159

by Amann, Freund, Oehme, and Rotelli that higher
intermediate states can be included in our supercon-
vergence relations without changing the results obtained
with the low-lying states alone. One possibility is to
introduce these states in sets corresponding to multi-
plets of the rest symmetry U(6)® U (6)®@0(3). It turns
out that every irreducible representation (6,6;7) with
mass m(l) separately satisfies the superconvergence rela-
tions for the reactions PV — PV, PV —VV, and
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VV — VV considered in this paper, provided the ver-
tices are invariant under the collinear U(6)®0(2)
group. One may try to use the infinite sequence of
particles corresponding to the representations (6,6;7),
I=1, 2, --- in order to saturate the nonforward
superconvergence relations. It appears, however, that no
nontrivial solution exists for mass spectra m2*(f) with
accumulation points m?( e )>4m?(0). [P. G. O. Freund,
R. Oechme, and P. Rotelli (to be published)].
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A quark (Q) model recently proposed by the authors for high-energy meson-baryon and photoproduction
processes is extended to high-energy baryon-baryon scattering and production of negative-parity baryons.
The positive- and negative-parity baryons are assumed to belong, respectively, to the representations
(56,1) and (70,3) of the group SU (6) XO(3). Sum rules resembling those of SU (3) and SU (6,6), but differ-
ing in details, are obtained for the baryon-baryon processes within the 56 representation. An interesting sum
rule which is obtained for negative-parity baryon production involves only nonstrange particles and could
be within fairly early reach of experiment. The model is primarily characterized by an impulse approxima-
tion for Q-Q scattering and thus disallows processes involving exchanges of more than one unit of charge,
hypercharge, and even spatial symmetry, among the initial and final 3Q states representing the baryons.
This last condition precludes the high-energy peripheral production of metastable baryon states like the
Roper resonance, which we believe to have an internal orbital structure of LP=1%,

1. INTRODUCTION

ECENTLY, a quark model was proposed formeson-
baryon processes' and photoproduction,? based on

a sort of impulse approximation characterized by the
scattering of a pseudoscalar-meson octet by a quark
triplet (Q+1II— Q-1II) in the first case and the photo-
production of a meson on a quark (Q+vy— Q+1I) in
the second. The various degrees of freedom involved in
the basic amplitudes were averaged over the initial and
final 3Q wave functions appropriate to the baryon (B)
states of interest. The 3Q structures of the baryons of
positive and negative parities are in turn given by the
(56,1) and (70,3) representations, respectively, of the
group SU(6)XO0(3), as has been shown elsewhere.!3
This procedure gave a set of sum rules broadly re-
sembling SU(6) and allied symmetries,* but differing
in detail. One distinguishing feature of this model is
that, unlike other contemporary ones,*® it regards the

L G. C. Joshi, V. S. Bhasin, and A. N. Mitra, Phys. Rev. 156,
1572 (1967).

2S. Das Gupta and A. N. Mitra, Phys. Rev. 156, 1581 (1967).

3 A. N. Mitra, Phys. Rev. 151, 1168 (1966) ; Ann. Phys. (N.Y.)
(to be published).

¢D. A. Akyeampong and R. Delbourgo, Phys. Rev. 140, B1013
(1965) ; V. Barger and M. H. Rubin, bid. 140, B1366 (1965).

5 H. J. Lipkin, Phys. Rev. Letters 16, 1015 (1966) ; H. J. Lipkin
and F. Scheck, 7bid. 16, 71 (1966).

6 G. Alexander, H. J. Lipkin, and F. Scheck, Phys. Rev.
Letters 17, 412 (1966).

mesons as elementary and baryons as composite. The
physical motivation behind this “asymmetric” treat-
ment between baryons and mesons stems from a com-
parison of their respective binding energies taking
two-body forces (Q-Q or Q-Q) as the basic dynamics.
Since the Q-Q system (diquark) has a much greater
mass (mass ~Mg) 7 than a Q-Q system (mass ~ a few
pion masses), it seems to make sense to regard the
mesons (as Q-Q composites) as “more elementary”
than baryons regarded as 3Q systems. Thus a “parame-
trization” was sought in terms of quarks and mesons!?
rather than in terms of quarks and antiquarks, taking
advantage of the idea that any intimate relation be-
tween particles and antiparticles is an essentially
relativistic concept, so that in the nonrelativistic limit,
Q and @ are really distinct entities with little relation
to each other.

