [(f"g)".&,&~(3*,'3}j.'+, H'+T~-',
+2= t)l[(f&2g) (6~, 3+) XT(3 )3)](10*,1)

+&2[(f02') (3,3~) && &(3*8)3(8,))
+53[(f(T')g) (() 3 ) && T(3*,3)](8,g) +H.c.+TL-c. ,

where Tl.-c. refers to the TL(1) conjugate. For ex-

ample, the term

[(&2g)(3,6) &&T(3*3)j(8,8)

rs explicitly given by

where the brace implies symmetrization in 1' and y',
and the breaking T„, & has been written 5„~.CI' invari-
ance is sufficient to show that the constants u; can be
taken real.

The first coupling in the Hamiltonian II~ does not
contribute to these decays, so the twelve amplitudes
are written in terms of three constants, and nine sum
rules are expected. The sum rules are

(46)[A (~~ ~&)—A {=-'~»}3
=%2[A (=' Z'y) —A (Z' 7)] (1)

=A(z+ p~) —A(=---z-7), (2)

B{Z+~ P&) =B(~~ ~Z——
&)=0, (3)

VSB(~ ~~) =VSB(=-' ~&)
B(zo~ z

= —B(=-' .z'~), (4)

A (Z~ —) p&}+,v2A (Zo —) r)7) =g6B(A ~ +&) (3)

where A represents the pc amplitudes and 8 the pv.
For the ninth sum rule, either of the following may be

considered to be independent:

&SA(X ~~)—A(z' ~~}=2A(=-' z'~),
6

2A (A ~ ey) —A(' —&»)=v3A('~Z'7) .

The pv amplitudes are consistent with sum rules
similar to Eq. (9), but with the sign of the " reversed:

%3B(~ ~~)—B(ZO~ ~~) = —2B(=-'~ Zo~),

2B(~ ~&)+B(=-' ») =KGB(=-0~ z'7) (7)

Using II2, it is found that the pv amplitudes arise
only from the term which transforms as (10,1). Note
that

CI': (10*,1) ) (10,1) .

Since (10,1) cannot be constructed with these assign-
ments, if CI' invariance is assumed all pv amplitudes
vanish. The sum rules for the pc amplitudes are Eq. (6)
and

A(z+ p~) =vs�(zo ~~),
A (=--~ z-~) =VZA (=-o ~ zo~) .

Finally, if both 8& and IJ& must be included in the
(CE-invariant) Hamiltonian, the surviving sum rules
are (1), (3), (4), and (6). Equation (6) is the SU(3)
result for both pv and pc amplitudes. 4

Case II

With the baryons assigned to [{3,3*),(3*,3)j and with

[(6,6")+(6*,6)j breaking, the Hamiltonian H& con-
structed as rn Case I contains four contributing amph-
tudes. The following sum rules are obtained:

43A (A.~ ey) = v3A ("-'~—Jtp)
zo~ I

=A (=o~ zo&), (9)

-', [A(Z+ p~)+A(=-- Z-~)]=vZB(ZO ~~), (10)

and Eqs. (3) and (4). Using EI2, the situation is similar
to Case I, in the CI' invariance again requires that all

pv amplitudes vanish. In addition to Eq. (1), the follow-

ing are satisfied:

A(z+~ pv)+A(=. ~z v)
=3(/6)[A(X ~~)+A(=-'~») j

v2[A (Zo —) ~y)+A (.o ~ Zo~)j
Finally, if the fuQ Hamiltonian II)+H2 is used the

surviving sum rules are (1), (3), and (4) and, of course

(6).

Case III

The baryons, here, are assigned to [(3,6), (6,3)j with
the algebra broken by (3,3*)+(3*,3) terms Fo«he
Hamiltonian H), in addition to Eqs. (1), (3), (6), and

(7), the following hold:

A(=-- z-~}=0,
(g6)[B(x~ N~) B(=-'~»)j-

= 3&3[B(Zo~ n~) —B("-'~ Z'q) g

A {Z+~ p~) —%2A(Z'~ e~)
= (gp) (g6)Bp ~ ~~)+v2B(Zo ~ ~~) .

