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Unitaxy Restrictions on Scattering Amplitudes from
Dynamical Groups*
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A method is discussed for deriving restrictions consistent with unitarity on partial-wave amplitudes for
two-body reactions, starting with a dynamical group which is a good symmetry only for certain three-point
functions. As a simple illustration the application to the quark-antiquark-15 vertex in U'(2, 2) is worked
out in detail. The method is applied to the 364-364~-143 vertex in U'(6, 6) and sum rules are derived for the
partial-wave amplitudes for baryon-antibaryon annihilation into two mesons. The results are seen to be
explicitly consistent with unitarity and with the threshold behavior normally expected for partie, l-
wave amplitudes.

I. AT'RODUCTrom

~JR&NG the past ye», several attempts were made
to construct a theory which would incox'porate the

good, results of SU6' in a relativistic framework and,

enable one to write down 5-matrix elements which were
invariant under a dynamical group like SU6 and, under
the Poincare group. Prominent among these werc the
U(12) or U(6,6) theory of Salam et ul. ,

s the (SUrs)a
scheme of Beg and Pais, ' and the M(12) theory of
Sakita and. tA'ali. 4 It was soon realized, however, that
when apphed to an arbitrary I-point function, these
theories were in convict with the unitarity of the 5
matrix. Fill ther) foI' many two-body I'cRctlon RITlpll-

tudes, they predicted results which were at variance
with experiment. ' "

FoI' three-point functions, however, these thcoI les

seemed, to make useful predictions; for instance, for
the nucleon electromagnetic form factors the predictions
of zero-charge form factor for the neutron and the shape

equality of the proton electric and magnetic form factors
were in fair agreement with the data. It was suggested
that perhaps a group like U(6,6) should be regarded as
a symmetry only of three-point functionss "' this more
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restricted, assumption would, not be in conQict with
unitarity.

Given R sct of three-point functions —thc CGcctlvc
meson-baryon and meson-meson vertex functions —one

may immediately write down simple approximations
for scattering amplitudes by buiMing these from vertex
functions. Such a program was indicated by Salam
et al.', an E/D calculation of scattering amplitudes
starting with vertex functions has been undertaken by
Hah et cl."—"

There is, however. , a different method. of obtaining
information about two-body reaction amplitudes once
we are given the three-point functions: The basic id.ea
behind this method is the following. Unitarity states
thRt thc absorptive part of R vertex function IDRy bc
expressed in terms of a sct of scattering processes
obtained by dispersing the vertex in an appropriate
channel (with energy W, say) and inserting a complete
set of (physical) intermediate states. For a given value

of 8', only those intermediate states which have a
threshold at an energy below 8' will contribute to the
unitarity relation. Any restrictions on the structure of
R vcrtcx function) such Rs those provldcd by R sym-

metry (whether it is an exact symmetry or one that is
broken in a specified way) will imply definite restrictions

on the scattering processes to which the vertex function

is related by unitarity. It is such relations that we shaH

examine in our present work.
%hen the unitarity relation can be approximated by

R set of two-body intermediate states, these relations
become particularly simple. (Note that when the lowest-

mass lntermedlate state ls a two-body state, then only
this state contributes to the unitarity relation in the

energy region between the lowest threshold Rnd the
next lowest one, and the two-body unitarity relation is
exact.) The unitarity condition now gives a relation
between the absorptive part of a vertex function,
another set of vertex functions and the partial-wave

amplitudes for a set of two-body reactions. If re-

"G. R. Goldstein and K. C. Wali, Phys. Rev. ISS, 1762 (196'j).
'4 E/D calculations using 5U(6) —invariant vertices have been

carried out by R. Gatto and G. Veneziano (Ref. 15).
» R. Gatto and G. Veneziano, Phys. Letters 19, 512 (1965);

20, 439 (1966).
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strictions are imposed, on the vertex functions, this
gives rise to corresponding restrictions on the partial-
wave amph tudes.

The impol tant feature of this method is that the
relations thus obtained are automatically consistent
with unitarity, as may be expected qualitatively, as
they have been obtained. from the 2-body unitarity
relation for a vertex function.

This method in itself is quite independent of any
symmetry group. For instance it may be utilized for
obtaining restrictions on two-body amplitud. es from
empirical information about the form factors. The role
of the symmetry group is to provide relations between
different three-point functions, which our method,
translates into relations between partial-wave ampli-
tudes, which are consistent with unitarity.

To illustrate our method, we first discuss its appli-
cation to an internal symmetry group, considering the
isospin group for simplicity.

Consider the three-point functions for the mEE and
+AS*vertices. Assuming isospin invariance of the m XS
vertex function, one may write each of the vertex
functions ~'pp and 1r+mp as the product of a Clebsch-
Gordan coefficient and the same reduced, matrix element
n"")(s). Approximating the intermediate states in the
unitarity relation for these vertex functions by the
two-body states (w'+P) and (~++I1), we obtain the
following equations:

—g-'Imago)')= g 'no)»&—~'p~-T +~~'p&*

+g-'no)» &))-'p
[ TI) g )

7r+n)*, (1.1)

+g 'no)»&~+e~ Ti(-~ )~+n&, (1.2)

where the amplitudes (~'p
~

TI~2+~ 1)'p), etc. are the P&~&

partial-wave amplitudes (with 1=1, J=-', ).
Using time-reversal invariance and eliminating

Imn"")/n""), we 6nd the relation

the same quantum numbers, so that a vertex function
can be constructed.

If for a given partial wave, particles exist for all the
allowed quantum numbers, then the relations obtained.

(by assuming the invariance of the vertex functions
under the purely internal syrnrnetry group) are the same
as those resulting from the invariance of the four-point
function. This can be shown to be true for an arbitrary
internal symmetry group; the reasons are that: (i) The
exact syminetry of the vertex function implies that
2-particle states can be written as a, sum of orthogonal
parts belonging to diGerent irreducible representations
of the symmetry group, with the usual Clebsch-oord, an
coeKcients, which in turn implies the invariance of the
scattc1111g amp11tudc, and (11) tllc pl'occss of projecting
out the partial waves is independ, ent of the internal
symmetry group.