Even such an asymmetric treatment between baryons
and mesons did provide a good number of sum rules,
many of which agreed with the results of the additivity
model of Lipkin.® Of course the latter, being a more
comprehensive assumption, is capable of yielding a
richer variety of results. Our weaker assumption of
ignoring the compositeness of meson structures, how-
ever, was largely compensated by the assumption of

7 A. N. Mitra, Phys. Rev. 142, 1119 (1966).
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SU(6)X0(3) group structures of the baryons as 3Q
states.®

In this paper we propose an extension of this approach
to baryon-baryon processes (scattering and production).
Such calculations have been already performed in the
Lipkin model® by Levin and Frankfurt.® In a sense,
this case is somewhat simpler since only quarks and
not their antiparticles are involved. The main assump-
tion here is that a quark from the first baryon scatters
a quark from the second, and that this scattering can
be taken in the impulse approximation. The justification
for such an assumption has been given by Levin and
Frankfurt,® through their ideas of a “deep vector well”
for each baryon state. Such a model does not necessarily
contradict the idea of nonrelativistic quark motions
within the same well, but one must assume that the
quarks in different wells (as in two baryons) have in
general highly relativistic velocities with respect to
one another in an over-all frame. One should perhaps
add a second condition that the bindings of these
quarks to their respective wells do not appreciably
distort their motions.® In any event, for a successful
application of the impulse approximation techniques,
one needs to assume two distinct types of Q-Q inter-
action, with nonoverlapping domains of validity, viz.
(i) within a baryon well, the Q-Q forces must be very
strong and short ranged, and (ii) between two quarks in
different wells, there exist weaker but long-range
forces. Quarks in different wells have little chance of
coming within a range short enough to experience the
strong Q-Q forces of type (i), if we assume that strong
repulsive barriers separate these entities from one
another.?

Under such an assumption one can think of a Q-Q
amplitude generated by the “long-range force.” This
amplitude, regarded as an operator, plays the basic
role in generating the baryon-baryon amplitudes of
interest through the evaluation of its matrix elements
between suitable two-baryon wave functions, each
baryon regarded as a 3Q system as in Ref. 1 or 2. This
Q-0 amplitude, which may be taken in an SU(3) in-
variant form, must have the unitary-spin dependence
restricted to 1 or d;-Ae, where & is the octet of 3X3
Gell-Mann matrices for each quark.!' Thus in the
impulse approximation all processes involving more
than one unit of AQ, AS, or AI must vanish. Using such
an amplitude one can consider not only processes like
B-B scattering and B-B* production within the 56 of
(positive-parity) baryons but even the production of
negative-parity baryons belonging to (70,3). For

8 E. M. Levin and L. L. Frankfurt, JETP Pis’'ma Redaktsiya 2,
105 (1965) [English transl.: JETP Letters 2, 65 (1965)].

9 See, e.g., P. B. James and H. D. D. Watson, Phys. Rev.
Letters 18, 179 (1967).

10 See, e.g., M. Gell-Mann, in Proceedings of the T hirteenth
International Conference on High-Energy Physics, Berkeley,
California, 1966 (University of California Press, Berkeley,
California, 1967).

11 M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
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processes involving particles within the same repre-
sentation, (56) or (70,3), one would expect a set of
sum rules, but the correlation of one set with another
is in general a dynamical question. While many of the
sum rules would involve B-B amplitudes which cannot
be of immediate physical interest, it may be possible
to pick at least some with comparatively better chances
of confrontation with experiment. We shall find that
while most of the results within the 56 are largely
conventional,®® an interesting sum rule within experi-
mental reach in the not too distant future is obtained
for the negative-parity baryons.

