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It is difhcult at this stage to say whether the failure of
Eq. (15) is due to the truncation of the integral, a
significant residue for the 6xed pole, or both.
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Sy means of the N/D equations, analytically continued in complex angular momentum, we consider the
details of the mechanism by which cuts in the angular-momentum plane eliminate Gribov-Pomeranchuk
singularities. The implications of the two-body unitarity requirement are investigated. . A fixed l-plane pole
in the signatured partial-wave amplitude is shown to exist where the first Gribov-Pomeranchuk singularity
would be expected in the absence of cuts. It is also shown in this case that moving (Regge) poles are not
asymptotic to the position of the fixed pole.

I. INTRODUCTION
' 'T is the purpose of this paper to gain some additional
- - insight into the properties of cuts in the angular-
momentum plane from a point of view that emphasizes
unitarity and analyticity rather than a discussion of
explicit diagrams. These cuts were introduced by
Mandelstam' in order to alleviate a convict with
crossed-channel unitarity, arising when the spins of
external particles in scattering reactions are high. The
mechanism of producing such cuts persists even for
lower values of the spin where there is no direct con-
vict with unitarity. The function of the cut is to prevent
a fixed singularity in the angular-momentum plane,
originally discovered by Gribov and Pomeranchuk, '
from manifesting itself in the asymptotic behavior of
the full amplitude. Such a behavior would, in the
presence of high-external spin, violate the Froissart
bound on the scattering amplitude. The cut removes
the unwanted asymptotic term and may, as we shall
discuss, eliminate the Gribov-Pomeranchuk essential
singularity entirely.

The method of attack is to discuss both the Gribov-
Pomeranchuk singularity and the Regge-Mandelstam
cuts from what might be termed a more dynamical
standpoint. We use the E/D equations including in-
elastic unitarity and show how both the Gribov-
Pomeranchuk phenomenon and the Regge cuts enter
into such equations. The former arises from the dis-

*This work is supported in part through funds provided by
the U. S. Atomic Energy Commission under Contract AT(30-1)-
2098.

' S. Mandelstam, Nuovo Cimento 30, 1148 (1963).
~ V. N. Gribov and I. A. Pomeranchuk, Phys. Letters 2, 239

(1962); denoted hereafter as GP.

continuity across the left-hand cut in the partial-wave
amplitude having a series of axed poles in the angular
momentum /, a property which follows directly from
the Mandelstam representation. The Regge cuts enter
through the inelasticity factor

0 total l

0 eIastic~ l

in the E/D equations.
It should be stressed that the cV/D method of uni-

tarizing the amplitude is a particularly appropriate one
for this study because it does not modify the original
input left-hand cut. As mentioned above, the presence
of fixed poles in the left-hand cut is believed to be a
property of the exact amplitude and should not be
changed as a result of our unitarization.

For simplicity we discuss explicitly the case where
all scattering particles are spinless. We think the dis-
cussion generalizes to the case of spin and some remarks
on this are made in the last section. In Sec. II, we show
how the Gribov-Pomeranchuk singularity is generated
in the E/D equations by elastic unitarity when no
Regge cuts are present. The central fact in this and in
all our dynamical considerations is the presence of the
poles in the left-hand cut.

In Sec. III we demonstrate how to introduce Mandel-
stam-Regge cuts into the 1V/D equations. The essential
properties of the cuts which we use are deduced by
the requirement that they remove an asymptotic term
of the Gribov-Pomeranchuk type from the full ampli-
tude. The nature of the solution to the cV/D equations
with the Regge cuts is described in Sec. IV. We 6nd a
simple fixed pole remaining where the Gribov-
Pomeranchuk essential singularity would have been.
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Such a fixed pole in the signatured partial-wave ampli-
tude is shown not to contribute to the asymptotic
behavior of the physical amplitude. It is also con-
jectured that the Gribov-Pomeranchuk singularity may
be absent altogether (i.e., even from other t-plane
sheets) when the Regge cut is present. Finally, a
mechanism is described which may produce an in-

definite falling of the Regge trajectories for large
negative energies.

Section V translates Mandelstam's original argu-
ments' into our point of view and shows that the two
treatments are consistent. Roughly, the relationship of
the two is as follows: Mandelstam considered the double
pole in the / plane of othe diagram with a two-body
intermediate state. He showed that this double pole
is cancelled by an infinite sum of diagrams with three-
body intermediate states. The present work investigates
the additional implications of the two-body unitarity
requirement.

