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f (0)=
2%2' (mx' m—.') predicted by exact SU(3). Inspection of Eqs. (23a)—

(23d) shows that, if the charge radii, and transition
radius of the pseudoscalar mesons were measured,

X(xe~y",r(p)~~+) (27b) f+(q') would be completely determined. If further
f (q') had no pole at q'= —(mz' —m '), it would be

The static value of f+(q") agrees with the value given in terms of three independent parameters.
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An extension of the SU(6) static model is used to formulate a phenomenological analysis of the magnetic
moments of the baryons and of the J~= (-,')+ baryonic resonance transition moments. The results are de-
pendent on a parameter, characteristic of the model, the assignment mixing angle. The calculations of the
magnetic moments are divided into two parts. In the first only the contribution of the vector-meson reso-
nances is taken into account, while in the second this pole model is combined with part of the nonresonant
contribution to the magnetic moments. The strength of the electric and magnetic couplings of the vector
mesons to the nucleons is also calculated within the framework of the pole model.

I. INTRODUCTION'

~HE static model of Chew and Low' has been the
basis of several calculations of nucleon magnetic

moments. In fitting the pion-nucleon coupling constant,
calculated in this model, to the experimental value, it
was found that the most probable number of pions circu-
lating about the nucleon was one, and this fact led to
the idea that the anomalous moments were due to the
interaction of the magnetic fields with the orbital cur-
rent of the circulating charged pion. ' There were diS.—

culties attending this idea, , however, for, while the iso-
vector part of the anomalous moment could be made to
approximately correspond to the observed value, the
isoscalar part„determined by using the same cutoff
energy (in the integrals arising in the course of the cal-
culation) was not at all in agreement with experiment. '
It was then suggested that the K,mesons, if they were
pseudoscalar particles, would contribute to the isoscalar
moment in a way which would make agreement with
experiment more likely. 4 However, ensuing dispersion
theoretic calculations using these ideas met with almost
as little success as those based on the static model. '

At about the time of the advent of the Chew-Low

model it was conjectured by Nambu' that meson reso-
nances in the momentum-transfer channel were neces-
sary for explaining the electromagnetic properties of
the nucleons. Later, resonances, resulting from a strong
pion-pion interaction in their t = 1 partial wave (J~=1,
I=O, 1), were found (albeit at an. uncomfortably high
mass .

This idea of explaining phenomenologically the elec-
tromagnetic form factors of the nucleons by means of
vector-meson poles has been refined to the point where
these form factors can be quite well described even up
to fairly high momentum transfers. 7

Thus it became clear that one of the main reasons for
the failure of both the static model and the dispersion
theoretic calculations was the neglect of vector reso-
nances in the pseudoscalar meson systems; that is, the
neglect of a reasonably strong p-wave pseudoscalar-
meson —pseudoscalar-meson interaction. Of course, such
vector resonances can be included in the Chew-Low
model by introducing them as elementary particles in
their own right. This is done, however, at the expense of
including two extra parameters, namely, the electric
and magnetic couplings of the vector mesons to the
nucleons.

* Work supported by the U. S. Atomic Energy Commission.
' G. F. Chew, Phys. Rev. 95, 1669 (1954); F. E. Low, i'. 97,

1392 (1955); G. F. Chew and F. E. Low, ibM. 101, 1570 (1956).
'H. Miyazawa, Phys. Rev. 101, 1564 (1956); G. Salzman, ibid.

105, 1O76 (1957).
H. Miyazawa, Phys. Rev. , 101, 1564 (1956).

4 G. Sandri, Phys. Rev. Letters, 101, 1617 (1956).
5 P. Federbush, M. L. Goldberger, and S. B. Treiman, Phys.

Rev. 112, 642 (1958); H. D. I. Abarbanel, C. G. Callen, Jr., D. H.
Sharp, ibid. 143, 1225 (1966).

II. EXTENSION OF THE STATIC MODEL

All of these effects lying outside the scope of the
original static model (e.g., vector and strange pseudo-
scalar mesons) are conveniently described by an exten-

' Y. Nambu, Phys. Rev. 106, 1366 (1957).
7 T. Massam and A. Zichichi, Nuovo Cimento 43, 1137 (1966).
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and
cos8r ——cos8s ——1, 8t ——8s ——0 (CBC), (2)

cos8t ——cos8s = (-', ) '~s, 8&=8s=55' (W-spin) . (3)

The usual static version, SU(6)s,"is not recovered,
however.

