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A relativistic two-dimensional quark model is developed in which zero-mass quarks interact through a
massive, neutral vector boson. Exact solutions for the quark fields are found, and vector and axial-vector
current densities are constructed. An SU(3) &SU(3) algebra of the time components of these currents is
investigated by explicitly calculating the equal-time commutators. It is found that a]1 noncanonical terms
(Schwinger terms) are absent.

L I+TRODUCTIOÃ

'HE quark model of hadrons has been successfully
applied to the classification of particles and SU(6)

calculations. ' At the present time quarks have not been
detected, experimentally. In the current algebra pro-
gram' the quarks describe a mod, el that generates
equal-time commutation relations for the fourth com-
ponent of the current densities. This free-6eld quark
model describes an SU(3)XSU(3) algebra that leads
to sum rules, e.g., the Ad, ler-Weisberger relation for
the renormalization of the axial-vector coupling con-
stant in P decay. '

The commutation relations are abstracted. from the
quark model without presupposing that the quarks
have a physical reality. But the general consensus is
that hadrons are not elementary, but are composed. of
more fundamental constituents even though there is
presently no experimental evidence to support this
viewpoint. The results of recent work strongly suggest
that these fundamental particles are quarks with
fractional charge.

We shall investigate the relativistic quark mod, el in
which the quarks are "glued" together by a neutral,
massive vector boson. ' In order to obtain an exact
solution to the relativistic problem, we shall extend, the
two-dimensional Thirring model» to an SU(3) formalism

based, on triplet quarks. It is hoped, that with the aid of
this model, we may learn how to solve some of the
complex problems in the physical system in four
dlmenslons.

II. THE GELL-MANN QUARK MODEL IN
TWO MME5SIONS

We begin with the Lagrangian model of Gell-Mann. '
There is a triplet' lt; (i=1,2,3) of two-component
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fermion fields corresponding to three spin-2 quarks: the
isotopic doublet m and p, with charges s and —-'„

respectively, and the isotopic spin singlet P, with
charge —3.The singlet, neutral vector meson is denoted

by V„. The I agrangian is

2= —-', : (BsV "B„V„—m'V" V„):

where m is the boson mass and

3

Js=2 O'OA'i '~
The quarks have sero mass and the Lagrangian is
invariant under SU(3) transformations.

In Kq. (I), we have introduced a "double dot"
notation, which is explained in Appendix I.

The equations of n10tlon ob tRlned fI'om the
Lagl anglan RI'e

( +m):V, :=g:j,:,
i:V'~A': g::Vs:VV': =—o

(3)

The solution for V„ ls

V (x) = V '"(x)—g d'x'An(x —g' m)

&&:~;(*'):: (&)

If we choose V„'s(x)=0, then the V boson can be
treated as an unstable "elementary" particle. We shaD

6nd that this leads to a simple solution of our system of
equations. AVith this in mind, we obtain from Eq. (4):

6 V. Glaser, Nuovo Cimento 9, 990 (1958).
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i'ys8 lt (a)'+gs dss Az($ —a ' ~)

X:~.(*):.V,(*):=0 (6)

III. EXACT SOLUTIONS OF QUARK FIELD sl

We shall now solve Eq. (6) for the quar& fields P;(&)
by using a method that parRDels that for the Thirring

model given by Glaser. s
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The metric we use is of the form

x'=x, x'= I, g"=—1, g"=+1.
We shall employ the y-matrix representation

po -iq 0 iy

Ei o)
'

1 o)
'

and. the notation

The exponential operators in Eq. (14) may be written
as a product of a 6eld renormalization constant ZI"
and a normal-ordered exponential operator. r

By using the canonical equal-time commutation
relations of the free fields, and the special space-time

(g)
dependence of these LCM,s, one can easily verify that

(y„„(u„),y„,(u, ')) =0,
{y,,,t(u„), P.,,(u, ') }=8„h;,8(u,—u, ') .

Moreover, it follows that

ul —— x+f,—um= x+1.

