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The W-spin classifcat on 1S extended to include states of quarks and antlquarks with fnite intrlnslc
«ib«»ngn&«momentum (orbital excitation). The conservation of this extended W spin is shown to be
automatically incorporated in many quark-model treatments, and some applications are discusse

L EXTENDED DEFINITION OF 8' SPIN

HE general 8'-spin classification has been given
for all states which are constructed from quarks

and antiquarks in a relative s state. ' In this paper we
consider the extension of the 8'-spin classification to
states having intrinsic orbital angular momentum. This
is not only an abstract mathematical problem of
defining a logical extension of W spin to cases of finite
orbital angular momentum. There must also be some
physical reason for the application of 8" spin to such
systems, such as the requirement of 8"-spin conservation
in a more inclusive theory or specific model. The 8'
spin as defined here is not only a straightforward
extension; its conservation is relevant in many specific
quark models for transitions. This is explicitly demon-
strated in Sec. II. In Sec. III some implications of
8'-spin conservation are discussed.

Consider hadron states at rest, constructed in the
quark model by adding orbital excitation. The I;5
coupling scheme has always been used in constructing
models of orbital excitation. 2 The spins of all the quarks
S, and antiquarks S;are coupled to a total quark spin S.
The orbital angular momentum L is then coupled to S
to give the total angular momentum J which is the spin

' H. Harari, D. Horn, M. Kugler, H. J.Lipkin, and S. Meshkov,
Phys. Rev. 146, 1052 (1966),hereafter referred to as I. A detailed
list of earlier references are given in this paper.

2 For a general review of the quark model see R. H. Dalitz, in
Ifzgh &sedgy Physics, edited by C. De-Witt and M. jacob
(Gordon and Breach, Science Publishers, Inc. , New York, 1965)
p. 253.

of the physical particle.

S,+S;=S,
L+S=J.

(1a)

(1b)

We now define the W spin of such a state in the
conventional fashion, ' in terms of the quark spin
variables S, and S;.In the language of group theory we
are using' the group U(6)XU(6)XO(3), where the
U(6) X U(6) is the same group which was used in I.
The spin variables in U(6)X U(6) are the quark spins
S, and S; and are independent of L. The 0 (3) group is
just the orbital rotations in three-dimensional configura-
tion space, exctttdieg spies

The W-spin classification for any state of quarks
and antiquarks defined in the I;S coupling scheme is
now given directly by the method described in I.
However, because S is no longer equal to J, an addi-
tional transformation involving Clebsch-Gordan coeK-
cients is required between the states used in I which
are eigenstates of S, and the polarization states of
physical particles. The latter are functions of J and J„
and usually not of S,.

(L„s„s-„s,zps)= p (L,slav~, ~m)
MI„Mg

X
~
L,Se,S;,S,jtrIr„Ms), (2)

where M, Mg, and Mg are eigenvalues of J„J„and5„
'K. T. Mahanthappa and E. C. G. Sudarshan, Phys. Rev.

Letters 14, 163 (1965); R. Gatto, H. Maiani, and G. Preparata,
Nuovo Cirnento 39, 1192 (1965).
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respectively, and (IS3IIrMs~ JM) is a Clebsch-Gordan
coefficient.

(3)

where A and 8 are hadrons containing quarks and
antiquarks with arbitrary orbital angular momentum
and M is a pseudoscalar or vector boson. In a large
number of quark-model treatments the transition
matrix element describing the process (3) is given by
the sum of independent single-quark transition opera-
tors, ' corresponding to the emission of the boson by a
single quark

(mS~ r~x)=(II~P i, (M).'& "~W), (4)

where hk is the momentum of the emitted boson, r; is the
coordinate of the ith quark in the hadron and i, (M)
is an operator depending on the dynamical variables
of the ith quark and the emitted boson.

The specihc form of the operator I;(M) is severely
restricted by the known conservation laws. We con-

sider here a nonrelativistic description appropriate to
the nonrelativistic quark model. ' Translational invar-
iance requires i;(M) to be independent of the spatial
coordinate r, . Gallilean invariance restricts the momen-
tum dependence of I, (M) to be a function of only of
the momentum transfer k and to be otherwise indepen-
dent of the quark momentum in the initial state. Thus

(I)Mean only be a function of the quark spin variables

o; and the wave and polarization vectors k and s of the
boson. The requirements of angular momentum and

parity conservation then 6x the following forms for t;
as the most general allowed by conservation laws.