Vhth the use of the Hamiltonian H~, the pv amplitudes
do not vanish. In addition to Eqs. (3), (6), and (7), we

6nd
A(z p~)+lA(=--- z-~) =-'. (v'6)A(& v)

+v2A (Z' —+ ny},

A(z p~)+-', A(=---z-~) =-:(v'6)B(=-'- v),
(/6)A('-+») —V2A( '-+Z'y)=-', (/6)B( '-+»)

-!(V'6)B(~ ~)
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Case IV

With the baryons assigned to [(3,6),(6,3)) and with

(6,6*)+(6*,6) symmetry-breaking terms transforming
as H& only, can be constructed. This may be regarded
as one motivation for considering (6,6*)+(6*,6) break-
ing, since the choice between H~ and H~ is already
determined. The sum rules are given by Eqs. (3), (6),
and (7) and by

+(13/6)B(A.~ my) =352(Z+~ py)
+-;A(=-- Z-~) —(3/6)a(A~ ~~)

+ (56/3) (+6)A (=-'-+ Ay),

{13''6)2l(=-'-A~)=58~(~ -pv)
+ (15/2)A (=-

—~ Z—
y) —(2+6)A (A ~ ny)

—(85/3)~ (="'~Av) .

similar one with P, ,X') = (3*,3) and with the breaking
T taken to transform as (6,6*). The first of these is
uninteresting as it is overly restrictive. The second one
gives rise to sum rules. Only the unbroken terms give
relationships between the pv and pc amplitudes, while
the broken terms contribute to the pv amplitudes only:

~(~=)-—~(~o )+ [~(=-o')-&(Ao') j
v2 2v3

3= —A (Z:)—[(A (Z,+)—2A (Z,+)7

~(=-=)+&(~")+—&(~o )

IV. THE THREE-BODY DECAYS B~ 8+y

It has been shown' that in SU(3) no sum rules can
be obtained for decays of this type without introducing
various additional assumptions. The same is found to be
true in the SU{3)SU(3) case. For example, if the
baryons, mesons, and breaking are each assigned to
[(3,3*),(3*,3)j and if the Hamiltonian is assumed to
transform as (8,8), then there are twenty possible
amphtudes, four unbroken and sixteen broken, in the
Hamiltonian. In order to obtain sum rules, it is necessary
to introduce additional assumptions.

Onc possIbIlIty ls to InsIst that thc HRITliltonlan
transform as (8,1). This leads to the unlikely result
that the sum rules for the weak-electromagnetic decays
are identical in form with those obtained by Schechter
and Ueda for the hyperon nonleptonic decays.

%C might also examine some special cases of more
general couplings which are in some sense simple. For
instance, the most general form of II~ is given by

&-Z Z ([(f&2g) ( "&&&~(3. 3*))OS»& 2'(3*
, 3)& &~88),

~v' XX'

(~,~') = (3,3*), (3,6), (6*,3*) (6*,6),

(X,X') = (3*,3), (3*,6*), etc .

As mentioned above, additional a,ssumptions are still
needed. By analogy with "octet dominance" in the
nonleptonic decays it might be natural to limit ourselves
to that coupling which gives rise only to the 8 represen-
tation (aside from the singlet). However, this coupling,
the one with (X,X') = (3~,3), gives no contributions to
tllc three-body amplitudes. A sllllplc (spcculatlvc)
generalization of this "octet dominance" assumption
is to assume that only those representations are present.
in the three-body Hamiltonian as are present in the
corresponding nonleptonic decay Hamiltonian (i.e.,
the I, 8, and 27). There are two possible couplings of
this type, the one above with (X,k')=(6,6*) and a

=a(z=)—u (z,+)——~ (z,+).

This three-body decay model cannot be taken too
seriously; however, some features of it may be approxi-

t ly ti Fi d.

V. DISCUSSION

The results which are common to all cases with the
most general Hamiltonian II=Pl+H2 are Eqs. (3),
(6), and (7).Equation (3), which says the pv amplitudes
for Z+ —& py and . ~,Z y vanish. , is also a result of
SU(3) plus TL(1) invariance. "Our Eq. (6) holds for
the pc amplitudes only, but in SU(3) both pv and pc
amplitudes satisfy these relations. Equation (7), which
differs from Eq. (6) in phase only, is the analogus
result for pv amplitudes. Assuming that the experi-
mental pv amphtudes do not vanish, this phase dif-
fcI'cncc IQay cvcntuRlly bc tested, but fol soIQc tlIQc, at
least, these results will be indistinguishable.

Also observe that in Case III with II~, but not H2,
the ™—+ Z y decay is forbidden altogether. According
to Ref. 4, this mode is not expected to compete with

—+ Am, and so this prediction, perhaps, cannot be
tcstcd.

As has been seen using the Hamiltonian II2, and CI"
invariance, all pv amplitudes vanish in Cases I and II.
This result has been obtained by Pakvasa and Graham'
in a current algebra model, by Toda" in a U(12) model,
and by Akemollo et uL" and Matinyar'4 in an SU(6)
modeL Tanaka" has also obtained this result in SU(3)
using an octet Hamiltonian. A common feature of all
these models is CP invariance.