Vhth the help of a little algebra, we get

(9) and

Lp .'(u.), p. ,;(u.')j=0
8

PI, (~):—i': Z2*'~, (X ~'; ~)
BN2

for aH r,s and, i,j. Since vie can now diRerentiate the
exponential operators as if they were c numbers, it
follows that

8XZ:A. (*')It,;(*'):It', '(*):=o (1o) . P„.( ):=;g: d g, (g—'; )p, (u, ')P, {):
BN2

and, a sixnilar equation obtained, by making the substi-
tllt1011 (1~ 2). Tllc sollltlolls will bc cxpl'csscd II1

terms of the incoming free-quark fields g„,;(x) (r= 1,2;
i=1,2,3) which satisfy

8 t9

yl„(X)= y1„(X)=0.
BN2 BSy

Thus the incoming 6elds have the special x,k dependence
y„;(u„)(r=1,2)

The Hilbert space satis6es the conditions

«lo)=1,

'(p) lo)=0, b'(p) lo)=0,

where a; and, b; d,enote the quark and antiquark annihi-
lation oper ators) respectively.

The solution of the equations of motion (10) is of
the form

= I'g': IPx'DII(x —x', ul)

XQ:f1,;t(*')f2,;(X'):lPI„(X):. (19)

and similar, equations for fs, ;(x). This verifies that the
equations of motion for the quark fields are satis6ed.

Hcl'c wc Ilotc tllat If Vp' (s) Wo, tllcll tllc cqllatloll of
motion for the quarks is

8
III„(x):+ig:

l
V+' (x)—g d'x'DII(x —x'; Iu)

Bus

XZ:A,~ (~'92, (*'): IIII,'(*):=o (2o)

The equation of motion for iPs, ;(x) is given by making
the substitutions Li+-+ 2; V+' (x) -+ V '"(x)j where

V~'"(x)=a Vl' (x)+ V1' (x). (21)
lpI„(x) =pl„(ul) exp ~g'

One cannot simply multiply the above solution Eq. (21)
by

Pg"DII(x' x";m)p2(u2"), —(14)
exp —sg du1'V+' (ul, u1')

The solution for f1,;(x) is obtained by making the
sllbstltutloll (1~ 2) 111 (14) and since

p.(u.)=Z:4.~'(u.)4.~(u.):
$V+'"(ul, u2), V~"{ul,ul')1&0 (23)

ancl, thc exponential cannot bc cMclentlatcd as 1f lt
(~5,

werc a l{: number.
We observe' that the:: notation corresponds to the
removal of all disconnected, graphs from the solution. 7 W. Thirring, Nuovo Cinmnto 9, 4007 (1958).
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IV. CANONICAL COMMUTATION RELATIONS
FOR INTERACTING QUARK FIELDS 2t1

The following identity can be derived, ':
expL —'g'Q. , '(N.)74,'(I') exp[2g'Q. .'(~.)]

of the identity (24), we can obtain the commutation
relations for the interacting quark fields.

Let us put

F(N„—u, ') = exp 2g2 d22:"d,ii(x"; m)

= exp 2g2 d2x"Aii(x"; rrt)8(2t, I,' —I,"—) &&8(u,—u, '—u„"), (26)

where
Xy„,(N.'), (24)

Q, (-,)=z e, .;(.,)

The solution ma be itt

(27)
%e can establish this identity by differentiating each

A, '(~)=A, '(») em 2g'Z Q2, (»),side with respect to g' and showing that each side j=1
satisfies the same first-order differential equation in g'.
For g =0 each side is equal to p, ,;(I,). With the help with a similar equation for $2,,(x). We now find that

{$1,'(+) pl, t(y)) {41,'(l1) Ql, i(»)) exp{kg [Q2(N2)+Q2(~2)]) —o ~

A further calculation gives

(28)

=Q, '(I ) exp[2g Q2(N )]4'2, '(») exp[2g'Qi(»)7+4 2,;(») exp[2g'Qi(2'i)]4 i„(li) exp[2g'Q2(»)],
= {41,'(221) exp[2g'Q2, (»)742, (2'2) exp[—2g'Q2. (»)7+42, (») exp[2g'Qi, '(»)]41.'(») exp[ 'g'Qi—'(»)]},

&«xp[2g'(Qi(»)+Q2(»))],
= [F"(»—~ )—F*(»—»)]41,'(»)A, (~ ) exp[2g'(Qi(»)+Q2(~ ))].