Other features of the relations obtained above which
are true only for a purely internal symmetry group are
the following: (i) These relations are valid at all
energies; and (ii) they are independent of the mass of
the third. particle in the vertex.

When one starts with a dynamical group, the internal
symmetry is no longer decoupled, from the lanematics,
and the relations obtained do not have the properties
stated above.

The relations obtained above are consistent with
unitarity. This is seen immediately by writing Eqs.
(1.1) and (1.2) in the equivalent form

1
&&
—)—l ))+~&ll '~))); (L4)
V3

O= —{—)~'p)+HZ~~+~))) T„(
v$

By starting with the xÃÃ* vertex for an Ã* with
J=-,' and I=-'„ the same relation as (1.3) is obtained
for the P3~2 1' partial-wave amplitudes (with /=1,
~=I)

In the above considerations, the X and the Ã~ couM
be replaced by other particles with the same internal
quantum numbers but diferent spins; one would then
obtain the relation (1.1)—(1.3) for other partial waves.
These are the relations for the partial-wave scattering
amplitudes which result from the assumptions of SU2
invariance of the vertex functions and two-body
unitarity.

A limitation of this method is immediately apparent:
Relations can be obtained only for the amplitudes in
those partial waves for which there exist particles with

X—(v2 i ~'p&+ i ~+N)) . (1.5)

As any function f of the form f= Imn/n, with n/0,
satisfies the partial-wave unitarity relation Imf*=

~ f~'

identically, the partial wave amplitude on the right-
hand side of Kq. (1.4) is unitary.

By introducing more 2-body intermediate states, e.g.
(X+A) and (E'+Z) i'n the present case, one obtains
equations analogous to (1.1) and (1.2) with more
independent functions n(~),' these give coupled relations
for the partial-wave amplitudes for the reactions
wÃ~~Ã, zÃ~EA. and, ~E —&EX. If, however, one
starts with a larger internal syrrnnetry group, e.g.,
SU3, such that E and m are in the same multiplet (and
similarly for X, A and Z), the number of independent
functions is again red, uced,
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To apply our method to obtain relations from a
dynamical group like U(6,6) we first give a precise
statement of our assumptions. "

The conjecture that U(6,6) may be a good symmetry
only for three-point functions needs qualification.
Firstly, it is only particles at rest that can be assigned
to irreducible representations of U(6,6). Particles with
nonzero momenta, subject to the equations of motion,
cannot be assigned to irreducible representations of the
group, so that the sylnrnetry is immediately broken.
It is because the symmetry of the vertex is broken
right at the outset that it will be possible to obtain in a
consistent way scattering amplitudes which are non-
invariant (as they must be if they are to be compatible
with unitarity). Even though the vertex symmetry is
broken, our assumption that particles at rest can be
classified according to representations of the dynamical
group gives rise to relations between vertex functions
with different spin states.

Secondly, the assumption of U(6,6) invariance of the
3-point function (subject to the intrinsic symmetry
breaking through the equations of motion) in itself
gives exact relations between diferent 3-point functions
only at one value of the energy variable. To obtain
relations which are a function of this variable, addi-
tional assumptions are required. Thus the results for
the nucleon electromagnetic form factors'' were ob-
tained by making the additional assumption that these
form factors were dominated by vector meson poles.
Results for the baryon-baryon-vector meson vertex may
be obtained if one assumes that the vector meson wave
function obeys the mass-shell conditions (i.e., the equa-
tions of motion), which are strictly true only at one
value of the energy. Thus the prescription for writing
3-point functions starting with U(6,6) can give only
approximate relations for vertex functions considered
as functions of the energy variable.

Thirdly, it is known that the intrinsically broken
U(6,6) is good only for certain vertex functions;
specifically it forbids most vertex functions involving
an orbital angular momentum higher than one. ' Among
the forbidden vertices are, for instance, those corre-
sponding to the experimentally observed decays f'~ 2ir,

As —+ pir, iV*(—,
'

) —+ Ear, I"s*(—', ) —+ Fm, etc., when we

assume the simplest assignments for the x, p, S, and Y
to representations of U(6,6).'r Thus it is not possible to
assume as a general principle that dynamical groups like

U(6,6) are good for all 3-point functions. However, for
certain 3-point functions, in particular the meson-
baryon-baryon vertex, good results have been obtained
from U(6,6) and for these vertices we may use our
method to obtain relations for the partial-wave ampli-
tudes involved.

"For convenience, most of our statements about dynamical
groups will be made in terms of U{6,6); they may be modified
so as to apply to other groups as well.

'r H. Harari, Phys. Rev. Letters 14, 1100 l196Sl.

We now formulate our basic assumptions:

(1) Single-particle states can be usefully classified

by the finite-dimensional irreducible representations
of U(6,6).""States at rest are assigned to such
representations of U(6,6); for states with a nonzero
momentum the wave functions are obtained by applying
the Bargmann-Wigner equations to the wave functions
in the usual way. '

(2) The structure of the simplest three-point func-
tions which involve an orbital angular momentum less
than or equal to unity, in particular the B-B-P,
B-B-V, B-B~-P, B-B*-V, P-P-V, P-V-V, and V-V-V
vertex functions, is correctly prescribed by writing a
formally U(6,6)-invariant vertex and putting in for
the particle wave functions the forms obtained by
imposing the Bargmann-Wigner equations. (Here 8
is a —,'+ octet baryon, B* a -', + decuplet baryon, I' a
singlet or octet pseudoscalar meson, and V a singlet or
octet vector meson. )

Note that we do not classify 2-particle states by
representations of U(6,6). Doing this would immedi-

ately result in all the "bad" predictions of U(6,6)
invariance for four-point functions. That classifying
2-particle states into representations of U(6,6) would

lead to difFiculties is evident when we note that the
direct product of 2 finite-dimensional representations
of U(6,6) contains only states with a finite number of
angular momenta, while a two-particle state in which

each particle has a definite momentum is a superposition
of states with an infinite number of angular momenta.