II. GRIBOV-POMERANCHUK SINGULARITY

It was first noted by Gribov and Pomeranchuk (GP)'
that the discontinuity across the left-hand cut of an
elastic, partial-wave amplitude (for spinless particles)
possesses a series of fixed poles in the angular-momen-

tum plane at l= —1, —2, . As a consequence of the
elastic unitarity on the amplitude, this left-hand cut
singularity was shown by them to generate an infinite
number of Regge poles in the neighborhood of these
negative integers for all values of the energy. We shall

begin by discussing the Gribov-Pomeranchuk phe-
nomenon from the point of view of the E/D equations,
so that we can later show how the introduction of cuts
into the 1V/D equations removes asymptotic difTiculty

associated with the GP singularity.
We consider elastic scattering of equal-mass, spinless

particles, with signatured partial-wave amplitudes
B+(t,v) having the following definition in terms of the
Froissart-Gribov transform':

1 dt
v'B+(t, v) =— ~& 1+—D,+(t,v), (2.1)

2p 2p

where v is the three-momentum squared in the center
of mass. The functions B+(t,i) are real analytic func-
tions of u because of the factor v'. The functions
D+(t, i ) are the t-channel absorptive parts of the ampli-
tudes A+(s,s,) defined in terms of the ordin. ary absorp-
tive parts D& and D„ in the t and I channels by the

3 See, for example, G-. F. Chew, laze Azzalytic 5 Matng (4V. t'.
Benjamin, Inc. , New Vork, 1966), p. 52.

relations4:

A~(s, s,) =A ii(s, s,)WAr, (s, —s,),
00

A ii(s, s,)=—
0

D, (t',s),
t' —t(s,s.) (2 2)

dQ
A i, (s,s,) =— D.(u', s),

„,n' —u(s, s,)

where

E (l,s,s') = V(l,s) —V(l,s')—
p (l,s'),

s—sI
(2.4)

8J- d$'
V(l,s) = AB—(l,s').

$ —$
(2.5)

The function p(l, s) is ordinary two-body phase space
multiplied by v'. The D function is given by the equation

ds
D(l,s) = 1—— p(l, s')X(l,s') .

4 ~$ —$
(2.6)

We shall ignore detailed questions about the con-
vergence of the integral in Kq. (2.3) since the only
crucial fact for our purposes is that elastic unitarity
hold over a finite interval of the range of integration
in Kq. (2.3). Thus the kernel of Kq. (2.3) is assumed to
be Fredholm (that is, square integrable) for most values
of l. LNote that V(l,s) has no singularities in the vari-
able s, for s) sr, .]

As t approaches —1, the kernel (for the + amplitude)
becomes unbounded and we expect I'redholm poles to
appear in the solution E(l,s) as a function of /. The fact
that the residue of the pole at l= —1 in the kernel has

4 G. F. Chew and C. E, Jones, Phys, Rev. 135, B208 (1964}.
5 See, for. example, C. E. ,".ones and V. I.. Teplitz, Nuovo

Cimento Bl, 1079 (1963).

where, as usual, s,=1+t/2i and s=4(i+m').
If we denote discontinuity by the symbol 2id, and

the start of the left hand by s= sr, , then' AB+(t,s) has
poles at t= —1, —3 —5 and AB (l,s) has poles
at l= —2, —4, —6, The presence of these fixed
poles in the left-hand discontinuities follows from the
existence of a third double spectral function as shown

by Gribov and Pomeranchuk. ' In much of the develop-
ment that follows we shall suppress the signature labels
in B(l,s), except at times when signature considerations
are important for the point under discussion.

The amplitude B(t,s) can be written as E(l,s)/D(l, s),
where D carries the right-hand cut of 8 and. E the
left-hand cut. Assuming elastic unitarity for $&4m'
we can determine the following integral equation for
X(l,s):

00

E(l,s) = V(l,s)+— ds'E(t, s,s')1V (t,s''), (2.3)
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a left-hand cut means that it is not a separable function
of the variables s and s' and, hence, there is an in6nite
accumulation of Fredholm poles as E nears 1=—1.'

