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predicted by exact SU(3). Inspection of Eqgs. (23a)-
(23d) shows that, if the charge radii, and transition
radius of the pseudoscalar mesons were measured,
J+(@® would be completely determined. If further
/=(¢") had no pole at @@= — (mx2—m,?), it would be
given in terms of three independent parameters.

J-(0)=

MEE— M2
(27b)

The static value of f,(¢%) agrees with the value
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An extension of the SU(6) static model is used to formulate a phenomenological analysis of the magnetic
moments of the baryons and of the J”= (§)* baryonic resonance transition moments. The results are de-
pendent on a parameter, characteristic of the model, the assignment mixing angle. The calculations of the
magnetic moments are divided into two parts. In the first only the contribution of the vector-meson reso-
nances is taken into account, while in the second this pole model is combined with part of the nonresonant
contribution to the magnetic moments. The strength of the electric and magnetic couplings of the vector

mesons to the nucleons is also calculated within the framework of the pole model.

I. INTRODUCTION

HE static model of Chew and Low! has been the
basis of several calculations of nucleon magnetic
moments. In fitting the pion-nucleon coupling constant,
calculated in this model, to the experimental value, it
was found that the most probable number of pions circu-
lating about the nucleon was one, and this fact led to
the idea that the anomalous moments were due to the
interaction of the magnetic fields with the orbital cur-
rent of the circulating charged pion.? There were diffi-
culties attending this idea, however, for, while the iso-
vector part of the anomalous moment could be made to
approximately correspond to the observed value, the
isoscalar part, determined by using the same cutoff
energy (in the integrals arising in the course of the cal-
culation) was not at all in agreement with experiment.?
It was then suggested that the K mesons, if they were
pseudoscalar particles, would contribute to the isoscalar
moment in a way which would make agreement with
experiment more likely.* However, ensuing dispersion
theoretic calculations using these ideas met with almost
as little success as those based on the static model.®
At about the time of the advent of the Chew-Low

* Work supported by the U. S. Atomic Energy Commission.
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model it was conjectured by Nambu® that meson reso-
nances in the momentum-transfer channel were neces-
sary for explaining the electromagnetic properties of
the nucleons. Later, resonances, resulting from a strong
pion-pion interaction in their /=1 partial wave (JP=1-,
I=0, 1), were found (albeit at an uncomfortably high
mass).

This idea of explaining phenomenologically the elec-
tromagnetic form factors of the nucleons by means of
vector-meson poles has been refined to the point where
these form factors can be quite well described even up
to fairly high momentum transfers.”

Thus it became clear that one of the main reasons for
the fajlure of both the static model and the dispersion
theoretic calculations was the neglect of vector reso-
nances in the pseudoscalar meson systems; that is, the
neglect of a reasonably strong p-wave pseudoscalar-
meson-pseudoscalar-meson interaction. Of course, such
vector resonances can be included in the Chew-Low
model by introducing them as elementary particles in
their own right. This is done, however, at the expense of
including two extra parameters, namely, the electric
and magnetic couplings of the vector mesons to the
nucleons.

II. EXTENSION OF THE STATIC MODEL

All of these effects lying outside the scope of the
original static model (e.g., vector and strange pseudo-
scalar mesons) are conveniently described by an exten-

6Y. Nambu, Phys. Rev. 106, 1366 (1957).
7T. Massam and A. Zichichi, Nuovo Cimento 43, 1137 (1966).
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sion of the static version® of SU(6) (CBC) made by
Belinfante and one of the present authors (GHR).® This
extended static model, SU(6), contains as parameters
the angles describing the mixing of vector (V) and
pseudoscalar (P) mesons in the total angular momentum
J=1 submodules of the 35-dimensional representation
of SU(6). These angles arise because of an ambiguity in
the case of the above mesons, both having J=1 with
respect to the (static) nucleons. The field operators
representing the (3,8) and (3,1) submodules are, in gen-
eral, the linear combinations

ag=cosfzap®+sinfsay?, 6))
a;=cosbap+sinbiay,

where a is an SU(3) octet index. The octet describes the
P and V mesons, and the singlet describes the X, and
w1 mesons. In the present case the SU(3) singlet is ex-
cluded since we are considering only electromagnetic
interactions.