One simplifying feature of the model stems from the
(assumed) physical impossibility of quarks in different
baryons from coming within the domain of strong
short-range interaction. This prevents the quarks in
each baryon from exchanging positions with their
counterparts in the other baryon. The situation is
analogous to a diatomic molecule in which the chances
of the nuclear constituents in each atom interchanging
positions (physically) are almost negligible. This fea-
ture makes it possible to consider the problem, not in
terms of a full “six-body”” symmetry but in such a way
that the symmetry can be confined to each 3Q system
separately. By this ““separation” of one 3Q system from
another, one can easily incorporate the usual Fermi
statistics for baryons by invoking the antisymmetry
requirement when the two 3Q composites fully inter-
change places. This, however, does not prevent one
from invoking a different form of statistics within each
3Q system. In particular, the formalism can be con-
sistent with the assumption of, say, parastatistics®? for
the quarks within a baryon, characterized by the
appearance of symmetrical 3Q functions.?

In Sec. 2 the basic Q-Q scattering amplitude is defined
taking account of spin, SU(3), and spatial degrees of
freedom, and the general method of evaluating its
matrix elements (with respect to the first two degrees
of freedom) between various B-B states is outlined.
Section 3 deals with the calculation of amplitudes for
scattering and production processes within the 56 of
baryons. In Sec. 4, we obtain results in terms of sum
rules for these B-B processes and discuss their experi-
mental status. Section 5 is concerned with the produc-
tion of negative-parity states, and a sum rule involving
only nonstrange particles within reasonable experi-
mental access is obtained. Finally, Sec. 6 is a short
discussion of the results in relation to other models
and the possibility of production of certain positive-
parity states like the Roper resonance within this
model.

2. STRUCTURE OF THE B-B AMPLITUDE

The SU (3)-invariant amplitude for the scattering of
a quark 4 in the first baryon and a quark j in the

12 O, W. Greenberg, Phys. Rev. Letters 13, 598 (1964).
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second is of the form

A=A+ A450%0-0,®, (2.1)

where we use the convention that the first and second
indices in A;; refer to the first and second baryons,
respectively (in an arbitrary enumeration). To write
down the spatial structures of 4;®, one has to dis-
tinguish between several different coordinate frames.
One is the six-body c.m. frame in which the momenta
of the two sets of quarks are (P;®W,Py® P;®) and
(P1®,P;® P;®), which are related to the c.m. baryon
momenta K, —K by

PO+ P,04P,0=K=— (P,;®+P,®+P,®). (2.2)

A similar relation holds in the final states where the
various quantities are denoted by primes. There is a
second coordinate frame in which the center of mass of
the quarks within each baryon is at rest. If we denote
the two independent relative 3-momenta within
baryon 7 by

Q.= 6~1/2(P2(i)+P3(i)_zpl(i)) ,
O =2"12(P; O —P, D)

(2.3)
(2.4)

it is clear that for nonrelativistic quark motion within
each baryon, the 3Q wave function will depend only on
these two quantities for each quark and that the bodily
motions will be represented by the vectors (2.2). Similar
considerations apply to the final state as well. The
3-momentum of any quark is now expressible in terms
of £K, Q:®, and ¢:® according to (2.2), (2.3), and
(2.4). Of course, since the quarks in different baryons
can be relativistic, there still remains the problem of
calculating their 4-momenta. One possibility is to use
the Kokkedee-Van Hove model® in which the 4-
momenta P;¥ and P;® of two such quarks in baryons
(1) and (2) are expressible as ¢;Vp® and ¢;@p®@,
where p® and p® are the 4-momenta of the bodily
motions of the baryons and ¢;®¥ and ¢;® are certain
internal structure constants. While such considerations
are necessary for writing down the completely rela-
tivistic structures of the amplitudes, they clearly do
not affect Eq. (2.2) for the 3-vector parts of the various
momenta. On the other hand, as we are merely in-
terested in sum rules between certain amplitudes and
not in their quantitative structures, the relativistic
details will not be pursued further.