The contents of this paper are briefly as follows: In
Sec. II we apply our method, to the quark-antiquark. -15
vertex in U(2, 2) and obtain the restrictions on the
quark-antiquark '50, 'S~, and 'D~ elastic partial-wave
amplitudes; these show in a simple way the nature of
the results obtained for a dynamical group. In Sec. III
we obtain some relations for baryon-antibaryon annihi-

lation into two mesons by applying our method to the
364-364*-143 vertex in U(6,6). In Sec. IV we sum-

marize our conclusions. In the Appendix we collect
some expressions referred to in the text.

In subsequent papers we shall obtain detailed results
for baryon-antibaryon annihilation into 2 mesons and
for meson-baryon scattering; we shall also apply our
method to groups like SU(6) s .""

"This application of a dynamical group for purposes of classi-
fication of particles rather than as a conventional invariance group
is akin to the use of these groups as "noninvariance" groups, or
"spectrum-generating" groups. For a discussion of these, see
Ref. 19.

"E.C. G. Sudarshan, Proceedings of the Eastern Theoretical
Physics Conference, Stony Brook, 1965 (to be published); N.
Mukunda, L. O'Raifeartaigh, and E.C. G. Sudarshan, Phys. Rev.
Letters 15, 1041 (1965); and Y. Dothan and Y. Ne'eman, in
Proceedings of the Second Topical Conference on Resonant Particles,
(University of Ohio, Athens, Ohio, 1965), p, 17.

'OH. J. Lipkin and S. Meshkov, Phys. Rev. Letters 14, 670
(1965); K. J. Barnes, ibid. 14, 798 {1965).
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II. THE QUARK-ANTIQUARK-15
VERTEX IN U(2)2)

We shall now apply the ideas of the preceding section
to the dynamical group U(2, 2) and derive the restric-
tions on the quark-antiquark (Q-Q) elastic partial-wave
amplitudes with J= 1 and 0 that follow from the
assumptions of

(i) U(2, 2) invariance of the Q-Q-15 vertex function,
where this invariance is understood to be subject to an
intrinsic symmetry breaking through the application
of the equations of motion, and; (ii) elastic two-particle
unitarity, where the Q-Q-15 vertex function is assumed
to be dominated by the elastic (Q+Q) intermediate
state.

Denoting the quark and antiquark operators by iP;
and iP' and the meson operator by q, U(2, 2) invari-
ance of the Q-Q-15 vertex implies that the vertex
operator is of the form g&iP;y,' and that the effective
vertex function is of the following form in the Q-Q
center-of-momentum (c.m. ) frame:

r(s) = [v'(P)u, (—Ii)C;Jn(s), (2.1)

where s= (pi+p, )', p, and p2 are the four-momenta
of the antiquark and quark, respectively, and n(s) is
an undetermined function of s.

The meson wave function C,'(q) in U(2, 2), after
application of the Bargmann-Wigner equations, is of
the form

specified above, must have the following form:

+, , x,)„"(~)=~(~)K,;i,x,v(~)D)„'*(v, ~, —v); (2 3a)

so,.)„i,"(s)=n(s)KO;~,—i,~(s)8i, ,—), (2.3b)

In (2.3), Fv describes the coupling of the QQ state
to a vector meson (V) and 5'" the coupling to a pseudo-
scalar meson (P). Xi, li2, p are the helicities of the anti-
quark, quark and meson, respectively, and X= (Xi—X2).

The functions n(s)K, , i,i,v(s) and n(s)Ko, i,i,~(s),
which we shall term the partial-wave vertex amplitudes,
are the matrix elements of the vertex operator between
the final meson state and an initial Q-Q state with
definite total angular momentum J and definite helici-
ties for the Q and Q:

n(s)K, i,i,v(s) =(J=1;lii4l 5'l J=1;p); (2.4a)

a(s)KO;i, z, (s) =(J=O; Xih21

foa

J'=0; 0). (2.4b)

The form of the dependence on (e, rp) of the right-
hand sides of (2.3a) and (2.3b) follows from rotational
invariance. The additional restriction imposed by
U(2, 2) invariance of the three-point function shows
itself in the appearance of the same function n(s) in
(2.3a) and (2.3b).

Substituting Kqs. (A.1)—(A.5) into (2.1) with C, '
replaced by (2.2), we obtain the following expressions
for the functions Kv and K~ defined by (2.3):

Kp, ++" Kp, v. 'JT———2.Pm(m——+E)
2

+ (W+2m); (2.5a)

where g), and g5 are the wave functions of the vector
and pseudoscalar mesons, respectively, contained in the
15 representation of U(2, 2), each meson having a mass
p. We shall work throughout in the Q-Q c.m. frame,
where the final meson is at rest.

Since the application of the 3argmann-Wigner
equations made above is, strictly, valid only when the
energy W of the QQ state is equal to the meson mass p,2'

an extrapolation is required in order that results be
obtained which would hold over a range of energies. A
prescription for making this extrapolation will be sug-
gested later in this section.

We quantize the initial Q-Q state along the z axis and
the final meson wave function along the direction (8,p).
Wave functions with definite helicity for the antiquark,
quark and final meson are given in the Appendix.

The vertex functions for the couplings of the quark-
antiquark state to a vector meson and a pseudoscalar
meson, with the initial and final particles quantized as

"Note that for a stable meson, this value of W lies below the
QQ threshold (and the absorptive part of the vertex function
vanishes at this energy}; to obtain significant results involving
scattering amplitudes at an energy above threshold, an extra-
polation is necessary.

K'. v=K .P'+ P +'—
m p

i Ex, ~= —xpe++ pe

mph
Ep.+ ~= —Ep., +~=0)

where
2m

1+

(2.5b)

(2.5c)

(2.5d)

and
X= [2p) "'[2m(m+E))-' (2.7)

In Eqs. (2.5)—(2.7), m is the quark mass, and E and
p are its energy and momentum respectively in the c.m.
frame. The first equality in each of the Eqs. (2.5)
follows from parity conservation.