The mixing of operators in Eq. (1) is called assign-
ment mixing, and hence the name SU(6) 1. The special
cases of CBC® and of the collinear (or W-spin) SU(6) w
versions of SU(6) are particular cases of SU(6) s, with
the assignments

cosby=cosfs=1, 6:;=0;=0 (CBC), (2)
and

cosfy=cosbs= (3)/2, 6,=6,2255° (W-spin). (3)

The usual static version, SU(6)s,'! is not recovered,
however.

The extension of the Chew-Low model to take into
account the resonating pseudoscalar system can be
thought of in the following way. The old calculations of
the anomalous moments were based on the contribu-
tion of the process shown in Fig. 1 to the spatial part of
the electromagnetic current. This process was then re-
lated to the total cross sections in the (2I+1, 27+1)
channels, with isospin I and total angular momentum J
zero or one, so that, in principle, this contribution could

B
F16. 1. The contribution of the P
virtual pseudoscalar meson to the ™~ y
baryon electromagnetic form fac- /ﬁ\/\/\/\/‘
tor in the static model. -B
B
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F16. 2. The contribution of the virtual pseudoscalar meson to
the baryon form factor, allowing for a pseudoscalar-meson—
pseudoscalar-meson interaction.

be computed using experimental cross sections.!? In
this scheme, however, no allowance was made for the
resonating pseudoscalar meson system. In other words,
the possibility that the mesons will interact prior to
their absorption at the photon vertex should be con-
sidered. For, even though the diagram of Fig. 1 is im-
portant, the rescattering of the strongly interacting
p-wave pseudoscalar mesons is even more important.
In order to include this interaction we should write, in-
stead of the process picutred in Fig. 1, the two terms
shown in Fig. 2. The new term contains the off-mass-
shell meson-meson scattering amplitude 7. The on-
mass-shell amplitude resonates in the J=1, I=0, 1
channels, and if we approximate T in the ¢ channel
(t=¢* by a sum of poles corresponding to these reso-
nances, the magnetic-moment equation becomes what
is schematically represented in Fig. 3. The second term
shown there is now the nonresonant or continuum contri-
bution and is a correction to the first term, which is, of
course, the usual pole model.

The two new couplings of the vector mesons to the
nucleons, gy? (the electric coupling constant) and gy
(the magnetic coupling constant), arehereby introduced,
along with another parameter characteristic of the pole
model, gyy=emy?/2yy.3 A similar equation holds for
the time component of the electromagnetic current
(which contains the electric charge). This equation is
used together with the one for the spatial components,
described above, to normalize the over-all SU(6)
strength g, which appears in both equations.

Because of its success, and because it is able to give
immediate information about the assignment angle 6,14
we shall examine the pole contribution to the electro-
magnetic current first [Sec. III].

F1c. 3. Separation of the resonant and nonresonant parts of Fig. 2.
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We start by relating gy® and gy ¥ to the pion-nucleon
coupling constant f,. Next we calculate the proton and
neutron magnetic moments [Table I]. In a similar
manner, both the hyperon magnetic moments and the
transition moments entering the JP=($)* baryonic
resonance decay, B*— By, can also be calculated,
using the value of 63 determined from the proton and
neutron magnetic moments. Finally, by using the actual
masses of the p, the w, and the ¢, we can introduce some
SU(3) symmetry breaking into the results.

The numerical values of such magnetic-moment cal-
culations can be somewhat refined by splitting the mo-
ments into isovector and isoscalar moments. The ad-
vantage of doing this is, of course, that the isovector
moments involve the p meson exclusively, and therefore
depend only on its mass. The isoscalar moments, on the
other hand, depend on the mass of the ws, which is a
linear combination of the physical mesons w and e.