The extension of the Chew-Low model to take into
account the resonating pseudoscalar system can be
thought of in the following way. The old calculations of
the anomalous moments were based on the contribu-
tion of the process shown in Fig. 1 to the spatial part of
the electromagnetic current. This process was then re-
lated to the total cross sections in the (2I+1, 27+1)
channels, with isospin I and total angular momentum J
zero or one, so that, in principle, this contribution could

FIG. 1. The contribution of the
virtual pseudoscalar meson to the
baryon electromagnetic form fac-
tor in the static model.

P

P

sion of the static version of SU(6) (CBC) made by
Belinfante and one of the present authors (GHR). ' This
extended static model, SU(6) sr, contains as parameters
the angles describing the mixing of vector (V) and
pseudoscalar P') mesons in the total angular momentum
J=1 submodules of the 35-dimensional representation
of SU(6). These angles arise because of an ambiguity in
the case of the above mesons, both having J=1 with
respect to the (static) nucleons. The field operators
representing the (3,8) and (3,1) submodules are, in gen-
eral, the linear combinations

as ——cos8sa p +sin8sav,

at ——cos8ta~+ sin8tav,

where n is an SU(3) octet index. The octet describes the
I' and V mesons, and the singlet describes the Xo and
&ut mesons. In the present case the SU(3) singlet is ex-
cluded since we are considering only electromagnetic
interactions.

The mixing of operators in Eq. (1) is called assign,
meet mixing, and hence the name SU(6)sr. The special
cases of CBC' and of the collinear (or W-spin)" SU(6) a
versions of SU(6) are particular cases of SU(6)~, with
the assignments

Fzo. 2. The contribution of the virtual pseudoscalar meson to
the baryon form factor, allowing for a pseudoscalar-meson-
pseudoscalar-meson interaction.

be computed using experimental cross sections. ' In
this scheme, however, no allowance was made for the
resonating pseudoscalar meson system. In other words,
the possibility that the mesons will interact prior to
their absorption at the photon vertex should be con-
sidered. For, even though the diagram of Fig. 1 is im-
portant, the rescattering of the strongly interacting
p-wave pseudoscalar mesons is even more important.
In order to include this interaction we should write, in-
stead of the process picutred in Fig. 1, the two terms
shown in Fig. 2. The new term contains the o6-mass-
shell meson-meson scattering amplitude T. The on-
mass-shell amplitude resonates in the J=i, I=O, 1
channels, and if we approximate T in the I, channel
(I= q') by a sum of poles corresponding to these reso-
nances, the magnetic-moment equation becomes what
is schematically represented in Fig. 3. The second term
shown there is now the nomresomumt or coetieulm contri-
bution and is a correction to the 6rst term, which is, of
course, the usual pole model

The two new couplings of the vector mesons to the
nucleons, gv~ (the electric coupling constant) and gv~
(the magnetic coupling constant), are hereby introduced,
along with another parameter characteristic of the pole
model, g~v=emv'/2yy. "A similar equation holds for
the time component of the electromagnetic current
(which contains the electric charge) This e.quation is
used together with the one for the spatial components,
described above, to normalize the over-all SU(6)sr
strength g, which appears in both equations.

Because of its success, and because it is able to give
immediate information about the assignment angle 88,"
we shall examine the pole coetribltiott, to the electro-
magnetic current first [Sec. III].

R. H. Capps, Phys. Rev. Letters 14, 31 (1965);J. G. Belinfante
and R. E. Cutkosky, ibid. 14, 33 (1965). In this paper, Belinfante
and Cutkosky found by using only the SU(3) baryon and peusdo-
scalar meson octets that the ratio —p„/IM„ is relatively insensitive
to the F/D ratio and has a value close to the experimental one.
This calculation supports the idea that the kaons are very impor-
tant and cannot be neglected.

~ J. G. Selinfante and G. H. Renninger, Phys. Rev. 148, 1573
(1966).