Finally, we have a third coordinate system in which
the c.m. of the two quarks, one in each baryon, is at
rest. This is the frame most suitable for the Q-Q
scattering amplitude, on lines analogous to N-N scat-
tering. In terms of the usual c.m. invariants (s,f,%) of
the initial and final 4-momenta of the quarks, ampli-
tudes A4;;@ are expressible in the over-all c.m. frame

187, J. J. Kokkedee and L. Van Hove, Nuovo Cimento 424,
711 (1966).
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of six particles as
A =§4(P, W04 P,®— PO~ P;@Nq 5

;P = Y a;®we,0s,®
©,v=0,1,2,3

(2.5)

where oo is a 2X2 unit matrix and ;@ (i=1,2,3) are
the usual Pauli spin matrices for quark ¢ in baryon (1),
and the coefficients on the right-hand side of (2.5)
depend on the (s,f,u) variables. This form leaves open
the question of inclusion of the relativistic energies, in
addition to the c.m. 3-momenta defined by

2p;=P:—P;, 2p;/=P/—P/,

in the arguments of the coefficients a;;&**. The com-
plete Q-Q amplitude is now

(2.6)

which we must regard as an operator whose matrix
elements should be evaluated between appropriate
baryon-baryon states. The details of the nonrelativistic
3Q wave function representing a baryon can be ob-
tained from Ref. 1 both for the (56,1) and (70,3)
representations of SU(6)X0(3). Under parastatistics,
the over-all symmetric states that can be constructed
are

§): Y=,
(10): T=ysx¢*.

2.7)
(2.8)

For the (70,3) states the spatial function is of mixed
symmetry with LP=1~. Thus ¥ contains terms like

(X (LmuSmg| Tmpr,mXs,mP)e?

msml
which we abbreviate as®14

[yxf 197, (2.9)

where a, 8, v are the subscripts (each being of the type
prime, double prime, and s) which indicate the permu-
tation symmetry.’® Since such functions must be
written for each baryon, we are required to evaluate
matrix elements of the type

M ;j= (¥;O¥ ;@ I Aij!‘I/i(l)\I,i(Z)> , (2.10)

where each ¥ is an expression of the form (2.7) or (2.8),
as the case may be! The antisymmetry between
identical baryons is taken care of in a pragmatic way.!°

( K §7§e, e.g., A. N. Mitra and M. H. Ross, Phys. Rev. 58, 1630
1967).

15 M. Verde, in Handbuch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1957), Vol. 39, p. 170.

16 However, the antisymmetry in the wave function of two
baryons has very little significance for high-energy scattering,
since there is always the relative angular momentum 7 to take
care of this requirement. It is only for low-energy scattering
corresponding to, say, /=0 or 1 that this requirement is a pressing
one.
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We now consider separately the cases of octet baryon-
baryon scattering, decuplet production, and the
production of negative-parity baryons.

3. CALCULATIONAL TECHNIQUES
A. Octet-Octet Scattering

We start by evaluating the SU(3)-spin matrix
elements, which, in this case, are of the 16 types,

(@)X (¢',¢")D[1;
202, (@) OX @), (B.1)

for each of nine possible pairs of (i7) values. The
physically interesting cases always include a proton
(target) as one of the initial particles, while the other is
a nucleon or at most a A° or Z+, The evaluation of (3.1)
has therefore been confined only to cases which are in
keeping with the above requirement. For each pair of
initial and final baryons, one has a set of 16 number
arrays each of which can be displayed as a 3X3 matrix
whose elements correspond to the nine pairs of (ij)
values distinguishing the quarks of the two baryons.
The advantage of such a representation is that one can
easily look for SU(3)-type sum rules for B-B processes
confining oneself to eackh pair of (ij) values separately.
This last requirement is important if one notes that the
spatial and spin-dependent coefficients multiplying the
SU(3) operators 1 or &;%-1;® in the total QQ — QQ
amplitude may be quite different for the different 4
and 7 indices.

For a particular octet-octet scattering process, one
has to take a linear combination of the sixteen terms.
A sum rule or an SU(3) relation is now obtained for a
set of amplitudes if one finds the same SU(3) relation
for each of the nine pairs of (i7) indices.