We now return to the problem of including some of
the continuum corrections. As far as the original equa-
tions involving contributions from both the resonant
and nonresonant processes are concerned, we have
thought of them as being SU(6)-invariant. If we wish,
however, to take into account the fact that SU(6)x is
a broken symmetry, while assuming that STU(3) is still
good, we need to know how the breaking affects the
equation shown in Fig. 3. Denoting by p; the SU(3)-
symmetric magnetic moment obtained from the SU(6)
symmetric moment ug by reducing the symmetry from
SU(6)x to SU(3), we may write

3= puet0u. @)

Upon separating the pole contribution from the con-
tinuum contribution, Eq. (4) may be written as

U3=N 3pole+ 5#continuum , (5)

since us, when account is taken of the SU(6)y sym-
metric charge equation, is essentially just the pole term
(see the Appendix for a more complete discussion of this
point). Pictorially, Eq. (5) is shown in Fig. 4.

TasrLe I. Magnetic moments (in proton magnetons)
resulting from the pole model.

0° 30° 45° Ow 60° 75° 90°

u* 0 1.365 1.930 2.229 2.364 2.637 2.729
uw* 0 —0910 —1.287 —1.486 —1.576 —1.758 —1.820
ut 0 1.455 2.057 2.376 2.520 2.811 2.910
ub 0 —1048 —1.482 —1.711 —1.815 —2.025 —2.096

a SU (3) symmetric.
b SU (3) broken symmetric values.
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Fic. 4. The equations for the
magnetic moments when the sym-
metry is reduced from SU(6) to
SU(3). The numbers indicate
where SU(3) average masses and
SU(6) average masses are to be
inserted.
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The results of these considerations together with some
important modifications, are presented in Sec. IV.

III. THE VECTOR-MESON POLE
CONTRIBUTION

In order to discuss the electromagnetic properties of
the nucleons we examine the matrix element of the
electromagnetic current between physical baryon states:

(ErEs/ MM 2) Y3 (o] 5,em(0) | p1). ©)

The time component je™ of this four-vector is related
to the charge form factor, while the spatial components
3o are related to the magnetic form factor, both of
them depending on the square of the momentum trans-
fer ¢®>=(pa— p1)% In the limit of static nucleons (or in
the Breit, or brickwall, frame) the current four-vector
separates into

((GE(q2)7 ’LO‘X qGM(qz)) )

where the electric and magnetic form factors Gg,x(g?)
are normalized to yield the observed static values:
GEP(O) =e, GEn(O) =0,
Gup(0)=p,p=2.793, Gun(0)=p.=—1.913,
and where the magnetic moments are in units of e/2M.
In the pole model (first term in Fig. 3) the nucleon is
pictured as emitting a vector meson, which in turn

couples directly to the photon. In this model, then, the
matrix element of Eq. (6) is replaced by

(p2]7u7(0) | p1) emy?
— g my? :

()

2 (EiEs/ MM o) 2
v 2"YV

The factor (—¢>+my?)~! arises from the propagator of
the virtual vector meson; {pa| 7,7(0)| p1) is the matrix
element of the vector-meson current between the same
physical nucleon states as before; vy is a constant re-
lated to the strength of the vector-meson couplings to
the photon.?

The new matrix element in Eq. (7) can be evaluated
with the help of SU(6) . In the static limit, then,

(BrEs/ MAM 2)Y%(p2| 7,7(0) | p1)
=Xl (4m) 2%y PG r(qH)2(3) Y2 o, (4m) 2y MG ar(g?)