'0H. J. Lipkin and S. Meshkov, Phys. Rev. Letters 14, 670
(1965); Phys. Rev. 143, 1269 (1966)."F.Gursey and L. A. Radicati, Phys. Rev. Letters, 13, 173
{1964);A. Pais, ibid. 13, 175 (1964); S. Sakita, Phys. Rev. 136,
31756 (1964).

FIG. 3. Separation of the resonant and nonresonant parts of Fig. 2.

H. Miazawa, Phys. Rev. 101, 1564 (1956)."M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953
(1961); M. Gell-Mann, D. Sharp, and W. Wagner, Phys. Rev.
Letters 8, 261 (1962)."R. E. Cutkosky and M. Jacobs have found the value sin88
=sin8p ={3)'"by using a Fermi-Yang bootstrap model of the
tnesons fPhys. Rev. (to be published)g.
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Fra. 4. The equations for the
magnetic moments when the sym-

6 metry is reduced from SU(6) to
SU{3). Th { { Ch t
where SU(3) average masses and
SU(6) average masses are to be
inserted.

/12=/12+ &{M. (4)

We start by relating gv~ and gv~ to the pion-nucleon
coupling constant f . Next we calculate the proton and
neutron magnetic moments LTable I]. In a similar
manner, both the hyperon magnetic moments and the
transition moments entering the JP=(22)+ baryonic
resonance decay, B*—1 B+y, can also be calculated,
using the value of 88 determined from the proton and
neutron magnetic moments. Finally, by using the actual
masses of the p, the ~, and the q, we can introduce some
SU(3) symmetry breaking into the results.

The numerical values of such magnetic-moment cal-
culations can be somewhat re6ned by splitting the mo-
ments into isovector and isoscalar moments. The ad-
vantage of doing this is, of course, that the isovector
moments involve the p meson exclusively, and therefore
depend only on its mass. The isoscalar moments, on the
other hand, depend on the mass of the ~8, which is a
linear combination of the physical mesons co and q.

We now return to the problem of including some of
the continuum corrections. As far as the original equa-
tions involving contributions from both the resonant
and nonresonant processes are concerned, we have
thought of them as being SU(6)-invariant. If we wish,
however, to take into account the fact that SU(6)/{r is
a broken symmetry, while assuming that SU(3) is still
good, we need to know how the breaking a6ects the
equation shown in Fig. 3. Denoting by /12 the SU(3)-
symmetric magnetic moment obtained from the SU(6) /{r

symmetric moment p6 by reducing the symmetry from
SU(6)2r to SU(3), we may write

The results of these considerations together with some
important modifications, are presented in Sec. IV.

III. THE VECTOR-MESON POLE
CONTRIBUTION

In order to discuss the electromagnetic properties of
the nucleons we examine the matrix element of the
electromagnetic current between physical baryon states:

(E1E2/M1M2)"'(p2I j ' (0) I pi). (6)

The time component jo' of this four-vector is related
to the charge form factor, while the spatial components
j' are related to the magnetic form factor, both of
them depending on the square of the momentum trans-
fer q'= (p2 —pi)'. In the limit of static nucleons (or in
the Breit, or brickwall, frame) the current four-vector
separates into

((Ga(q'), 2~XqG~(q')),

where the electric and magnetic form factors Gs, /{r(q2)

are normalized to yield the observed static values:

G»(0)=s, G,„(O)=O,

G21p(0) =/1p= 2.793, G2r (0)=/1„= —1.913,

and where the magnetic moments are in units of e/2M.
In the pole model (first term in Fig. 3) the nucleon is

pictured as emitting a vector meson, which in turn
couples directly to the photon. In this model, then, the
matrix element of Eq. (6) is replaced by

Upon separating the pole contribution from the con-
tinuum contribution, Eq. (4) may be written as

( 2 j'(o) pi)s~v'
P (E1E2/M1M2)"' —

q +trav 2pv
(7)

~ pole+ P+oontinuum

since /12, when account is taken of the SU(6)/ir sym-
metric charge equation, is essentially just the pole term
(see the Appendix for a more complete discussion of this
point). Pictorially, Eq. (5) is shown in Fig. 4.

TAar, z I. Magnetic moments (in proton magnetons)
resulting from the pole model.