Our assumption (ii) of elastic 2-particle unitarity
for the vertex function may be expressed in terms of
the partial-wave vertex amplitudes as follows:

1m[a(s)Kp. ), ),
v z(s))
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where p=0 in E',
, 1,&„~, and T, &„1,.v ~(s) are the

partial-wave helicity amplitudes for elastic Q-Q scat-
tering in the J=1 (V) and J=O (P) partial waves.
ImG(s) for a function G(s) denotes

Imn*(s) Xsv(s)
Vertex:

n*(s) XD~(s)

gss(s) g»(s) Xs'(s)
(2.13)

1
ImG(s) —=—LG(s+i0) —G(s—i0)j.

2j
(2.9)

(2.10a)

(W+ 2m)
+ 3(E+~)pj+2p& (2.10b)

In studying the threshoM behavior of the partial-
wave amplitudes, it is convenient to work in an L-S
representation. States of the initial Q-Q pair with
de6nite total spin S, orbital angular momentum L,
total angular momentum J and its projection 3f, which
are relevant to our problem are the 'So state with spin-
parity 0 and the 'S& and 'D& states with spin-parity
1 . The relations between these states and states with
definite J, M, Xi, li& are given in Eqs. (A.6)—(A.S) in
the Appendix.

Using (2.4), (2.5) and (A6)—(AS), partial-wave
vertex amplitudes in the J, Ã, L, S representation
may be written as follows:

gs-D(s) gDD(s) -XD-"(s)-

Eliminating Imn*(s)/a*(s) from (2.12) and (2.13), we
obtain the equations

gas(s) gsD(s) Xs (s) Xs (s)=f(s) . (2.14)
gSD (S)— gDD (S) XD—($) —XD ($)

As observed earlier, these results obtained from the
Q-Q-15 vertex would strictly be true only at W=p."
To obtain relations for 8" different from p and above
the QQ threshold, we shall assume that to a good
approximation, the restrictions imposed by the Barg-
mann-Wigner equations may be extended to an off-
mass-shell meson with mass Q(q') =W by replacing p
by W in the above equations. "A pri,oui, it is not clear
how good an approximation this would be for values
of lV considerably larger than p', this must be judged
by comparing the results with experiment in a realistic
problem. We expect it will be a good approximation at
low energies.

On making the above extrapolation we obtain from
Eqs. (2.14) the following energy-dependent sum rules:

j 2m—pLp&+3(E+m)'j+2p'I 1+

XLg..(.)—f(s)]+2~2p' P+1+

(W+2m)
X P+

p

These equations de6ne X, Xq, and XD .
Here,

I V) and IP) denote a vector meson and a
pseudoscalar meson, respectively, and the superscripts
V and P denote 1 and 0 partial-wave amplitudes.

In the L Srepresentation-, the Q-Q elastic partial-
wave amplitudes relevant to our problem are the
following:

f(s): 'Sp —+'Sp,

gSS(s) Sl~ Sit)

gDD(s): 'D1 ~ D1,
gSD($)=gDS(s) ~ Si~ Dl ~

(2.11)

The amplitudes gsD(s) and gDS(s) are equal by
time-reversal invariance.

The unitarity relations in terms of the amplitudes in

the L-S representation give the following equations:

XgsD(s) =0; (2.15a)
2m

2%2p' p+1+ [gDD(s) f(s)j—8'
2111

+ Pl p'+3(E+—~)'j+2p'I 1+
W

XgsD(s) =0. (2.15b)

These are the restrictions on the 0 and 1 QQ elastic
partial-wave amplitudes which follow from the assump-
tions (i) and (ii) about the Q-Q-15 3-point function.

We now examine briefly the nature of the restrictions
we have obtained on the partial-wave amplitudes.

A. Consistency with Unitarity

It is easy to see explicitly that Eqs. (2.12) and (2.13)
are consistent with unitarity. From (2.12), the 0
partial-wave amplitude f(s) satisfies the unitarity
relation

Imf*(s) = If(s) I'

Imn*(s)
0- Vertex: — = f(s),

a*(s)
(2.12)

"When the meson is oG the mass shell, it has additional com-
ponents (which become redundant on the mass shell). We assume
that these components are small when P" is not very diRerent
from p,
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B. Threshold Behavior

Consider the equations (2.15a) and (2.15b), divided

by factors p and p' respectively. Noting that the partial-
wave amplitudes f(s), gss(s), etc. , are the amplitudes
with the behavior of [expi8,] sinai, we assume the
threshold behavior

f(~)-p
g»4')- p

gso(s)- p',

gnn(~)- p',

as p'~ 0;
as p'~ 0;
as p' —+0;
as p' —+ 0.

(2.16)

The equations (2.15) when evaluated at threshold
(after division by p and p') then give the following
relations:

342
A ('Sp) =A ('Si) = — m'A sn,

2
(2.1"/)

where A ('S,) and A ('Si) are the singlet and the triplet
5-wave scattering lengths, and A ga is the triplet 5—+ D
scattering length in QQ scattering:

f(~)
A ('So) =

gss(s)-
A ('Si) = (2.18)

gsn ($)

Our approach applied to Q-Q scattering thus gives
relations which are consistent with unitarity and with
a nonvanishing scattering at threshold.

We have dealt with the problem of the Q-Q-15 vertex
in some detail, as it shows in a simple manner the
qualitative features of the predictions of our approach,
which are preserved in more realistic and more com-
plicated cases. Such a realistic example we shall discuss
in the next section.

identically because of its representation as Imn*(s)/
~*(~)

Kqlla'tioll (2.13) s'ta'tes 'tlla't

Xs"(s)

Xn" (s)

is an eigenvector of the matrix [g] occurring on the
right-hand side of Kq. (2.13), belonging to the eigen-
value Ima*/n*= f(s). Equation (2.13) [or (2.14)]
specifies the action of [g] only on this eigenvector,
Further, (2.13) implies that the relation Img~=gtg=ggt
holds identically when operating on this eigenvector.
Hence (2.13) is consistent with partial-wave unitarity.