We see from Eq. (2.6) that all the Fredholm poles of
E also occur in D so that the amplitude has no 6xed
poles in l. However, there are in general Regge tra-
jectories n;(s) which approach the location of these
Fredholm poles as s-+ ~. To see this we write 1V(l,s)
in the neighborhood of one of its Fredholm poles,

(2 &)

For / —+ l;, the D function becomes

The Regge trajectory of interest near l= l; is a solu-
tion to D{l,s)=0. But from Eq. (2.8) we see that as
l~ I; the zero of D(l,s) must recede to infinity. If the
integral in Eq. (2.8) goes like 1/s as s ~ ~ we have

(2.9)

Since there exist an in6nite number of such Fredholm
poles in the neighborhood of —1, we, in turn, have an
in6nite number of Regge trajectories near —1 giving
the Gribov-Pomeranchuk phenomenon for the scat-
tering of two spinless particles.

In potential scattering, where there is no third
double spectral function, the function V(l, s) and hence
the kernel in Eq. (23) has fixed poles at I= —1, —2,—3 coming from the Born term. However, such
poles are not present in the discontinuity across the
left-hand cut. The residue of the pole in the kernel at
l= —1 is separable in this case and the 6xed pole is
simply converted into a moving Regge pole by uni-
tarity and, as is well known, each 6xed pole in the Born
term becomes the high-energy limit for a single Regge
traj ectol v.

IG. REGGE CUTS

In the previous section, we have seen that the
Gribov-Pomcl anchuk SIllgulRI'lty Rt L= 1 (Infiilitc
accumulation of Regge poles near I= —1) seems to be
required in order to reconcile the presence of a third
double-spectral function with elastic unitarity in the
s channel. The difficulty with the GP singularity, as
Mandelstam has discussed, occurs when there is spin. ~

If, for example, the external particles have spins 0~
and 02, the GP singularity is then promoted in total
angular momentum J to the point J=OI+0~—1. If
ai+a2)2, this will convict with the Froissart bound

See the Appendix for a fuller discussion of this point.' S. Mandelstam, Nuovo Cimento N, 1113 (1963).

on the asymptotic behavior of the amplitude in the
t channel. ' The GP singularity at J=oi+. &r2 1—in the
s channel produces a lower bound on the asymptotic
behavior $"+'~' at high t. But according to Froissart, '
unitarity in the t channel demands that the amplitude
increase no faster than linearly with 3 {to within
logarithms). Thus there is a contradiction if 01+02&2.
Such difhculties also arise in the case of the scattering
of spinless particles where intermediate states possess
high spin.

In order to avoid these contradictions, Mandelstam
has proposed the existence of cuts in, the angular-
momentum plane that shield the GP singularities in
such a way that they will not directly aGect the asymp-
totic behavior in t.' He has shown explicitly that certain
Feynman diagrams possess such cuts which place fixed
poles in other diagrams on sheets far from the physical
region in the J plane.

Mandelstam's mechanism for shielding singularities
applies equally well to the GP phenomenon which
occurs at l= —1 for the scattering of spinless particles.
This mean. s that no 1/t behavior is expected at high t
for the physical scattering amplitude.

For purposes of simplicity and illustration, we con-
sider this spinless case and discuss the GP and cut
phenomenon associated with the point l= —1 in the
spinless problem. As a concrete example, we may
think of x-m scattering.

A branch point in the angular-momentum plane of
the type discussed by Mandelstam has a position in the
1 plane n, (s) that depends on s, the total energy squared
in the center-of-mass system. The function n, (s) is real
below the 6rst inelastic threshold s=sl and is complex
above it. %e may also study the same branch point in
the energy plane where it is a branch point in the s
variable whose position depends on the angular mo-
mentum l, s=s, (l). Since we wish to write E/D equa-
tions which involve dispersion integrals in s, we must
dlscilss tllc locatloll of tllc lil RI1cll po111't s (/) Rs I VRI'Ics.

For Re/&e where e is some positive number, the
Froissart-Gribov formula (2.1) shows that there are
no singularities of any type in the / plane. %hen this
statement is interpreted in the s plane, it means that
the branchpoint s, (l) must be located in an unphysical
region reached by continuing through a physical sheet
cut.