(Sa)

(Sb)

(Sc)

4 H. J.Lipkin, in Proceedings of the I'/zird Coral Gables Conference
orl Symmetries ut High Energies, University of 3IIiami, 1966
(W. H. Freeman and Company, San Francisco, California, 1966),
p. 97.

II. 8'-SPIN CONSERVATION IN
QUARK MODELS

The use of this definition of 8" spin in physical
problems is of interest in any theory or model where 8'
spin is conserved or where interactions which break the
symmetry have simple transformation properties under
W spin or the larger group SU(6) s. It has been shown
that 8'-spin conservation follows in a restricted form
from general arguments based on the collinear little
group g~, which is a subgroup of the improper I,orentz
group. 4 Here we consider a few explicit examples and
see that the general arguments are un''ected by the
addition of orbital excitation.

Consider transitions of the form

where I', V+, and Uo denote pseudoscalar, transverse-
vector, and longitudinal-vector boson states and f„ ft„
and f, are arbitrary functions.

I et us now consider the transformation properties
of the matrix elements (4) under W-spin transforma-
tions as defined above. Since 8' spin acts only on the
quark spin variables and not on spatial degrees of
freedom, the only operators appearing in Hqs. (4) and
(5) which are affected by W-spin transformations are
the quark-spin operators e;.We choose the conventional
collinear coordinate system used in 8"-spin calculations
in which all momenta are in the s direction. ' The
operators (5a), (Sb), and (Sc) transform under rota-
tions in quark-spin space, respectively, like the s
component of a vector, the x and y components of a
vector, and a scalar. These spin transformation prop-
erties of the operators i, (M) are just the ones used in
the conventional 8"-spin classification for pseudoscalar
and vector particles. The states I' and V+ form a
5"-spin vector and the Vo state is a 8"-spin scalar.

Since the transformation properties of i, (M) are the
same as those given to the emitted meson 3f in the
conventional W-spin classification, the matrix elements
for any particular state M satisfy the same relations as
required by 8'-spin conservation. The matrix elements
between any state A in a given 5'-spin multiplet and a
state 8 in another given 8'-spin multiplet are given by
the Wigner-Eckart theorem, using the appropriate 8'-
spin property for the transition operator I,(M) which is
the same as that of the emitted meson M. The transition
matrix elements for dhgereet states M belonging to the

same W-spim multiple/ are not related at all by this
general argument. However, the additional assumption
of full 5'-spin conservation is compatible with the
model.

The same argument can be applied with the inclusion
of internal degrees of freedom such as isospin and
hypercharge for the quarks. One then finds that the
assumption of SU(3) symmetry for the transition
operator (4) is sufficient together with the conservation
laws considered above to require a restricted SU(6) s
invariance. ' The matrix elements for a single state M
and all states 2 and 3 in two given SU(6)s super-
multiplets are related as required by SU(6) s invariance.
The matrix elements for different boson states M
normally classified in different SU(3) multiplets within
the same SU(6) s supermultiplet are not related without
additional assumptions, but full SU(6) s invariance is
compatible with the model.

III. APPLICATIONS OP W-SPIN CONSERVATION
WITH ORBITAL EXCITATION

I.et us now consider the application of 8'-spin con-
servation to particular types of transitions (3) where A

is a state which has orbital excitation but the states 8
and M have I.=0. These represent a11 cases of practical
interest at present as they include all final states con-
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AI —+ p+Ir", p is in state m=+1; (7a)

8~ N+m;(d ls 111 sts'te II=0. (7b)

These predictions can easily be checked by observing
the angular distributions of the p and ~ decay products
relative to the momentum of the decay pion. Similar
predictions hold for other axial-vector decays in this
model.