The spin degrees of freedom can next be taken into
account, by evaluating matrix elements like

(X DX (XX P[0y (X OX K X)®), (3.2)
where O,; is one of the following operator types:

5ij3 ﬂi(l)iﬂj@); 0.2_(1).0‘]_(2); o.i(l)xo.j@);

00, @405V, —26,,0,0 6,0,

(3.3)

Here u, » are the three-dimensional tensorial indices.
For each pair of (4,7) indices one can again evaluate
these matrix elements on similar lines. The spin-flip
(SF) and non-spin-flip (NSF), amplitudes can be
evaluated separately according to the usual definitions:

NSF: Xg1p®® — Xg1p®?,

SF: Xil/g(l‘m — X:F1/2(1.2) . (34)

Thus for NSF amplitudes we finally have a matrix
element of the form
M NSF) = (0 @ | BNSFCH

+BNTO |04 ®); (35)
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B NST@® = 3 o, @agm,
u,v=0,3

(3.6)

The quantities ay, @ are purely geometrical numbers
dependent on the spin and unitary spin matrix elements
corresponding to the type of baryons concerned. In
particular @, is an isotropic term in the SU(3)
indices (not spin!) contributing only to elastic scatter-
ing. Note that the «’s are independent of the (i7)
indices, a fact that has been mentioned already in
connection with the SU(3) matrix elements. This fact
really provides the clue to sum rules since no special
assumption is being made on the spatial structures of
the coefficients B;;®). For SF amplitudes we have
similarly

M SF=(, Oy, ® [ BSFH 4 B, SFE) I,’psa)%@)) ,

where

3.7

BSF® = ¥ 8, Hq;®w,
w,r=1,2

(3.8

The following types of sum rules can now be obtained.
First, the NSF amplitudes, taken in the forward direc-
tion, give the relations between total cross sections.
Separate relations for SF and NSF amplitudes in any
direction can also be written down, with the help of
which one obtains sum rules for certain differential
cross sections. Finally, one can distinguish between
charge-exchange and charge-nonexchange processes.
However, since the only case of physical interest is that
of n-p, we shall not discuss this last possibility any
further, except to note that we get results identical to
those of DeSouza et al.'" in this respect. We simply
refer to their paper for further details on this point.
The other sum rules for octet-octet scattering are given
in Sec. 4, in relation to the experimental situation.

B. Decuplet Production in B-B Processes

Asin Sec. 3 A, we can in principle evaluate the SU(3)
spin matrix elements for the processes in which a
decuplet is produced in the final state, by replacing,
in (3.1), (¢'¢");* and/or (¢',¢");® by ¢4, ¢, and
correspondingly the spin functions (X, X’") by X¢ in the
appropriate baryon. The cases of practical interest are,
however, those in which only one member of thedecuplet
is involved in the final state. With this physical restric-
tion, one obtains a total of 16 different terms for a given
initial pair of baryons (8 each for the replacement of a
final octet by a decuplet). These 16 terms, because of
the spatially symmetric baryon wave functions, give
identical decuplet-production matrix elements in the
joint space of spin and unitary spin for each quark
pair (ij). For NSF processes for the relevant baryon,
characterized by (Xi/2/,X1/2"’) — Xy/¢%, the matrix ele-

17 P, D. DeSouza, G. A. Snow, and S. Meshkov, Phys. Rev.
135, B565 (1964).
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ments can finally be expressed as
M iNSF= (), D, @ IDijl% Wy, @),
Di= Y 8,OayOw.

#,v=0,3

(3.9)
(3.10)

Here, 8, are geometrical coefficients independent of the
indices () as stated above, so that identical relations
between production amplitudes can again be obtained
individually for each pair of quarks (7). Note that the
coefficients in (3.10) are the same as (3.6) given earlier.
This is because the complete production amplitude is
expressible in terms of the same radial integrals as those
found for B-B scattering.!® This enables us to find, in
principle, relations (listed in Sec. 4) between the two
processes, though the latter are as yet mere predictions
because of the lack of suitable experimental data.

4. SUM RULES WITHIN 56

We now list certain sum rules for B-B scattering,
which are true separately for the superscripts NSF and
SF denoting, respectively, the non-spin-flip and spin-
flip amplitudes in any general direction. In these rela-
tions the amplitudes for the allowed charge (or hyper-
charge) exchange processes are listed together, e.g.,
(AN+NA|Z-p) stands for the sum of the two ampli-
tudes, (AN |Z—p) and (NA|Z-p).