At equal times /2=$2, wc have

F*(u2—22) =F*(21—2ti)

and thus at equal times x2 ——y2, we have

8",'(~) A.t(r)}=o

Proceeding IIl thc same way) wc gct

(31)
{lt„;(x,t), P. ,,(x', t)) =O,

{f,„(~,t), P„,t (2.",t) }=5„8;,5(g—X') . (36)

From these results, we have established that the
interacting quark fields satisfy the canonical commuta-
tion relations at equal times

For equal times x2= pg this gives

{4.,'(~), 4', (tt)))=4f(&' 3")—(r =1,2) . (33)

Similarly,

{a,.(.), e. ,'(y))
=[F(212 $2) F (2 1 Nl)]4 i, i(211)4 2,j (~2)

&«xp{2g'[Q2(») —Qi(»)]) (34)

g ,;( ), e , (y))
={y,„(,), ~.,; (")}"p{'g[e.( .)-Q.(")]),
=8;,5(211—») . (32)

J„(,) (X,t) = P P, (X,t)y„(Xu/2) 1&,(2:,t), (3&)

V. &HE SU(3)&(8U(3) CURRENT ALGEERA

We can now construct octets of vector and axial-
vector current densities in terms of our quark fields,
and with the aid of our exact solutions for the P fields

explicitly calculate the equal-time commutation rela-
tions of the time component of the densities in this
model.

The octet of vector currents is

and for equal times /2=/A) we have

g, „(~),6,,'(y)) =&-b'&(&'—y'). (35)

where i,j=1,2,3 and the internal-symmetry subscript
(n)=1,2, . . . ,8; the Xn are Gell-Mann's matrices. The
space-time suKx takes on the values p, = 1,2. We adjoin
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to Eq. (37) the octet of axial-vector current densities

J, .'(,t)= 2 It'(*,t)7,7 (7 /2)'at'( t) (3S)

wh. ere +5= (Q'2.
With the aid of the equal-time canonical commuta-

tion relations for the interacting quark fields given by
Eq. (36), we can easily show that at equal times

I:J2( )(»I) J2(t)(x'I) j=&f t)vJ2(»(»t)tt(x x')

LJ2( )(x&t) J2(t))'(x t)]=If t)VJ2(»'(x t)h(x —x )

[J~( )'(x,t), J2(t))'(x', t)]=if p,J2(7)(x,t)b(x x'). —(39)

Thus, the SU(3)XSU(3) algebra of the current
densities that we have derived from the exact solutions
of the quark fields does not lead to any gradients or
higher derivatives of () functions (so-called Schwinger
terms). ' This result also can be shown to hold for the
commutators of the spatial components of the currents.
The absence of such additional terms is due to our
removal of all disconnected graphs proportional to c
numbers of the type (0 I + I0) by means of our "double
dot" procedure. We view this as a strong indication
that all noncanonical terms in the current algebras are
of an unphysical nature, since they are generated by
unobservable processes. '

and
(ol:f2(x): IO) =0

(0 I
[I)/tt f(*)j:f'(x):

I 0)=0.

(A3)

(A4)

It follows that

A= —2(OI f(x)I0),
a= —

&0I f2(x) IO)+Z[&OI f(x) IO&]2. (As)

Now consider the case f(x) = X(x) where X(x)
represents a free 6eld. Then, we have

X(x)=X+(x)+X—(x), (A6)

where X+ denotes the positive and negative frequency
parts of X. This gives

APPENDIX I
I.et us now study the properties of the "double dot"

procedure introduced in Sec. II. We have for a given
local, boson field operator f(x):

f'(x) =f'(x)+Af(x)+ J3, (A1)

where A and 8 are constants. Moreover, the variational
derivative of the functional: f'(x): is defined by

[I)/bf(x)]: f'(x): = 2f(x)+A. (A2)

The constants A and 8 are determined by the condi-
tions

VI. CONCLUDING REMARKS X'(x) =X+X++X+X +X X++X—X—. (A7)

The 5 matrix in this model is trivial and there is no
creation or scattering of quarks. ' However, the inter-
action between the quarks mediated by the boson V is
nonzero, and a derivation of the equal-time commuta-
tion relations between the time component of the
current densities has shown that they are of the
canonical form, as originally assumed by Gell-Mann. '

It would be interesting to study the solutions of the
quark equations of motion when quarks with nonzero
masses are introduced. ' This would provide us with a
solvable model of broken SU(3)XSU(3) based on field
theory, and might shed some light on the nature of the

In terms of the usual Wick ordering

:X'(x):=X+X++2X X++X X (AS)

(0 lx'(x) lo&= &ol x+x-lo&

Therefore, it follows that

(A10)

By virtue of the commutation relations satisfied by the
X operators, we have

X'(x):—X'(x) =X—X+—X+X—= c number
= (0 I (x—x+—x+x—

) I 0),
= —(0 I

x+x-I 0).
But,
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