III. THE 364-364*-143 VERTEX IN U(6)6) AND
BARYOÃ-ANTIBARYON ANNIHILATION

Dt'TO TWO MESONS

In this section, we shall apply our considerations to
obtain restrictions on physically measurable reaction
amplitudes, namely those for baryon-antibaryon an-
nihilation into two mesons. The baryons and anti-
baryons we consider will be components of spin-~ SU3
octets belonging to the 364 and 364* representations,
respectively, of U(6,6), and the two mesons will be two
vector mesons, or two pseudoscalar mesons, or a vector
meson and a pseudoscalar meson, where in each case
the two mesons belong to the same 143 representation
of U(6,6).

%e 6rst note that the representations common to the
decompositions of 364)&364* and 143)&143 (with
identical 143's) are just a 143 and a 5940 (besides the
trivial 1-dimensional representation).

We consider the 364-364*-143 and the 364-364*-5940
vertex functions and assume that the unitarity relation
for each of these is dominated by the contribution of
two-meson states, where we include all two-meson
states consisting of vector and/or pseudoscalar mesons
belonging to the 143 representation.

This is admittedly only a rough approximation, as
3-meson annihilation is known to be strong in nucleon-
antinucleon collisions. However, we may expect that
the results obtained with this approximation will not
be bad at low energies.

%ith this dynamical assumption, our method. when
applied to the 364-364*-143 and the 364-364*-5940
vertex functions will predict a set of relations among the
partial-wave amplitudes for baryon-antibaryon (BII)
annihilation into 2 mesons.

Noting that the parities of U(6,6) multiplets are
assigned uniquely by the assumption that they trans-
form as

(3 1)

etc., and that the basic quark 6eld is a Dirac held, the
M multiplet will, on. application of the Bargmann-
%igner equations, describe 0 and 1 SU3 singlets and
octets, while the 5940 will describe states with spin-
parity 0+ and 2+ belonging to the 1, 8 and 27 repre-
sentations of SU3, and 1+ states belonging to the 1, 8,
10, 10* and 27 representations of SU3.

Therefore our method when applied to the 364-364*-
143 vertex will give relations involving the 0 and 1
partial waves, and when applied to the 364-364*-5940
vertex will give relations involving the 0+, 1+ and 2+
partial waves.

A complete treatment of this problem will be given
in a subsequent paper. Here we shall outline the appli-
cation. of our method to the 364-364*-143 vertex and
discuss some of the results obtained.

The procedure is analogous to that for the Q-Q-15
vertex in the last section. U(6,6) invariance of the
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364-364*-143 vertex implies that the eRective vertex
function is of the form

a(s) .11/(/(Bc)11/ ~ r) (3.2)

where the completely symmetric 4'{»&) is the wave
function for the 364 and the traceless tensor q ~D is the
wave function for the 143. n(s) is an undetermined
function of s= i/Vs= (Pl+Ps)', in a notation analogous
to that of Sec. II.

Similarly, U(6,6) invariance of the 143-143-143
vertex (which is coupled to the 364-364*-143 vertex
through the unitarity relation) implies that the eRective
vertex function is of the form

p(s)CeaCz ~/t)an, (3 3)

where the first two 143 wave functions refer to the same
143 and p(s) is an undetermined function of s.

Writing the SUsg U(2, 2) decomposition of the wave
functions 0'{~~~), C~~ and q~~, and applying the
Bargmann-signer equations in a well-known way, we
can separate the part of the coupling (3.2) involving
the spin-~ baryon and antibaryon octets and write it as
a sum of couplings of these baryon and antibaryons to
the 0 and 1 SU3 singlets and octets in the 143 tensor
s)eD. The assumption of U(6,6) invariance thus enables
us to express each of these couplings as a known factor
X times the same function n(s)

A similar procedure applied to the coupling (3.3)
enables us to express it as a sum of couplings of

(V,+V.), (V,+P,) and (P,+P,) states to the 0- and
1 SUS singlets and octets in pt.-, Here V„and I',
denote vector {V) and pseudoscalar (P) mesons

belonging to the ~ and s representations of 5U3, where

r, s may each be an octet or a singlet. Again, each of
these couplings is given by a known factor b times the
function p(s).

With the assumption of SU3 invariance for the
partial-wave reaction amplitudes occurring in the
unitarity relation for the vertex functions, the 2-meson

intermediate states that can contribute to the unitarity
relation for the diRerent vertex functions are the
followlng

(a) The (0—,1) vertex:

(Vl+ Vl); (Vs+ Vs); (Vl+Pl); (Vs+Ps)

(b) The (0,$) vertex:

(Vl+ Vs); (Vs+ Vs)s', (Vl+Ps);
(Vs+Pi); (Vs+Ps) f

(e) The (1,1) vertex:

(Vl+ Vl); (Vs+ Vs); (Vl+»);
(Vs+Ps); (Pl+Pl); (Ps+Ps).

~ Here we characterize the vertex functions by (J~,R) where
J~ gives the spin-parity and R the SU3 representation of the part
of the tensor qD~ which occurs in each of these vertices. The
subscripts d and f denote the symmetric and antisymmetric 8
representations occurring in the direct product of the two 8
representations (when both the mesons are SU3 octets. )

(d) The (1,$) vertex:

(Vl+ Vs); {Vs+Vs)t ', (Vl+Ps); (Vs+Pl);
(Vs+Ps)e, (Pi+Ps); (Ps+Ps)f

In obtaining these, we have taken into account the
requirements of 5U3 invariance, parity conservation,
and charge-conjugation invariance. Further restrictions
are imposed when the two mesons are identical.