(pp|pp)= (np|np)+{pn|np),
(T p|Zp)=(E|E%),
E%+nZ0|Z—p)y=312(An+nA|Z-p)
= —32(Ztnt-nZt|Ap)
= —6"/X2%+p2°| Ap)
= (Stn+nZt|2%),

(pp| pp)+(Zp|Z7p)=2(Zp+p2Z°| Z%),

(4.1)
(4.2)

(4.3)
(4.4)

(pplpp)— (Ep|Z7p) =22 n+nZ"|Z-p),  (4.5)
(np+pn|np)=Ctp+p=+|Ztp), (4.6)
EHp|ZHp)+(Ep|Z7p)=2(Zp | 2%). 4.7)

From these, the relations between the total cross
sections at high energies can be deduced via the optical
theorem applied to the NSF relations for elastic scat-
tering. Thus one has

o (Z=p)=a'(Ep), (4.8)
20! (2%) =o' (Z*p)+ot(Zp), (4.9)
$Lo'(Ap)+o'(Zp) =o' (E-p)+o'(np)+a'(Ztp). (4.10)

For inelastic processes, we have certain relations be-
tween the differential cross sections by considering

do/dQ=| ANSF |24 | 457 |2, (4.11)

18 By virtue of the appearance of the same spatial function
Ye®, ¢,® in (3.9) asin (3.5).
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The latter are given as

do do
—(Zp—>Zn)=3—(E"p— An)
aQ dQ

do
=—(2% — Ztn), (4.12)
aQ

do do

Dtz =—p—np),  (413)
aQ aQ

d ) ), (1)
—(Ep— ) =—(Ep— E), :
dﬂ( b4 b 7 4 P

& 30y 309127 (5 309)
—2Zp—Z —Zp—
B

d—a( - )+d-0 @Ep—27p). (415
= B ~P). .
7 pp— pp 0 4 V2

The relations (4.2) and (4.6) are merely SU(3)
predictions while a prediction analogous to (4.1) for
charge-exchange #p scattering from the Regge-pole
model is, in the c.m. system,

do 2
(d—g—z>0=0(”"’ = =L (pp) = ap)F. (416)

This has been experimentally compared by Manning
et al.,'® but without much success. In our model, how-
ever, we obtain the following inequality for the differ-
ential cross section for charge exchange #p scattering:

do k2
—(np— pn)>—T[o'(pp)—o'(np) F, (4.17)
daQ 4q?

where we have used (4.1) for the NSF amplitude and
the result that, in (4.11), the right-hand side is reduced
by merely dropping the term |ASF|? for the process
np— pn. The inequality (4.17) is in agreement with
the experimental observations at 6=0 of Manning
et al.® As for hyperon-proton scattering, Eq. (4.12)
predicts the following ratio for the differential cross
sections of the processes Z7p— An and Z—p— Z',
leading to the same relation for the total cross sections,
viz.,

o(Zp—2m)/
[c(Ep—Zn)+o(Ep— An)]=2. (4.18)

Whilé a comparison of this result is meaningful for
sufficiently high energy, this is not possible for lack of
appropriate data. Some experimental data are avail-
able? only for pz-(lab)=~150 MeV/c. According to the
measurement of Engelmann ef al., the experimental

19 G, Manning et al., Nuovo Cimento 41A, 167 (1966).
2 R. Engelmann e} al., Phys. Letters 21, 587 (1966).
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TasLE I. Negative-parity wave function under parastatistics. The coefficients of the appropriate unitary spin functions are listed
under the respective SU(3) multiplets. For the octet, only the coefficient of the state ¢’ is shown. For explanation of symbols, see

Ref. 1 or 3.