><<4<s>1'2/5)[Fa+<(5)I/Z/Z)Daji—qu}xl. ®
myv
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The constants F, and D, are SU(3) Clebsch-Gordan
coefficients for the couplings 8X)8 — 8, and 8X)8 — 8,
respectively. The Pauli spinors X also transform as mem-
bers of the 56-dimensional representation of SU(6). The
time component is assumed to transform as the (1,8)
part of the 35, while the spatial components as the (3,8)
part. The additional coefficients have been chosen so
that if the meson is the p, then

(ErEo/ MM ) V% ps) jo? | p1)
=X H{ (4m) 2, G e(gD) =} X1, (9)
(ErEo/ MAM )V 1% ps 37| p1)

7
=Xot] (4m) 24, MG (gP)—roXq (X1, (10)
my

In Egs. (9) and (10) above we have allowed for the pos-
sibility that my, the average octet vector-meson mass,
is not equal to the measured mass m, by simply replac-
ing m, by m,.

We are now able to connect g,?, g,¥, and f,. We
start by writing down the general matrix element of the
pseudoscalar mesons in the static limit:

I»
(BrEn/ MM )V p2| §7(0) | pr)= (4m) 1/2;;—)(21‘
5)1/2
©) Da>X1, (11)

¢ )4 VA F
X 10+q g( ( a+

where f, stands for an SU(3) average of the pseudo-
scalar meson-nucleon coupling constants. This expres-
sion, in the case of isovector pions, reduces to

I
(Am)V2—X,t(io-q)%X;.
Mr

The relation between the pseudoscalar coupling con-
stant f, and the over-all SU(6), strength g appearing
in the Lagrangian of Ref. 9 is

fo  /10\V2r
(4m)Y 2’ g(—) — cosfs.
My 3/ 3

(12)

Then, by calculating in a similar way the matrix ele-
ments of Egs. (9) and (10), we can relate g,Z and g,
to g. Finally, by using Eq. (12), we obtain

8:™/8,"=5(3)"*sinbs, (13)

with g,% given by g,%=[(3)"2/5](f+/cos8s)(m,/ms).
With the introduction of Gr= (2M /m.) f,, where M is
the nucleon mass, this last relation becomes

)2 Gx m,
5 c05032M‘

gof= (14)
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Upon setting 65 equal to the “I¥-spin value,” fs=0w,
given by Eq. (3), we find from Eq. (13)
8:™M/8."=5/3. (15)
The vector current can also be written in the form
(Am)12gry et (4m) 2 frioyymg /m,,

the relation of the new constants g¢f and f* to the ones
used above being

=g, frmg B g,
2M
Therefore, for s=0w,
f/gP=m,/2M+5/3=22.1, (16)

which agrees with several different estimates.!® For the
same value of the mixing angle we obtain, from Eq. (14),

(67 (an)
50  2Mm2
This last expression is to be compared with
fo*=(gv/g4)°G+*(m,*/2M*), (18)

obtained from current algebra applied to p decay into
two pions,' or as found by Sakurai.}” Then from Egs.
(15) and (16) we obtain the ratio ga/gy=(25/18)!/2
=1.18, an amusing result in itself, to which we shall
direct our attention in a future work.

In the limit of zero momentum transfer,

C(EAEs/ MM 5)V%ps| 7,5 p1)]ar=0
=[v (ErBo/ MDYV X p2| 5,7 | p1)]e2=0(1/27v),

from which emerge the charge and magnetic-moment
equations:

1
Q=2 (4m)'%gyF2(3)'?F g—, (19)
v 2yy
3)12 1
p=2 (4m)12gy™M [Fo+3(5)Y 2DQ];~2M » (20)
4 Yv

where the index Q stands for the sum of SU(3) Clebsch-
Gordan coefficients which transform as the charge
operator. From the above equations we obtain

8" 8us”
Qy=1= (47r)1/2<—~+(3)1/2 ) : (21)
2%, 2Y s
g™ 1 (3)12gu 1
up=<4vr>lﬂ<~"— —+ —“—-)sz (21)
Yo My S 2y Mg