General arguments can be given to show that for
large l the branch point s.(l) must be on a sheet reached
by continuing through the inelastic part of the right-
hand cut. ' This fact can also be veri6ed explicitly for
the cut in the Mandelstam diagram. As l is decreased
the moving branch points will generally emerge from
the inelastic threshold. In Fig. 1, we trace the branch
point of interest. At l=lo, s, (lg) =sr and when I= —1,

8 M. I roissart, Phys. Rev. 123, 1053 (1961).' R. Oehnm, Comp/ex Ange/cr M ometsAcm iN 8/ementary I'a~A'c/e
5eugerjeg (Oliver and Boyd, Edinburgh, 1964),p. 129.
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cut) and then around the threshold s=4m' and below
all cuts. It may be verified that (1) E(l,s) has no
branch point at s, (l), and (2) E(l,s) and D(l,s) have no
singularity in l at n(sr)=4

It wiH be useful to derive here the relation between
&(1/8) and the corresponding discontinuity A.(1/8)
across the Regge cut only. In order to clarify the
situation, the relevant cut structure is drawn in detail
in Fig. 2. %e see then that

»~(1/8) = [1/8(~+)7—L1/8(~-) 7,
»&.{1/8)= L1/8(~+) 7—L1/8(~+ )7.

I'xo. 1. Moving branch point in the energy plane,

s, (—1)=4nP, the elastic threshold. So as l approaches
the elastic unitarity cut becomes completely

blanketed. This is the essential reason why the pole in
the potential V(l,s) is no longer a problem; it presents
no conflict with elastic unitarity because there is no
region over which elastic unitarity is valid.

We now formulate the X/D equations in the presence
of the Regge cut s, (t). Again we endow E with only the
left-hand cut and D with the right-hand cut. For /

suKciently large that no Regge cuts yet appear on the
physical sheet in the s plane, the 1V/D equations are
the same as those given in Eqs. (2.3)—(2.6) except that
wherever the phase space factor p appears it should be
replaced by pR where E. describes the inelasticity and
ls equal to one for $+sl.

For —1&i&4, the branch point s, (l) moves onto the
physical sheet between the thresholds S=4m' and
s=sl. Now explicit account lnust be taken of the fact
that elastic unitarity no longer gives the discontinuity
of the amplitude in the interval s, (l) &s& sr. This may
be achieved by writing the S/D equations in the form

[1/8(~+ )7—L1/8(~-)7= —26.
Combining Eqs. (3.5) and (3.7) gives

6,(1/8) = d (1/8)+ p.

(3 7)

(3.8)

Equation (3.8) enables us to relate the partial-wave
amplitude 8(l,s) on the two sides of the Regge cut. To
see this we recall that E(l,s) does not have the Regge
cut at s, (l) (it has only the left-hand cut). Thus the
difference of 8(l,s) on the two sides of the Regge cut
comes entirely from D(l,s). Referring again to Fig. 2,
we see that

D(l,s+) —D(l s+ ) = E(l,s) 2id.L1/8 (l s)7. (3.9)

This relation may be analytically continued to give
D(l,s) and hence 8 (l,s) at any point on the second sheet
of the Regge cut when 6, is known.

Furthermore, the discontinuity in the region 4m'&s
&s, (t) can be calculated by elastic unitarity to give

a(1/8) = —p, 4m'& s& s.(l) . (3.6)

The analytic continuation of Eq. (3.6) to the region
$)sc(l) relates the points $~I and s as follows:

&c(&)

$(l,s) = V(l,s)+— ds'k(l, s', s)p(l,s')X(l, s')

00

+-
&c(&)

ds'k(l, s', s) —6
8 (l,s')

XX(l,s'), (3.1)

%e now undertake to discuss the solutions to the
1V/D equations with Regge cuts given by Eqs. (3.1)
and (3.2). First we show that the solution of Eqs. (3.1)
and (3.2) gives us the amplitudes on the "physical

ds'—
D(l,s) = 1+— 6 E(l,s'),

4 ~ s' —s 8(l,s')

2ih
8(l,s) 8(l, s+ie) 8(l, s—i4)

(3.2)

$C(I) $,
Sy&

k (l,s', s) = V{l,s') —V(l,s)

s —sI
(3.4)

The discontinuity of 1/8 in Eq. (3.4) is evaluated by
going above all cuts in the s plane (including the Regge

FIG. 2. Points in energy plane related by
discontinuity formulas.
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I'zo. 3. Path of continuation to the point l =—i.

sheet" in the l plane. What is meant by physical sheet
in the / plane is indicated in Fig. 3 where the Mandel-
stam branch point u, (s) is shown for s)sr. To reach
the point 1=—1, we continue I along the real axis as
shown in Fig. 3. In other words, the physical sheet of
the / plane consists of those points in the l plane reached
in pushing the Sommerfeld-Watson contour to the left
(see Fig. 4).