The factor (—q2+2/1v2) ' arises from the propagator of
the virtual vector meson; (P2I j„v(0)IP1) is the matrix
element of the vector-meson current between the same
physical nucleon states as before; yv is a constant re-
lated to the strength of the vector-meson couplings to
the photon. "

The new matrix element in Eq. (7) can be evaluated
with the help of SU(6)/{r. In the static limit, then,

00

pea 0
Pe'
p„b 0
p b 0

30'

1.365—0.910
1.455—1.048

45'

1.930—1.287
2.057—1.482

60' 75'

2.229 2.364 2.637—1.486 —1.576 —1.758
2.376 2.520 2.811—1.711 —1.815 —2.025

90'

2.729—1.820
2.910—2.096

(E1E2/M1M2)"'(p2I jp'(0) I pi)

(42r) 1 2g/EvG&(q2) (23) 1 2P/( 4)12r2 /+ g/{E~G( 2)q

SU(3) symmetric.
b SU(3) broken symmetric values.

&&(4(3)"/3)LE.+((5)"/2)D.]
mv
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The constants F„and D are SU(3) Clebsch-Gordan
coefficients for the couplings 8Qx8 —p 8, and 8Qx8 —p 8„
respectively. The Pauli spinors X also transform as mem-
bers of the 56-dimensional representation of SU(6). The
time component is assumed to transform as the (1,8)
part of the 35, while the spatial components as the (3,8)
part. The additional coeKcients have been chosen so
that if the meson is the p, then

(E182/M1M2)'/'&p2I j() I pi)

=~2'((4~)"'g 'GE(V')~)X1 (9)

(~1E2/M1M2)'"(p21 i'I pi&

z
=X2t (42r)'/2gpMGM((f2) q'qrXq Xi. (10)

mg

In Eqs. (9) and (10) above we have allowed for the pos-
sibility that mz, the average octet vector-meson mass,
is not equal to the measured mass m, by simply replac-
ing m, by m, .

We are now able to connect g,E, g, M, and f . We
start by writing down the general matrix element of the
pseudoscalar mesons in the static limit:

fp
(~1E2/M1M2)"'(p2 I j'(o)

I pi&= («)'"

(5)1/2

X() .q)—(3)'" p + D,)v, , (11)
5 2

where f~ stands for an SU(3) average of the pseudo-
scalar meson-nucleon coupling constants. This expres-
sion, in the case of isovector pions, reduces to

(42r) '/' x2t(2qr q) sx, .

Upon setting 88 equal to the "t/t/"-spin value, "
88——g~,

given by Eq. (3), we find from Eq. (13)

g M/g E=5/3 (15)

Therefore, for 08= 0~,

fp/g p =m, /2M+5/3=2 1, . (16)

which agrees with several di6erent estimates. "For the
same value of the mixing angle we obtain, from Eq. (14),

9 2

(g E) 1/2 — G 2

50 2''
This last expression is to be compared with

f 2= (g)v/gg)2G 2(m 2/2M2) (18)

obtained from current algebra applied to p decay into
two pions, "or as found by Sakurai. "Then from Eqs.
(15) and (16) we obtain the ratio gz/gr ——(25/18)'/'
= i.18, an amusing result in itself, to which we shall
direct our attention in a future work.

In the limit of zero momentum transfer,

I (~1~2/M1M2)"'&p2I j: I pi&5"=o
= LZv (~1&2/M')"'&p2I j."IP1&5"=o(1/27 ),

from which emerge the charge and magnetic-moment
equations:

The vector current can also be written in the form

(4&)1/2gp~ &+(4&)1/2fp2& q(fv/m

the relation of the new constants gp and fp to the ones
used above being

mp
fp= g '+g M

2M

Q=Z (4 )"'g '2(3)'"~o
V 2p'p

(19)
The relation between the pseudoscalar coupling con-
stant f„and the over-all SU(6)M strength g appearing
in the Lagrangian of Ref. 9 is

4(3)"' 1
/ =2 («) "2gv -LFo+l(5)1/2Do5 2M, (2o)

5 2ppf.
(42r) '/' =

gl
—

I

—cose, .
m, E3/ 3

Q.=1=(4 )"' — +(3)"'
2y, 2y.,i

' (21)