15 G. Kopp and P. Stding, Phys. Letters 23, 494 (1966) and
references therein.

16 K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
255 (1966).

17 J. J. Sakurai, Phys. Rev. Letters 17, 552 (1966). The constant
g" in the text differs from Sakurai’s f, by a factor of §.
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for the proton, and

8.7 Zug™
0.=0=tim i (3 E), (2)
27[’ 2’ng
g1 (3)V2g,M 1
pn=(4m)" 2<——p~ —+ = —~>2M,, (22')
2y, m, S 2V Mg

for the neutron. From Egs. (21) and (22) it follows that
gPE/27P=\/3(gwsE/27ws) and

1= (477.)1/2ng/,“'

Using these last two expressions, together with relation
(13), we arrive at

125 M ! 1°2ng S
(am)i2g, 0/ 27,= | (4= £~
2 2y, 12\3

(23)

5 /2\1/2
Xsin03=—<—> sinfg, (24)
4\3

and similarly,

(4m) " 2gug M/ 2yus= (§)"/2(3)"/*sinds. (25)
Expressions (24) and (25) permit us to write
50 1\1/2\?
Up= <—+—>—<—> (sinfg)2M (26)
My May/ 4\3
5 1\1/2\V?
Y= (——~+~—~>—<—> (sinfg)2M ,, (27)
My Mag/ 4\3
from which follows the well-known SU(6) ratio'®
up/un=—=% in the limit of degenerate masses. In this
limit, and for 8s= 6w we also obtain
pp=2M p/my, (28)

pn=—%32M ,/mv, (29)
which are the results obtained by using current commu-
tators and pole dominance.'® By extending the calcula-
tion to the hyperons the well-known SU(3) relations

are regained.?

18 B, Sakita, Phys. Rev. Letters 13, 643 (1964); T. Giirsey, A.
Pais, and L. A. Radicati, sbid. 13, 299 (1965).

19 M. Ademollo, R. Gatto, G. Longhi, and G. Veneziano, Phys.
Letters 22, 521 (1966).

20 S, Coleman and S. L. Glashow, Phys. Rev. Letters 6, 423
(1961).
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F16. 5. The nonresonant part is ap-
proximated further by keeping the
baryon and baryon-resonance Born
terms in the nonresonant baryon—
pseudoscalar-meson scattering ampli-
tude.

/
/
(2]

If we introduce some symmetry breaking by using
m,=1765 MeV and m,,=941 MeV (determined by using
an w— ¢ mixing angle of approximately 35°), we can
determine sinfs from the experimental value for u,.
Equation (26) then yields the value sin6s=20.93 corre-
sponding to an angle 63=268°. Insertion of this value of
the assignment mixing angle into Eq. (27) gives pa
= —2.01. Table I shows the variation of u, and u, with
s in both the degenerate mass case and in the case of
broken symmetry. By extending the use of this angle
to the equations for the other baryon moments it is
found, for example, that

MA= —076 and ,uz*‘=2.62.

These values are in good agreement both with the ex-
perimental determinations?! and with the mass-cor-
rected values obtained by Bég and Pais?? in SU(6) s.

Upon rearranging the results of Eqs. (26) and (27)
we obtain the isovector and isoscalar moments as given
by the pole term:

. »
pr=3—p)= @) sind—,  (30)
mp
. 2M,
ps=Hurtpa) =% sinf—.  (31)
Mp

If the values given in Table II are compared with the
experimental values pp®®t=2.452 and pso*"=0.440, it
will be seen that the pole term, as usual, describes the
isovector part better than the isoscalar part.