For s&sr, u, (s) becomes real; however, by making s
slightly complex with a positive imaginary part the
branch point u, (s) will remain slightly above the real
axis and the path to /= —1 given in Fig. 3 remains well
dehned. Such a continuation to /= —1 gives rise to
Eqs. (3.1) and (3.2) as the / plane physical sheet values
of X and D. The values of E and D near l= —1 on the
opposite side of the cut in Fig. 3 are obtained by using
the discontinuity for D given in Eq. (3.9). The E func-
tion is the same on both sides of the cut.

We notice that in the integral equation for cV, (3.1),
that k(l,s,s') has a pole at f= —1 as in the elastic case
discussed in Sec. II. But the preceding remarks about
being on the physical sheet in the / plane require that
E not have an infinite accumulation of Fredholm poles
at l= —1 as it did in the case where the Regge cuts are
ignored. The first term of Eq. (3.1) in which k(l, s„s')
appears gives no problem because s, {l) approaches 4m'

as l approaches —1.However, the second integral term
involving k(l,s,s) will give rise to the unwanted ac-
cumulation of poles unless"

(4 1)

[It should be emphasized that we are now discussing

only 8 (l,s), the positive signature amplitude, since
8 (l,s) does not have poles in V (i,s) until /= —2.j

With the property (4.1) the resolvent kernel for the
llltcglal Eq. (3.1) will bc icgular at /= —1. Howcvcl,
E+ will still have a simple pole at 3= —1 because of the
inhomogeneous term V+(l,s). From Eq. (3.2) D+(l,s)
obviously has no pole at f= —1, so 8+(l,s) is left with
a simple pole at l= —1. This, of course, is consistent
with Eq. (4.1).

We now also can see how the cut introduces a
mechanism by which Regge trajectories may drop
indefInitely as s —+ —~. From Sec. II we saw that
trajectories tend to asymptote to 6xed poles in the D
function. Now, however, the Axed poles in D previously
introduced by the poles in E are cancelled by A(1/8)
which possesses zeroes at these points. Thus a mechan-
ism is provided for u(s) —+ —~ as s —+ —ao. Experi-
mentally, Regge trajectories appear to be rising in-
definitely for s in. the positive (resonance or bound,
state) region and it would be presumed that they also
drop indefinitely for negative s. A model that includes

Regge cuts appears capable of producing such
trajectories.

One may also ask if the potential V(l,s) may not have
6xed poles whose residues are factorizable, which do
not arise from the presence of a third-double spectral
function, and are thus similar to the poles in the Born
approximation to potential scattering. Such poles might
provide asymptotic limits for Regge trajectories. "There
are, in the relativistic problem, no Axed 3 poles like the
Born term in potential theory and the Regge poles in
the t channel, which give rise to the bound state and
resonance pole in t may have residues which go ex-
ponentially to zero for asymptotic t, producing no Axed
singularities in the / plane.

Plane

~c~'~ ~&s

10 Higher-order vanishing of this discontinuity, i.e.,
&(1/&) ~ (&+1)"f(~),

cannot here be ruled out on the basis of the present discussion.
If m&1, there is no change in our conclusion that the GP singu-
larity is replaced by a Axed pole. The case m& 1. does, however,
necessitate a careful study of analytically continued partial-wave
threshold behavior in order to arrive at a mechanism by which
moving Regge poles pass through / = —1. It is interesting to note
that the condition 6(1jB)~ 0, when extrapolated to the negative

FIG. 4. Sommerfeld-%atson transformation.

energy region, may be of use in putting a restriction on the form
of phenomenological cut contributions to high-energy crossed-
channel scattering.

» It is also possible that even if Born-term —type 6xed poles are
present at the negative integers that they will also be rendered
harmless by the cut mechanism.
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(b}

Fzo. 5. The Mandelstam diagrams.