Other selection rules found in specific-model calcula-
' J. Uretsky (to be published) has found these selection rules

in a specific model. %e are indebted to him for calling these
results to our attention.' For a review of the experimental situation, see G. Goldhaber,
in Proceedings of the Thirteenth International Conference on Hzgh
Energy Physics, Berkeley, A%66 (University of California Press,
Berkeley, California, 1967).

sisting only of combinations of the low-lying pseudo-
scalar and vector nonets, the spin--', baryon octet and
the spin--,' baryon decuplet. Since W, =5, is conserved
and J, is conserved, L, must also be conserved. The
final state has L,=L=0; thus only the L,=0 component
Of &Qc initial state can contribute to decay. The tran-
sition matrix denmnt for the decay of a given polariza-
tion state

~
Jg,M~) of the particle 2 is then

(BM~ T~l.g,S,~,S;„,Sg,fg,Mg)
=(BM I T

~

I.g,S,„,Sa„,Sg, ms= Mg, mI=O. )
&& (L,,SsoM, ~Z,Mg). (6)

The matrix elements of T on the right-hand. side are
now expressed in terms of eigenstates of 5, and can be
treated as described in I without further consideration
of the orbital angular momentum.

An interesting example of selection rules obtained
from W-spin conservation in the presence of orbital
excitation is found in the decays of axial-vector mesons'
in a model where they are composed of a quark-anti-
quark pair in a p state. ' ' There are two such states, the
triplet and singlet spin states which have opposite
behavior under charge conjugation. The singlet spin
state has s,=5=0 and can decay only into a final
state having 5,=0 by conservation of 5,. The triplet
spin state is constructed by coupling 5= 1 with L= 1 to
obtain J= I. The J,=O state has no contribution from
L,=O because of the vanishing of the appropriate
Clebsch-Gordan coe8Rcient. Thus only the J,=~1
states are allowed to decay by tV-spin conservation and
these decay to Anal states having J,=5,=&1. Thus
opposite polarization behavior in the final states is
predicted for the decays of the two kinds of axia, l-
vector mesons having opposite behavior under charge
conjugation. If for example the Ai and 8 mesons' are
the triplet and singlet axial-vector mesons, the following
polarizations are predicted for the vector-meson 6nal
states.

tions are also easily obtained from SU(6) conservation.
For example, we obtain Moorhouse's selection rule~

forbidding the photoproduction of E*+ resonances
composed of three quarks coupled to 5=—', with arbitrary
I. and J. This state is in the 70 supermultiplet of
SU(6) s, and. the selection rule follows from the
vaIllslllIlg of SV (6) Clebsch-Gordan coefllclent couphng
this state, that of the proton, and the particular states
in the 35 supermultiplet representing the photon.

An additional selection rule is obtained by examining
the "anomalous parity" operator'

where = denotes equality for states in which all

momenta are in the y2' plane, I';„t, is the intrinsic parity
and L is the total intrinsic orbital angular moinentum.
This includes only the orbital angular momentum of the
quarks @@hie a hadron and does rot include the relative
orbital angular momentum between different hadrons.
The operator P;n is a conserved quantity if I', 1, and.
W are conserved. Thus states of "anomalous parity"
corresponding to the negative eigenvalue of (9), cannot
decay into normal particles in a collinear process. Since
only the L,=O component can contribute to such a
decay, we consider

P an(I O) P. ( 1)Iisiw(Sg Wa) (1O)

An example of this selection rule is the metastable
baryon state discussed by Morpurgo' which has
I';na=1, 1.=1 and S=W, and therefore has

P;"(J.,=O) = —1.
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'R. G. Moorhouse, Phys. Rev. Letters 16, 772 I'1966). Note
that the present derivation depends upon the vanishing of a
particular Clebsch-Gordan coeKcient and shows that the selection
rule does not hold for the photoproduction of the corresponding
neutral Ã*' on neutrons. This point was clarified in a discussion
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experimental implications.' H. J. Lipkin and S. Meshkov, Phys. Rev. 143, 1269 I'1966).

9 G. Morpurgo, Phys. Letters 22, 214 (1966).

where I' is the ordinary space-inversion operator. In
the absence of orbital excitation, I' " reduces to the
~dent~ty for all quark-model states having momenta
only in the ys plane. 8 When orbital excitation is present
this is no longer true, and

P Bn P. ~s~(I g+8~—W~)
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