(12) where the index Q stands for the sum of SU(3) Clebsch-
Gordan coeS.cients which transform as the charge
operator. From the above equations we obtainThen, by calculating in a similar way the matrix ele-

ments of Eqs. (9) and (10), we can relate g,E and g, M

to g. Finally, by using Eq. (12), we obtain

g M/g E—2(2)1/2sine (13)

(3)'/2 G. m
C

5 cos08 2' (14)

with g,E given by gpE=P(3)'/2/55(f /cose2)(mp/m )
With the introduction of G = (2M/m )f„, where M is
the nucleon mass, this last relation becomes

g
M ] (3)1/2g M 1

/1, = (4qr)"' —+ I2M, (21')
2p„m, 5 2p„, m. ,)

"G. Kopp and P. Soding, Phys. Letters 23) 494 (1966) and
references therein."K. Kawarabayashi and M. Suzuki, Phys, Rev. Letters ]6,
255 (1966)."J. J. Sakurai, Phys. Rev. Letters 17, 552 (1966).The constant
g, in the text differs from Sakurai's f, by a factor of ~.
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Fra. 5. The nonresonant part is ap-
proximated further by keeping the
baryon and baryon-resonance Born
terms in the nonresonant baryon-
pseudoscalar-meson scattering ampli-
tude.

for the proton, 'and

Q»=o=(~ P'( +—/W-"'
2y, 2y„,)

(22)

2g @-5
(4~)'" g. /2v. = (4~)"'—-

2 2+p i2 3

1/2

&& sm0& ——— — sm08, (24)
4 3

and similarly,

(4~)1/2gM/2~(1)1/2(2)l/2sin0

Expressions (24) and (25) permit us to write

(25)

g
M 1 (3)1/2g M

p.= (4m)"' — —+ —2M„(22')
2+p 5$p 5 2 l/co8 ~co8

for the neutron. From Eqs. (21) and. (22) it follows that
gp~/2y p

——&3(g„,~/2y. ,) and

1= (4m)"'g ~/y (23)

Using these last two expressions, together with relation

(13), we arrive at

If we introduce some symmetry breaking by using
m, = 765 MeV and m„=941 MeV (determined by using
a,n a&

—
q mixing angle of approximately 35'), we can

determine sin98 from the experimental value for p~.
Equation (26) then yields the value sin08 —0.93 corre-
sponding to an angle 08—68 . Insertion of this value of
the assignment mixing angle into Eq. (27) gives p„
= —2.01. Table I shows the variation of p,„and p with
88 in both the degenerate mass case and in the case of
broken symmetry. By extending the use of this angle
to the equations for the other baryon moments it is
found, for example, that

231„
/

v=—k(/ u
—/-)=(l)" 6»n08-

Sg' p

2M~
/ s= 2(/.+/ -)—= (2)"'6»n08

(30)

pp ———0.76 and pg+ = 2.62.

These values are in good agreement both with the ex-
perimental determinations" and with the mass-cor-
rected values obtained by Beg and Pais" in SU(6)s.

Upon rearranging the results of Eqs. (26) and (27)
we obtain the isovector and isoscalar moments as given

by the pole term:

5
p„= — —— sin08 2M~,

5 1 1/2 '/'
p„=

~

——+ —
~

— (sin08) 2M„,
/r/, m., 4&3

(26)
If the values given in Table II are compared with the
experimental values p~' I't=2.452 and p8' &t=0.440, it
will be seen that the pole term, as usual, describes the
isovector part better than the isoscalar part.

Ke look next at the magnetic dipole decuplet-octet
transitions. For /V33*+ —+ p+y, for example, we 6nd

from which follows the well-known SU(6) ratio"
p„/p = ——,

' in the limit of degenerate masses. In this

limit, and for 08= 0~ we also obtain

2 2M„
p*=—p(cV3g*+ ~ p+y) = (sin08)—

(3)"' mr

y„=2M„/mv,

p„=—~2M~/mv,

(28)

(29)

TADIE II. Isovector and isoscalar magnetic
moments in proton magnetons.

which are the results obtained by using current commu-

tators and pole dominance. "By extending the calcula-
tion to the hyperons the well-known SU(3) relations

are regained. "
"B.Sakita, Phys. Rev. Letters 13, 643 (1964); F. Giirsey, A.