One final remark concerns the nature of the singu-
larity at /= —1 on the opposite side of the Regge cut
in Fig. 3. As we have mentioned, 1V+(t,s) is the same on
both sides of the cut and, hence, retains its simple pole
at t= —1. If we denote by Dzz+(t, s) the value of D+ on
the other side of the Regge cut, we can write, using
Eqs. (3.8) and (3.9):
Dzz+(I s)=D+(t s) E+(I—s)2i[t}[1/B+(ts)]+p], (4.2)

where the discontinuity A[B+(t,s)] ' is continued to
complex s. The remarkable property of Eq. (4.2) is
that it appears to indicate that it is at least consistent
for no essential singularity (or infinite accumulation
of poles) to exist on this sheet. If h[B+(l&s)] ' goes
linearly to zero as t ~ —1 for complex s (as we have
assumed that it does for real s) and if this vanishing is
independent of the approach to l= —1., DD+ from Eq.
(4.2) will have merely a simple pole at t= —1 and
Bzz+(t, s) will be analytic there; in this case a single
trajectory will asymptote to 1=—1.

In order to show that this suggestion does not con-
Qict with Mandelstam's work, we shall demonstrate
in the next section that if the integral equations are
iterated to second order in U+(t, s) that this approxi-
rnation has a double pole in Biz+(t,s) at t= —1.

V. COMPARISON' WITH MANDELSTAM

Our purpose in this section is to show that our results
are consistent with Mandelstam's conclusions about
cuts in the / plane. ' Mandelstam studied the two
diagrams shown in Fig. 5. [Note that Fig. 5 (b) is, in fact,
an infinite sum of diagrams, and Mandelstam considered
just the contributions of this infinite sum to the three-
particle intermediate state. ] He did not consider ex-

plicitly the effects of two-body unitarity.
For purposes of comparison we may regard Fig. 6

as representing the significant part of our V+(t,s). The
crossed box given in Fig. 6 is the simplest diagram that
has a third double spectral function and it has a simple
pole at t= —1 in the amplitude with positive signature.
Figure 5(a) is simply an iteration of Fig. 6; it thus has a
double pole at /= —1. Mandelstam showed that the
diagram in Fig. 5(b) possesses a cut in thet plane whose
discontinuity has a double pole at 1=—1, and that the
sum of diagrams 5(a) and 5(b) h,as no double pole at

Fzo. 6. Simplest dia-
gram with third-double
spectral function.

1=—1 on the physical sheet of the angular-momentum
plane. "There i$ a double pole on the opposite unphysi-
cal side of the / plane cut. We emphasize that the sum of
Figs. 5 (a) and 5 (b) may possess a simple pole at t = —1

on the physical sheet; this does not imply an asymptotic
behavior 1/t in the physical amplitude as we shall

presently show. In any event, the diagram in Fig. 6
appears to have a fixed (uncancelled) simple pole at
l= —1.

Before the cV/D decomposition, Eqs. (3.1) and (3.2)
are equivalent to the nonlinear equation:

sc(&)

B(t,s) = U(t,s)+-, p(t, ")I B(t,")I'
4m'

1 dS

I
B(t,s')

I„(i) s' —s B(t,s')
(5.1)

We calculate the first iteration of Eq. (5.1) in the
potential U(t, s), which we denote by Bz(t,s):

1 "(" d$'
B'(t,s) = V(t,s)+— -p(t, s')

I V(t, s')
I

'
4m2 $ —$

dS

I V(t, s')
I

8, &~& s —s B(t,s )
(5.2)

The amplitude B'(t,s) given by Eq. (5.2) is an
approximation to the sum of diagrams 5(a), 5(b), and
6. The general structure of Eq. (5.2) as t approaches
—1 is that all terms on the right give simple poles at
t= —1. Although

I
VI' has a double pole in the last

two integrals, the fact that s, (l) —+ 4zn' and A(1/B) —+ 0
as l ~ —1 combine to produce only a simple pole. To
evaluate B'(t,s) on the opposite unphysical side of the
Mandelstam cut, denoted Bzz'(t, s), we use Eq. (3.8)
together with Eq. (5.2) and obtain

1
Bzz'(t, s) =B'(t,s) —2iI V(t,s) I' 6—+p . (5.3)

8

The second term on the right of Eq. (5.3) clearly
possesses a double pole at l= —1 and, thus, our results
are consistent with those of Mandelstam. '

To complete our comparison with Mandelstam, we

demonstrate that a fixed pole at l= —1 does not intro-
duce a 1/t term in the a,symptotic expansion of the
physical amplitude A(s, z,), even though such a term
is present in the signatured amplitude A+(s, s,). The
point is that only the even part of A+(s,s,) contributes
to A (s,s,), but at high t, A+(s, z,) —+ 1/t; therefore,

A+(s,s,)+A+(s,z, ) —+ (1/t)+ (—1/t),

so the asymptotic term 1/t is absent from the physical

~ In Mandelstam's discussion he assumed that the ladder in
Fig. St,'b) produced a p-wave bound state; in our case the latter
yields an s-wave bound state.
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amplitude. This accords with Mandelstam's conclusions
on the asymptotic behavior of the diagrams given in
Flg. 5.