As an attempt to understand the reason for the phase
difference between pc and pv amplitudes in Eqs. {6)

» Y. Hara, Phys. Rev. Letters 12, 378 (1964).
'2 A. Yoda, Prog. Theoret, Phys. (Kyoto) 34, , 702 {1965)."M. Ademollo, F. Bacel1a, and R. Gatto, Nuovo Cirnento 30,

316 (1965).
'4S. G. Matinyan, . Yadernaya Fiz. 2, 151 {1965} /English

transi. : Soviet J. Nucl. Phys. 2, 106 (1965)j.» K. manana, Phys, Rev. 140, @463 (1965).
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and (7), consider the consequences of a
~
Ug —U;~ =1

selection rule. Here, U, refers to the SU(3) U spin of the
initial baryon and Uy is that of the final baryon. Such a
selection rule would forbid the transitions

and would allow

~1—1}~~00}~~11}.
The quantum numbers here are, of course, U and U3.
(For our phase choice see the equivalent E-spin assign-
ments of Rosen. ")

The results obtained with such a selection rule are
the same as those given by Eqs. (3) and (4). Therefore,
the pv sum rules are consistent with a

~
U, —U,

~

=1
selection rule in SU(3). However, in SU(3) it is not
clear how to define an SU(3) spin with the couplings
we have used. Therefore, we cannot show that there is a

~
U~ —U;~ selection rule as a consequence of the model

but we suggest there may be some connection.
It is interesting to note that the major difference

between Case I and Case II is in the sum rule relating
pv and pc amplitudes. This suggests that it might be of
interest to use (6,6*)+(6*,6) breaking for the non-

leptonic decays. The result is that instead of Eq. (1) of
Ref. 2 wc obtain

~ (&++)+&(&++)=o

Since this is obviously not satis6ed, the use of the
(6*,6)+ (6,6*) breaking is questionable.
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Possible superconvergence sum rules are investigated for meson-baryon and baryon-antibaryon scatter-
ing, For meson-baryon systems, two simple procedures involving difterentiation with respect to t at t=0
are presented, and the explicit subtraction of leading Regge-pole contributions is discussed and applied to
~-Z and x-N systems. Finally, we write down superconvergence relations for backward N-N scattering and
obtain sum rules involving various meson-nucleon coupling constants.

I. INTRODUCTION

T hRs bccI1 1cIllRrkcd that ccltRln 1ntcgral relations
~- for invariant amplitudes foBow directly from dis-

persion relations and asymptotic bounds. These "super-
convergence relations (SCR's)" usually appear in re-

actions of particles with spin involving hclicity Qip in

the crossed channel. ' Using a Regge formalism and

conjectured upper bounds for the intercept at 3=0 for
trajectories n(/) with exotic" quantum numbers, one

can hand cases where the combined eRect of internal
quantum numbers and helicity Qips suggest a SCR for
forward scattering amplitudes. ' '4

The SCR's predict interesting relations if they are
saturated by the contributions of a fcw low-lying states.

*Work supported. by the U. S. Air Force Once of Research,
Air Research and Development Command, under Contract No.
AF 49(638)-1545.

' V. de Alfsro e3 a/. , Phys. Letters 21, 5N (1966).
' T. L. Trueman, Phys. Rev. Letters 17, 1198 (1966).
' P. IIlabu, F. Gilman, and M. Suzuki, Caltech report, 1966 (un-

published).' rIl, Saldta g,nd K, C. W@h, Phys, Rev, Letters 18, 29 (1967),

It has been found in the few cases discussed so far that
such a saturation is not unlikely and in particular may
reproduce results of various symmetry schemes. "'
This encourages further investigation of other hope-
fully superconvergent relations.

By making use of the requirement that superconverg-
ence holds also for negative values of the momentum-

transfer variable t, or of the explicit form of amplitudes
in the Regge theory, more SCR's can be suggested. Two
simple procedures involving differentiation with respect
to $ at 1=0 and explicit subtraction of leading Reggc-
pole contributions are discussed and illustrated in the
next two sections.

In Sec. IV wc note that a division by the thresh-
oM factor leads directly to SCR's for partial-wave
amplitudes.

%c next consider three SCR's which hold for back-
ward XX scattering provided (r0ra) (=s0& where

ua=s(0) is the zero-energy intercept of a Regge tra-

jectory with baryon number 8=2. The resulting sum

' R. Dehorn, Phys. Rev. (to be published),