The diRerent partial-wave reaction amplitudes that
enter the unitarity relation are the following:

(i) BB—I V+V in the 0 state:

(ii) BB—) V+V in the 1 state:

sg ~ lp . sg ~ sp . sg ~ sp . sg ~ sf .
Dl + Pll Dl~ Pll +1~ Pil Dl~ fl ~

(iii) BB +V+P i—n tile 0- state:

lg ~Sp

(iv) BB—& V+P in the 1 stale:

sR ~ 'Pl' 'Dl ~ 'Pl

(v) BB—& P+P in the 1 state:

~i~ Pl/ 1/1~ Pl

Here we have used the well-known spectroscopic
notation

(3.4)

to denote the spin 5, orbital angular momentum L,
and total angular momentum J of a two-particle state.
For the 1n1t1alBB state, I.=O 1 2 3 . are denoted

by the letters 5, I', D, Ii, . , whereas for the final
two-meson state they are denoted by the letters s, p,
(E, f,

The un)tarity relations for the (0,1), (0,8), (1—,1),
and (1,8) vertex functions may now be written down

as follows:

(1) (0 ,1) vertex:

Imn(s)
XP(1) L/1 P(1)vg P(1)+/t" P(l)sg P(1)

+q IPO)*g IP(1)+/1 IP(1)+g IP(1)] (3 5)

(Z) (1 , 1) vertex:

Imn(s)
X'"'(i)= L&{&»'")*(i~ f)B»'")(f)

p(s)

+&»'")*(i~ f)Bss'") (f))

+ q' IV(1}i(i)g IV(1)+ /1" IV(1)W(i)g I V(1)

I/v(1)4(i)c/ I/v(1)+ /1" //vo)4(i)q I/v(1) j (3
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Similar equations may be written for the (0,8) and

(1,8) vertices. The notation used in Eqs. (3.5) and
(3.6) is the following:

In Eq. (3.6), Xv&" (i) is the kinematic factor [ob-
tained from (3.2)] in the vertex function connecting a
BB system in a state i (where i='Sl or 'Dl) to a vector
(V) particle in the SU2 representation 1 [denoted by
the superscript (1)j.

Similarly, g»v&" (f) is the kinematic factor [ob-
tained from (3.3)] in the vertex function connecting a
(Vl+ Vl) system in the state f (where f= 'Pl, 'Pl, 'Pl
or 'fl) to a vector (V) particle in the SU2 represen-
tation 1. The subscripts 11 denote that both the vector
particles in this vertex function are SU3 singlets.
(Similarly, the subscripts in g»v' ' indicate that both
the vector particles in this vertex function are SU3
octets. )

K llv&(i —& f) is the 1 partial-wave amplitude (V)
for the reaction B+B—+ Vl+Vl connecting a BB
state i to a (Vl+Vl) state f, both states being com-
binations of particle states corresponding to the SU3
representation 1.Thus, v'llv&" (i-+ f) is anSU2 reduced
matrix element for the 1 partial-wave amplitude.
Again i='Sl or 'Dl, while f runs over 'pl, 'pl, 'pl, and
5f

The functions gll'v&'& and T'll' &'& refer to similar
quantities when the two-meson system is (Vi+F2),
while g, l" t'& and 1'l,"v&'~(i) refer to functions corre-
sponding to a two-meson system (Pl+Pl). The
quantities in Eq. (3.5) are defined similarly; the super-
script I' (for pseudoscalar) denotes that here the spin-

parity of the partial-wave amplitudes and the vertex
amplitudes (considered in the appropriate channel)
are 0—.

Eliminating Imn(s)/P(s) from Eq. (3.5) and the two
Eqs. (3.9) (for i = 2Sl and 'Dl) gives 2 equations. These
equations relate the SU3 reduced matrix elements
(corresponding to the representation 1) for the 0 and
1 partial-wave amplitudes occurring in Eqs. (3.5)
and (3.6).

A similar set of two equations may be obtained for
the SU3 reduced matrix elements corresponding to the
representation 8 by eliminating Imn(s)/P(s) between
the unitarity relations for the (0,8) and the (1,8)
vertex functions.

Finally, by eliminating Imn(s)/P(s) between the
unitarity relations for the (0,1) and (0—,8) vertex
functions, we obtain a relation between the singlet and
octet reduced matrix elements for the same (0 )
partial-wave amplitude. (A similar relation may be
obtained between the singlet and octet reduced matrix
elements for the 1 partial-wave amplitude. )

These are the restrictions on the baryon-antibaryon
annihilation amplitudes that result from our assump-
tions of U(6,6) invariance for the vertex functions and
2-particle unitarity.

Before discussing the details of some of these results,
we note some general properties of them:

(1) The relations obtained here will involve the mass
a of the meson occurring in the 143 representation in

the vertex function; this enters through the application
of the Bargmann-signer equations, which are strictly
valid only at 8'=a. To obtain relations for t/t/'Pa, we

shall assume, as in Sec. II, that replacing u by W gives
relations that are approximately valid. This will be
done in the relations written below.

(2) Our results give relations involving the different

partial wave amp-litudes. Although this requires detailed
measurements to be carried out for these reactions, it
has the advantage that when the required experimental
information becomes available, it will provide a reliable
test of our basic assumptions because a fortuitous
agreement of experiment with such detailed predictions
would be unlikely.

(3) Our results are automatically consistent with
unitarity, for the same reasons as discussed in Sec. II.

(4) The restrictions we derive for the BB annihi-

lation amplitudes do not require them to vanish at the
BB threshold. We recall that assuming U(6,6) invari-
ance directly for the four-point functions and restricting
the couplings to the simplest (regular) type require
the annihilation amplitudes to vanish at threshold, "
which is at variance with experiment.

YVe now list and brieRy discuss some of the simpler
relations obtained by eliminating Imn/P from (3.5),
(3.6), and the other two unitarity equations. We shall

express these relations in terms of the amplitudes f~
and fv obtained by dividing the amplitudes 1~ and Kv

by the momentum factor

(P,) l;+lt2(t2 ) lf+ll2 (3 &)

i[f»'&»+-'2f, g t»]—H,f»'~"' =0. (3.8)

The notation here is as explained after Eq. (3.6) and
before (3.'1). Hv is a function of the meson and baryon

so as to factor out the threshold zeros in 1~ and V'~.