L S J [10] [8] [1]

1 3 3 V' X VX X X =X

1 3 3 0 ' X 0

1 % % (\(/ﬂ’a'#l'{_‘ﬁu“o'u”)xsﬂs (\bula'ul’+¢u”‘7u,)x3/25 (‘l/ulo'u”'_‘l’u”‘ful)xa‘ﬂs
1 3 3 0 V0 X s 0

1 3 % 0 Y1,1'Xs/8 0

ratio for the left-hand side of (4.18) is 0.47,% which,
understandably, is not in good agreement with (4.18).
For the B-B processes with decuplet production, the
NSF amplitudes give the following sum rules, which
are mostly predicted by SU(3):

(A%+pA| np)=(Atp+pAt| pp)
— (Atn—4-nAt|np)

Il

Il

= — 371Nt nAtt] pp),  (4.19)
(S¥ppZ*t|THp) = (AT T ZHAH| ZHp)
= 212(AVEO4 SO0 2-p) (4.20)
@*p|Zp)=—(E*p|Ep) (4.21)
=4(6)12{AAFAN|Zp),  (4.22)
(ZHn4-nZH0| Zp)y=3(2)"VHAp4 pA° | np)
—2(3) 12 4Tt | Ap)
= (Z*n4nZ*t|2%). (4.23)

Experimental comparisons of these cannot be made at
present. Finally, the relations that relate the NSF
amplitudes for B-B scattering and decuplet production,
respectively, are found to be

(pp| pp)+(EpEp)
— 2Ap+pA|Ap)+2XnA+An|Zp)
= (AttptnAtt| pp)— 212(EH0p+nZ*0| Zp)
=2112(n204- 20 | 2-p)— 4(AA | Ep),

which again cannot be tested as yet in the absence of
data on E~-particle beams against proton targets.

5. PRODUCTION OF NEGATIVE-
PARITY BARYONS

The cases of physical interest in such processes are
those in which one of the final baryons is a negative-
parity one, while the other continues to be an ordinary
octet. The negative-parity baryons, according to
Refs. 1 and 3, are members of the (70,3) representation
of SU(6)XO0(3), and the spatial parts of their wave
functions are of the form (¥, ¥.”), u being a three-
dimensional tensor index. For convenience, we repro-
duce in Table I the complete wave functions of the
various SU(3) multiplets of (70,3). As there are two

octets each of JP=%~ and J”=%", we have chosen a
basis in which these respective octets are classified
according to their spin structures, (viz., spin-doublet
and spin-quartet states). The relevant matrix elements
are now of the form

(T8 DT | 3 5 AL TOFD), (5.1)

=1 j=1

and a second one with the roles of the indices (1), (2)
interchanged in the final state. According to Table I,
the index « takes only the prime and double-prime
labels, while the indices 8 and v take on the additional
label s. The functions ¥®? are of course the same as
used in Sec. 3.

If we now evaluate these matrix elements in suc-
cessive steps as in the case of scattering (in Sec. 3), we
note that the SU (3) matrix elements have exactly the
same structure as before. Thus, for the choice (5.1), we
can arrange the matrix elements as suitable linear
combinations of 24 (3X3) matrices (the elements
correspond to nine possible 77 values), there being now
three possibilities (¢',¢",¢*) for the SU(3) function
associated with the negative-parity baryon. The
evaluation of the spin matrix elements is also on
identical lines. The only important difference lies in the
structure of the radial integrals. Since there will now
be a large number of them, and we are interested only
in their qualitative structures, we shall merely indicate
their possible types, instead of giving a complete list.

For each pair (ij) there is a multiplying spatial
function a;#”, which can be expressed in terms of three
distinct types of spherical harmonics, viz., those of
1=0,1, 2. An inspection of the amplitude (2.5) shows
that there are four distinct functions of eack type. Each
of these spherical harmonics can be associated with the
final-state negative-parity function (¥'y") of L¥=1~
to give a resultant orbital momentum 0, (1), (2)% 3,
the multiplicities of the repeated angular momenta
being indicated by superscripts. Thus 7X4=28 radial
integrals are obtained for each of the functions ¢’ and
¥, giving a total of 56 possible radial integrals.?' It
should therefore be surprising that any simple relation

2t Note that since a preferred direction is defined through the
incident beam, the problem is not just one of construction of
possible invariants with these terms, rather one of all possible
harmonics (cf. Ref. 1).
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should exist at all with so many radial integrals to be
eliminated. Since, on the other hand, there would not
be much point in writing sum rules between hypo-
thetical amplitudes, we have first explored the possi-
bility of obtaining relations between production ampli-
tudes corresponding to nonstrange particles due to an
initial p-p state. Perhaps the only reason why one can
hopefully look for amplitude relations involving only
nonstrange particles is the appearance of a large
number of SU(3) states with the (70,3) representation
of SU(6)X0(3), each SU(3) state having its own
nonstrange components, all with the same spatial
wave function. We have succeeded in finding the
following relation? between the production amplitudes
(N*p| pp ST where the subscript A denotes SU(3)
multiplicity of the negative-parity baryon and the
superscripts SJ denote its spin (S) and J values as in
Table 1.