VI. CONCLUSION

The results of the preceding sections may be sum-
marized as follows: By means of the analytic con-
tinuation of the X/D equations (in the presence of one
I-plane branch point) we show: (1) 1V~(s) has no
singularity at s, (l); (2) B~(s) has no singularity at
n, (sr). From the hypothesis that the contour in the
Sommerfeld-Watson transformation encounters no
essential singularity at the l for which the discontinu-
ity across the left-hand cut has a pole (f= —1), we
establish that [B(s+fe)] '

t B(—s—ie)]-'-(/+1) as
I —+ —1. The 1V/D equations then yield as corollaries:
(1) E has a pole at 1= —1, (2) D is finite there, (3) zeros
of D at s= s„(l) do not go to infinity in s as f approaches
—1, (4) on a sheet rea, ched by circling the f-plane
branch point, at least one trajectory must go to infinity
as l approaches —1, and (5) the above hypotheses are
consistent with no essential singularity existing on any
sheet in the l plane.

Ke believe that our technique may be extended to
situations involving spin and unequal masses with
analogous results.

We believe that our results (returning to the spinless
even-signature case) apply equally well to the points
l= —3, —5, , where the left-hand cut discontinuity
also has poles. Here Regge cuts arising in higher order
presumably are available for precisely masking the
elastic unitarity cut for these values of l. Ke thus see a
possible mechanism for indefinitely falling trajectories.

Finally we note that the presence of fixed poles in
B(l,s) does not require that a trajectory n(s) passing
through I= —1 at s=si have a residue function P(s)
with a pole at s= si. The presence or absence of such a
pole is not decided by our considerations. If present,
however, such a pole would invalidate the mechanism
which produces dips in high-energy cross sections at
values of momentum transfer for which trajectories
pass through wrong-signature nonsense values. "

APPENDIX

We discuss here briefly the solution of Eq. (2.3) in
the neighborhood of the pole at l= —1 in the kernel,
K(l,s,s'). We assume as in Sec. II that E is a Fredholm
kernel for l& —1.

' See, for example, C. B. Chiu and J. D. Stack, Phys. Rev.
153, 1575 (1967). We are grateful to Dr. John H. Schwarz for
stimulating discussions on this subject.

Given that E is Fredholm, the solution N(f, s) of
Eq. (2.3) will in general have poles in 1 at values of f
such that X= (1+1) ' is an eigenvalue of the equation

ds'E(s, s') q (s') = q (s),
~ 4m'

where E(s,s') is the residue of E,(l,s,s') at the pole at
l= —1. Since E is nonseparable, an infinite number of
these eigenvalues cluster at ~ in X or near —1 in l when
X/0.

One further point must be made. The solution,
X(l,s) is not required to have a pole in f at an eigenvalue
of X if V is orthogonal to the corresponding eigen-
function. This follows simply from writing

=Q (1—X/l~, )-'(;,V),

where

q;(s') V(s')ds'.

Ke can, however, show that V is nonorthogonal
L(qt;, V)WO] to an in6nite number of eigenfunctions
yi of X, and, hence, E must have an infinite number of
poles near l= —1. Suppose we have along the right-
hand cut

(A1)

Then, using the homogeneous equation associated with
(2.3) and the fact that the sum on the right is over a
finite number of terms, we may perform the necessary
continuation to obtain

"p(s') q, (s')
disc V(s) = —P a,— ds' disc V(s) . (A2)

4m' s —s

The term in square brackets in Eq. (A2) must be equal
to minus one. However, this cannot be true because
this term has a right-hand cut whose discontinuity
cannot vanish because of the linear independence of
the y s. Hence, V is not orthogonal to infinite number
of the q s, and E(l,s) must have an infinite number of
poles near l= —1.'4

'4 When U(l, s) is represented as an infinite sum of the y s along
the right-hand cut, this argument must break down, presumably
because the continuation of the infinite sum over to the left-hand
cut must fail to converge.