Pais, and L. A. Radicati, ibid. 13, 299 (1965).
"M. Ademollo, R. Gatto, G. Longhi, and G. Veneziano, Phys.

Letters 22, 521 (1966)."S. Coleman and S. L. Glashow, Phys. Rev, Letters 6, 423
(1961).

0' 30' 45' Og 60' 75' 90'

0 1.251 1,770 2.043 2.167 2.418 2.503
0 0.203 0.288 0.332 0.352 0.393 0.407

"The present experimental weighted averages are pq= —0.73
~0.16 and pal+=2. 3&0.6. )Arthur H. Rosenfeld, Angela Barbaro-
Galtieri, William J. Podolsky, I.eroy R. Price, Paul Soding,
Charles G. Wohl, Matts Roos, and William J. Willis, Rev. Mod.
Phys. 39, 1 (1967)$.

"M. A. Beg and A. Pais )Phys. Rev. 137, B1514 (1965)g, find

pg ———0.78 and pal+=2. 20.
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which can be written in terms of p„.
p*= -',%2fr, . (32)

Since only the po plays a role here, that is, only the (3,8)
part of the 35 enters into the calculation of fr*, the pre-
diction of SU(6)~ in the pole model must agree with
that of SU(6)s."The experimental value obtained by
Dalitz and Sutherland" from an analysis of photopro-
duction data in the vicinity of the 3-3 resonance is
(1.28&0.02) [a&2@, ].

(33)

where Q & is the charge operator in SU(3), Q= Iz+ I'/2,
and p is a relativistic operator describing the pseudo-
scalar meson with SU(3) index rr. When the above cur-
rent is placed in the diagram of Fig. 5 and the static
limit taken, the meson electromagnetic vertex trans-
forms as an SU(2) triplet times an SU(3) octet. Thus,
because of the p-wave nature of pseudoscalar mesons in
the static limit, this vertex is forced to have a part trans-

IV. THE N'ONRESO5'A5'T CONTRIBUTION

We shall now modify the equations for the electro-
magnetic current by including part of the nonresonant
(continuum) contribution. This modification will also
take into account the fact that the meson masses are
not degenerate in the SU(6) 35-dimensional representa-
tion and so it represents, in addition, an attempt to
reduce the symmetry from SU(6) to SU(3). We shall
consider here the effect of separating only the meson
masses but not the baryon masses. This can be thought
of as reQecting the importance of the mesons in the
actual value of the magnetic moments.

The electromagnetic vertex functions, then, have the
form shown in Fig. 4. In order to discuss the continuum
correction, we shall replace the nonresonant BB ampli-
tude by the Born terms due the baryons and baryon
isobars in the crossed channel, so that the equations
which we shall actually treat are those represented in
Fig. 5. The vector-meson pole term is treated here in
exactly the same way as it was treated in Sec. III."

In order to discover what the model of the nonreso-
nant term is, we first consider the diagram of Fig. 5
relativistically and then take the limit in which the
baryons become static. Only the pseudoscalar mesons
are included in this contribution, the electromagnetic
vertices for which are obtained from elementary con-
siderations. The current coupling these mesons to the
photons is

forming as the (3,8) of the 35 and a part transforming as
the (3,8) of the 405. The other two vertices are essen-
tially proportional to the SU(6) Clebsch-Gordan coeffi-
cients for 56Qx35-+ 56 and are obtained from SU(6)xr.
The group-theoretical part can then be readily calcu-
lated, with the continuum correction containing contri-
butions from both the 35 and the 405. The ratio Ir„/Ir„
is no longer 6xed at —~3, but depends now on two pa-
rameters, the assignment mixing angle 08 and a param-
eter X describing to what degree the magnetic moment is
accounted for by the pole term. "

Besides the Clebsch-Gordan coefficients there now

appear terms resulting from the static limits of integrals
of propagators and vertex functions over internal mo-
menta (see Fig. 5):

IM(m)
"k4dk v'(k)

"k4dk n'(k)
Iz(m) = (35)

me2= 24mx' cos'Ha+8my'(1+3 sin'8a)+3mxo'.