Here, k; and 1; are the c.m. momentum and the
orbital angular momentum respectively for the initial
BB state, and kf, ly are the corresponding quantities
for the final 2-meson state.

For convenience in writing the relations below, we
mak. e the approximation of taking equal masses among
the vector mesons, and among the pseudoscalar mesons,
but keep the vector meson and pseudoscalar meson
masses diAerent; we also assume that the mass of each
meson is less than the baryon mass.

The simplest relations are those for the 2-meson
annihilation amplitudes at the baryon-antibaryon (BB)
threshold. The equations obtained by eliminating
Imn/P from (3.5) and (3.6) give the following relation
for the (0—,1) amplitudes at the BB threshold:



masses; it is the value at threshold of the function

2a)g 6+-, (3 9)
gyp'

.(v,) = "„—' ((+"—')((-'",-"',
)

4m() t( pv kos

+ I1+—.. .. ,...'.)
= —(V's)«('fl);

(3.12c)

(3.12d)

(3.12e)
where 8' is the total c.m. energy, k and k' are the meson
c.m. momenta for the reactions BB—+ VV and BB—+

VI; Mp RDd p~ Rrc thc cDcrgy RDd mass of thc 6nal
vector meson in the process BB—+ VI' and ~~ and p, g

the corresponding quantities for the pseudoscalar
meson

~
Rnd

io=s(I v+I~); ~=s(~v —~~);
mo ———,

' (mi+ms), (3.10)

2 «(v)Lfssv") (v)+s fllv") (v)]

+4Lf»'v"'+-'f»'v")]

+&oLf»"v"'+sf»"v"))=o (3.11).

Here r runs over the diferent possible angular mo-
lllelltillll conflgurat1ons fol tile (V+V) final sta'te ill

tile plocess 8+8~ V+V: v= pl, pl, pl and fi
The quantities ao, bo and co are the following functions
of the masses:

..(~,) =—' -((+"—')"'(2+"+"",
)IJv pv mo pv

4'fP~O Py Pp
1+——;(3.12a)

p y 'PÃ0 2p, y8$o

ko 2@v)
«(spl) = 8% 1+——

Iv
(3.12b)

where mj and m2 are the anti-baryon and baryon
masses respectively. ID thc bmlt p, y=p, I =p, Ho hRs
the value p/mo.

The relation (3.8) is obtained by noting that for
i=sDI the right-hand side of Kq. (3.6) vanishes at
threshold faster than X~&'& on the left-hand side, which
gives Imo(/P=O at threshold. Equation (3.5) then gives
the relation (3.8); while Eq. (3.6) for i=sSI gives the
following relation (where the initial BB system is in a
'Si state):

(3.12f)

Here ko and ko' are the values of k and k' at the BB
threshold.

We obtain relations for the (0,8) and (1,8) ampli-
tudes at the BB threshold in a similar manner. For the
(0,8) amplitudes, the relation is

iLfss"")+(v's)f»'")3 —&ofss"")=0, (3 13)

where Ho is again given by (3.9) evaluated at thresh-
old. For the (1,8) amplitudes at threshold (with the
initial BB pair in a 'Si state), the relation. is

Z «(v) Lf«v"'(v)+ (v'-')f»'") (v) 3

+&oLf»"")+(v's)f»"")+v'sfls"") j
+(ofss"v")=0, (3 14)

where ao(r), bo and co are given by Eqs. (3.12), and the
notation r is as in (3.11).

Finally, from the unitarity equations for the (0,1)
and. (0,8) states, we obtain the following momenturn-

dependent sum rule:

iLf»~")+ sf»P"'j —&f»'~")
= —6v3(iaaf»"("+V'sf»'") j—&f»"(") (3 13)

where H is given by (3.19).
All the relations given above are for partial-wave

amplitudes which are reduced matrix elements with
respect to SU3. To obtain relations for amplitudes
expressed in terms of particle states, it is best to express
the unitarity relation directly in terms of such ampH-

tudes. We give below two such sum rules, for pp annihi-
lation in the '50 state at threshold. In obtaining these,
we have used the restrictions imposed by the symmetry
character of the final state (in addition to those from
parity conservation and charge conjugation invariance);
also, we have taken into account q-co mixing and have
omitted the final states (ooo+ (po), ((po+Xo), and
(X'+X') which are forbidden at threshold when one
assigns the particles their physical masses. The rela-
tions for pp annihilation. amplitudes are the following:

(8/9)Lf'(A')+~f'(u+u )j+(2/3)f"(~~)+(5/9) f'(~()+(19~/18)Lf'(K'+K" )+f'(K"K*')j
=Ho( f'~ (Z* K+) f'~(K*+K )+f'~—(K*oKo) f'~(K*oKo)—

+ (V2/9V3)Lf'~((oXo) V2f'~((og)+ f'~(—O)II)]); (3.16)
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f'(r Y)+~f'6+~ }+(5/9)f'(~~)+ (4/~)f'(~v ) (—~&/3)f'(w )
—(4/13)f'(( ( )+ (9'/1o)f'(K* K'+)+ (11~2/1o)f'(K*'K*')

= —&o(v2/5)((1/v2)f" () ~+)—(1/~2)f"(u+~ )+(1/~) f' (u'X') (~—2/3) f"(~~')+ (1l3)f"(«')
+f'P(K* K+)-j'~—(K*+E )—-f'~(K*'Z')+ j'r (E*'K')) . (3.17)

VVC have for simplicity written the relations here with
degenerate meson masses {among the vector mesons
and among the pseudoscalar mesons); they may be
written with the physical meson masses by substituting
for IIO, ao, etc. more complicated expressions.

The sum rules (3.16) and (3.17) give inequalities
relating the partial cross sections for pp annihilation in
the 'So state into the diferent allowed two-meson 6nal
states. The available data on pp annihilation~ give
only the total cross sections. Wc may make a rough
comparison by assuming that the partial cross sections
for pp annihilation are roughly 1n the same ratio as the
total cross sections; the inequalities are then found to
be satis6ed. However, more detailed measurements are
Icqulred bcfol c Rn adequate comparison of oui plc-
dictions with experiment can be made.