(N*p| pp)s D4 (N*p| pp)s
— 3U(N*+p| pp)ig @D (B)UZ(NH 43| pp)yo @D

= (BB | ppYOD 4 (BN p| pph

This is a rather interesting relation which offers a
relatively better chance of detection than others
involving strange particles. However, it is still too
early to confront such a relation with experiment.

(5.2)

6. DISCUSSION

Most of our results, being in the form of sum rules,
are independent of any detailed dynamics based on the
quark structure of the baryons. The only dynamical
information used for the model is of a qualitative
nature, designed to provide a formal justification of the
model proposed, not to predict any absolute magnitudes
for the cross sections, total or differential. On the other
hand, the sum rules obtained depend specifically on
the group structures (56,1) and (70,3) of SU(6) X0 (3)
for the positive- and negative-parity states, respec-
tively, and to that extent could provide a test of this
particular group, as compared with the predictions of
groups like SU(6), U(12), SU(6,6), etc. In this respect,
this quark model goes somewhat beyond the additivity
model for Q-Q amplitudes,> where no such explicit
group structures are assumed. Of course, one common
feature it shares with the latter is the so-called impulse
approximation which restrict its validity to the high-
energy region, characterized by exchanges of not more
than one unit of charge or strangeness (AQ or AS).

% It may be noted that the sum rule is a result of cancellation
of certain unwanted terms when the possible 75 values are added
up, according to the additivity assumption. This may be con-
trasted with the case of octet scattering, where the same amplitude
relation was obtained for each (i5) pair.
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The model has a very simple prediction for the
production of states like the Roper resonance. According
to the interpretation given in Ref. 3, 3Q states like the
Roper resonance are characterized by L¥=1* and anti-
symmetric (4) spatial wave functions. The calculation
of amplitudes for the production of such baryons in the
final state proceeds on lines identical with Sec. 5. The
particular baryon characterized by an 4 function has
a spin-unitary spin function which is also antisymmetric
under parastatistics, in contrast with the symmetrical
spin-unitary spin function in its initial state. The
evaluation of these matrix elements then leads to zero
value for such amplitudes. Qualitatively this result
may be interpreted as an impossibility within our
model to produce a final baryon state involving, so to
speak, “two units of symmetry change, from an S
function to an A4 function,” if we suppose that a change
from S to M or from M to A each signifies one unit of
symmetry change. This is in the same language that
we use to speak of one unit of charge or hypercharge
transfer. Thus the most that this model can do is to
produce the negative-parity baryons involving only
one unit of symmetry change (from S to M), as it does
with respect to AS or AQ. Apparently it is incapable of
producing a change of two units of symmetry, just as
it gives zero amplitudes for AS=2 or AQ=2.

Physically, such limitations, which are the result of
the impulse approximation to the Q-Q amplitude, can
be interpreted as due to the exchange of meson singlets
or octets (whether pseudoscalar, vector, or tensor
types). To produce changes of two units in any of
these attributes, one must go beyond the impulse
approximation characterized by double meson ex-
changes between two quarks, simultaneous scattering
of two pairs of quarks, or similar mechanisms. Such
amplitudes, which are necessarily several orders of
magnitude smaller in the high-energy limit, might well
be much less negligible at lower energies, where, how-
ever, symmetry-breaking effects like the mass differ-
ences would play a more important role. Inclusion of
such effects within our model is in principle possible
only through a more elaborate formulation of the Q-Q
amplitude so as to take account of scattering of more
than one quark pair, etc. Any estimate of their relative
magnitudes compared with those of the impulse approxi-
mation cannot be made without more detailed dynam-
ical assumptions on the nature of the Q-Q forces which
generate the Q-Q scattering amplitudes as well as the
3Q bound states.
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