Similarly, the difference

Irr(ma) —Irr(m6) =AIg

(36)

appears in the proton charge equation.
Because of the form of the integral Ijr [Eq. (34)] it is

dear that hI~ will not depend strongly on the momen-
tum cutoff kq introduced by setting the square of the
baryon density, e'(k) =8(k—kz). We shall thus set k&

equal to infinity in AI~. However, the charge part of
the electromagnetic current, which involves the differ-
ence AI+, does depend strongly on the cutoff kz.

For each baryon we again obtain two equations, each
containing the over-all strength g as a parameter. In
order to eliminate this g from both equations, which is
equivalent to the normalization performed in the pole
model [Eq. (23)], we write now g= go), where go is the
result of using the charge equation to normalize the

where rex= k'+m' and n(k) is the usual function appear-
ing in the static model to represent the spatial distribu-
tion of the nucleon. Actually, what occurs in the equa-
tions for the magnetic moments is, according to Fig. 5,
the difference

I~(mx) —I~(m6) = AI~,

mx being the SU(3) average pseudoscalar mass and ms,
the SU(6)~ average meson mass given in the present
case by"

"M. A. Beg, B. W. Lee, and, A. Pais, Phys. Rev. Letters 13,
514 (1964).

'4R. H. Dalitz and D. G. Sutherland, Phys. Rev. 146, 1180
(1966)."P. Signell and J. W. Durso LPhys. Rev. Letters 18, 185
(1967)]have recently examined a model of the nonresonant con-
tribution to the nucleon form factors.

'6 J. G. Belinfante has considered a simplified bootstrap model
of the nucleon magnetic moments in which the ratio p,„/p„can
vary between —11/8 and —

~2 depending on the magnetic proper-
ties assumed for the mesons (unpublished). A. Kanazawa and M.
Saito have investigated a similar bootstrap model in a recent re-
port; Hokkaido University, Sapporo, Japan (unpublished).

~r J. G. Belinfante (private communication).
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)j.'(yv'/4s-) = (gvx)'). Since the kaon-nucleon couplings,
expressed in terms of f, are not significantly smaller
than the corresponding pion ones, we will simply replace
the SU(3) average coupling f~' introduced in Eq. (11),
by the experimental number f '=0.08. Instead of Eqs.
(37) and (38), then, we have

9 bm(mv ' 2M~»= (ss)»ssin8s) y-f.'—
~

5 mv (ms mv
(41)

36 Amfmy ' 2'„
(-,') 'i'sin8sX+ —f.' —~, (42)

25 m+ (ms —mv

while the charge equation, Eq. (39), becomes

27 AIs
1=)j.+ f '

25~ m3'

Here again we are faced with the problem of evaluat-
ing AIz. By using the pure cutoff model, mentioned
above, in this difference, the results for p,„and p„shown
in Figs. 6 and 7 are obtained. The experimental values
of these moments are now attained for a value of X quite
close to unity, which is in accord with the concept of
pole dominance. The cuto6 momentum is now about
1 BeV/c. More significant than the new values of X and
k~ is the fact that this method permits a much better
determination of the assignment mixing angle. Indeed,
if we accept ks—1 BeV/c as a reasonable value of the
momentum cutoff, we see from Figs. 6 and 7 that 88—0~
turns out to be the angle which is definitely preferred
(we recall that the pole term alone gave 8s=68e). For
values of the angle smaller than 8~, in fact, either the
experimental values are never reached, or they are at-
tained only for cutoff momenta very near zero. For
larger values, the opposite is true: p,„and p,„ take on

reasonable values only at excessively high cut-off mo-
menta (at 60' k& is already about 2 BeV/c. In Table III
we list the values obtained for ks ——1 BeV/c. Further-
more, it is apparent from these two figures that only for
angles quite close to 8~ is the 6t to the magnetic mo-
ments fairly insensitive to k~.

The ratio R= —p~/ki„obtained from Eqs. (26) and
(27) decreases very slowly with kz and is also quite in-
sensitive to the angle; for example, R(45e)=R(8s)
=Z(60e) =1.44 for values of kq in the range from 0.5 to
1.5 BeV/c. This value of the ratio is very close to the
experimental value, E. ~~=1.46.

The calculations and considerations made above for
the proton and neutron can be extended to the remain-
ing members of the baryon octet and also to the M1
decuplet-octet transitions.