We have in this section shown the diGcrcnt types of
relations that may be derived by our method by
starting with U(6,6) invariance of the meson-baryon
vertex function. A detailed treatment of baryon-anti-
baryon annihilation will be given in a subsequent paper.

more restrictive relations may be obtained which may
be easier to test. We shall also apply our method to
groups like SU(6)s.

A quark wave function with definite helicity, quan-
tized along the —s direction, and an antiquark wave
function with definite helicity, quantized along the +s
direction are given by the following:

--(~ 1))&(~)-
(A1)
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Dt. CONCLUSIONS

In this paper wc have discussed a method of obtaining
predictions for scattering amplitudes from dynamical
groups which are at best invariance groups only of
certain three-point functions. The method yields sum
rules which are consistent with unitarity Rnd, at least
for U(6,6), also with the threshold behavior normally
expected for partial-wave amplitudes. In Scc. II we
have illustrated the procedure in detail for the Q-Q-15
vertex of U(2,2), and in Sec. III we have obtained sum
rules relating the diferent amplitudes for baryon-
antibaryon annihilation into two mesons.

Although dynamical groups like U(6,6) have met
with serious objections, they have also made a few
successful predictions. The present work is an attempt
to combine the good results of such groups with dy-
namical assumptions so as to obtain useful results
which avoid thc traditional objcctlons to these gloups„
particularly the conQict with unitarity.

The relations predicted by our method for baryon-
antibaryon (BB) annihilation can in principle be tested
experimentally. In subsequent papers wc shaH discuss
in detail these and other predictions for 88 annihilation
as well as predictions for meson-baryon scattering. We
shall also discuss how by making further assumptions,

~'%e are indebted to Dr. Y. Kalogeropoulos for a discussion
of the experimental data on EE annihilation into 2 mesons.

5(+)= 8( )=-
1 0

(A4)

For the 6nal vector meson at rest, quantized along
the direction (e, q), a wave function p, with a definite
hebcity p is given by

Di, '(v, e, —v)
(—1)'

— — D0,'((, e, —~)
E2~j'" .D-~,'(~, (), —().

(A5}

(A6)

where p is the mass of the vector meson and the
D) „~(y, 8, —y) are the rotation matrices.

The relations between the '50, '5l, and 'Dq states for
the Q-Q system and states

I JM; X)X2& with a total
Rngular momentum J Rnd definite helicitlcs Xy Rnd X2

for the antiquark (Q) and the quark (Q) are given by
the following:
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1
+—(I»;+-&+I»; —+&); (A.7)

1
+ (I11;+—)+I11;—+&}. (A.g)

g6
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The weak (strangeness-changing) —electromagnetic decays of the hyperons of the type B —& Bv are con-
sidered in a broken SU(3)oxSU(3) model. Various sets of assumptions regarding the transformation prop-
erties of the particles, the breaking, and the Hamiltonian are examined and for each a set of sum rules for the
decay amplitudes is obtained.

I. INTRODUCTION

INCR the assumption that the weak hadron currents

~ ~ ~

~

~

generate the algebra of SU(3)SSU(3) has recently
found wide application in weak. -interaction physics,
several authors have investigated the possibility that
the SU(3) 3SU(3) may be an approximate invariance
group of the weak Hamiltonian. Iizuka and Miyamoto'
investigate the possibility that SU(3)SU(3) may be
an exact invariance group of H„and found that the
nonleptonic decays cannot be correctly described in
such a scheme. Later, Schechter and Ueda' found that
broken chiral SU(3)8SU(3) can be used to obtain a
new sum rule for the hyperon nonleptonic decays which
is in rough agreement with experiment.

The purpose of this paper is to investigate the
application of the group structure of broken chiral
SU(3)SU(3) to the weak-electromagnetic processes
which have recently been examined with a current
algebra approach by Graham and Pakvasa. '

II. THE SU(3)QxSU(3& MODEL

The space-time structure of the weak-electromagnetic
(WE) Hamiltonian is assumed to be given by"

EIwrs=Ã(A+Bus) o„.NF„„, .

*Work supported in part by an institution grant from the
National Aeronautical and Space Administration, Grant No.
NGR 15-005-021.

' J. Iizuka and V. Miyarnota, Nuovo Cimento 36, 676 (1965).' J. Schechter and Y. Ueda, Phys. Rev. 148, 1424 (1966).' S. Pakvasa (private communication).' R. H. Graham and S. Pakvasa, Phys. Rev. 140, 81144 (1965).
~ M. Hirooka and M. Hosoda, Progr. Theoret. Phys. (Kyoto)

35, 648 (1965).

where E is a baryon 4-spinor. Before examining the
SU(3)3SU(3) structure of this Hamiltonian, let us
review the model.

According to the model of Marshak, Mukunda, and
Okubo' the SU(3)SU(3) algebra is generated by two
sets of SU(3) matrices, A„' and B„",which satisfy the
commutation relations

[A„~,Ap j=b„Ap~ bpsA„, —
[8;",Bp ]=3„Bp" Spy" B„—

LA„s,Bp,"j=0.
For every SU(3)cglSU(3) tensor, primes are used
throughout this paper to indicate those indices trans-
formed by 8„&' and the unprimed indices are trans-
formed by A„~. Under parity I' and charge conjugation
C, the generators are transformed:

I': A~~ 8„.", B~' ~ A~,
C: A„&—+ —8 "' 8 &'~ —A ."'.

An irreducible representation of SU(3)SU(3), (pq, ps)
is transformed according to

In the notation of Schechter and Ueda, ' a four-
component baryon spinor E&' transforms under
SU(3)SU(3) as

fs"
Es = —i~sg's. )

' R. E. Marshak, N. Mukunda, and S. Okubo, Phys. Rev. 137,
$698 (1965).' J. Schechter and V. Ueda, Phys. Rev. 144, 1338 (1966).