TABLE III. Magnetic moments (in proton magnetons) from
Eqs. (41) and (42), using ki= 1 BeV/c.

g&s Oo 30o 45' 60o 90o

py 0,296 1.769 2.429 2.785
y~ —0.237 —1.235 —1,688 —1,935

0.998 0.994 0.990 0.988

2.946
-2.046

0.987

3.2'76
-2.275

0.985

3.388
24352
0.984

V. SUMMARY OF RESULTS

The simple pole model of the baryon magnetic mo-
ments in conjunction with SU(6)~ not only gives an
estimate of the assignment mixing angle of 88=68, but
also determines the M1 transition moments involved in
the electromagnetic decays of the baryon resonances
rather well. There are arguments, however, that 6I8

should be about 55', the TV-spin value. By including
some of the nonresonant effects of the baryon-pseudo-
scalar meson scattering amplitude, we have been able
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to construct a phenomenological model of the magnetic
moments which does, in fact, determine 08 to be about
55 . In this correction to the pole model, the angle 08 now
depends on a parameter ) describing the relative
amounts of resonant and nonresonant eRects, while X

depends on a momentum cutoff kq arising in the charge
form factor. The ratio —pp/p„ turns out to be almost
constant and=1.44 for a wide range of k~, while the
angle 08 has a preferred value approximately equal to
8~, the 8'-spin angle, for values of ) quite cl.ose to unity
and kq—1 BeV/c.
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APPENDIX

Here we will discuss in greater detail the steps con-
necting Eqs. (4) and (5). Both the SU(6) symmetric p&

and the broken moment pa consist of two terms, arising
from the pole contribution and the nonresonant correc-
tion. Thus, Eq. (4) may be rewritten as

—+ + /+pole+ 8+ooneinuum

If we can show that p6 (when the charge equation is
taken into account) is essentially just the pole term, then
the equation

+ pole+ 8+pole+ (+continuum

hoMs. By making use of the definition 8@I'~'=p3I'~'
—p6I"" in this last equation, we are led immediately to
Eq (5)

That p 6 should be the simple pole term is suggested by
group theoretic and dimensional arguments. To show

that, in fact, this form emerges from the symmetric
moment and charge equations is the purpose of the en-

suing discussion. The photon is now considered as be-

longing solely to the 35-dimensional representation of

SU(6), so that the proton moment in this limit is

9yy' X'
pp= (2)'i'sin88 —+ cos'88 Ipr,

~6 2x tÃ6

where Iir is the integral given. by Eq. '(34). The corre-

sponding charge equation is

9yv
cos'08— -I~,

~6

where Ig is the integral given by Eq. (35). We can now
use the charge equation to eliminate the coupling con-
stant from the magnetic-moment equation and so obtain

'A IM
pp= (2)'"sin88—+2(1—X)

SPY 6 I~

The ratio I@/I~ represents some sort of average virtual
meson energy in the cloud surrounding the nucleon, so
that this ratio can be denoted by (ip), whose dependence
on the meson mass is governed by the specific model
used. The proton moment then becomes

X 2(1—X)
pp= (—,')'i'sin88 —+

ns, (~)
which is of the form

1
y p= (-,') "'sin8, —.

m

This is a definition of the mass m. If X=1 or if (p&)
'

= (-,') 'i'sin88/2m6, then m =me, and the moment resumes
the form of the pole contribution. The case X= 1 is just
the pole term with no continuum correction, while the
case m=nzo=(32)'~'sin88(u&)/2 is not trivial. In the 8-

function model of Ref. 9, the average meson energy is

((p) = (pp ——(kp'+nz') "',
where k~ is the cutoff in momentum, and the charge
equation t after using Eq. (12)j becomes

27 fp' kg'
P=1——--

1257l tg3 Mg

By using f„'—f '=0.08, we find that

ni/m =3L10(1—X)j"'.
From this relation we find, for example, that when
X=0.90, no=1260 MeV, and kq ——2180 MeV/c, while

when. X=0.98, m=570 MeV and kq ——990 MeV/c. For
values of kq in the vicinity of 1 BeV/c, then, the param-
eters ) and m=m6 assume reasonable values and. , as a
consequence, the assumption that the exact SU(6) limit

of the model we have used should be equival. ent to the
pole model is made quite plausible.