We look next at the magnetic dipole decuplet-octet
transitions. For Ng;*t — p-+, for example, we find

2 M,
(sinﬂg)——— N
K

p¥=p(Nsg*t — ptvy)=
my

Tasre II. Isovector and isoscalar magnetic
moments In proton magnetons.

s
AN 0°  30° 45° Ow 60° 75° 90°

% 0 1.251 1.770 2.043 2.167 2.418 2.503
1S 0 0.203 0.288 0.332 0.352 0.393 0.407

21 The present experimental weighted averages are ua= —0.73
4+0.16 and pz+=2.3£0.6. [Arthur H. Rosenfeld, Angela Barbaro-
Galtieri, William J. Podolsky, Leroy R. Price, Paul Soding,
Charles G. Wohl, Matts Roos, and William J. Willis, Rev. Mod.
Phys. 39, 1 (1967)].

22 M. A. Bég and A. Pais [Phys. Rev. 137, B1514 (1965)7], find
up=—0.78 and pz+=2.20.
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which can be written in terms of p,:

w*=3V2p,. (32)

Since only the po plays a role here, that is, only the (3,8)
part of the 35 enters into the calculation of u*, the pre-
diction of SU(6)1 in the pole model must agree with
that of SU(6)s.2® The experimental value obtained by
Dalitz and Sutherland? from an analysis of photopro-
duction data in the vicinity of the 3-3 resonance is
(1.282£0.02)[3V2p, .

IV. THE NONRESONANT CONTRIBUTION

We shall now modify the equations for the electro-
magnetic current by including part of the nonresonant
(continuum) contribution. This modification will also
take into account the fact that the meson masses are
not degenerate in the SU(6) 35-dimensional representa-
tion and so it represents, in addition, an attempt to
reduce the symmetry from SU(6) to SU(3). We shall
consider here the effect of separating only the meson
masses but not the baryon masses. This can be thought
of as reflecting the importance of the mesons in the
actual value of the magnetic moments.

The electromagnetic vertex functions, then, have the
form shown in Fig. 4. In order to discuss the continuum
correction, we shall replace the nonresonant BB ampli-
tude by the Born terms due the baryons and baryon
isobars in the crossed channel, so that the equations
which we shall actually treat are those represented in
Fig. 5. The vector-meson pole term is treated here in
exactly the same way as it was treated in Sec. II1.%

In order to discover what the model of the nonreso-
nant term is, we first consider the diagram of Fig. 5
relativistically and then take the limit in which the
baryons become static. Only the pseudoscalar mesons
are included in this contribution, the electromagnetic
vertices for which are obtained from elementary con-
siderations. The current coupling these mesons to the
photons is

1 .,
ju”=;¢a*ap¢ﬁoaﬂ, (33)
1

where Q2f is the charge operator in SU(3), 0=1z+Y/2,
and ¢, is a relativistic operator describing the pseudo-
scalar meson with SU(3) index a. When the above cur-
rent is placed in the diagram of Fig. 5 and the static
limit taken, the meson electromagnetic vertex trans-
forms as an SU(2) triplet times an SU(3) octet. Thus,
because of the p-wave nature of pseudoscalar mesons in
the static limit, this vertex is forced to have a part trans-

2 M. A. Bég, B. W. Lee, and A. Pais, Phys. Rev. Letters 13,
514 (1964).
(1;‘; R) H. Dalitz and D. G. Sutherland, Phys. Rev. 146, 1180
6).
% P, Signell and J. W. Durso [Phys. Rev. Letters 18, 185
(1967)7 have recently examined a model of the nonresonant con-
tribution to the nucleon form factors.
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forming as the (3,8) of the 35 and a part transforming as
the (3,8) of the 405. The other two vertices are essen-
tially proportional to the SU(6) Clebsch-Gordan coeffi-
cients for 56(X)35 — 56 and are obtained from SU(6) .
The group-theoretical part can then be readily calcu-
lated, with the continuum correction containing contri-
butions from both the 35 and the 405. The ratio u,/pa
is no longer fixed at —$%, but depends now on two pa-
rameters, the assignment mixing angle s and a param-
eter A describing to what degree the magnetic moment is
accounted for by the pole term.?

Besides the Clebsch-Gordan coefficients there now
appear terms resulting from the static limits of integrals
of propagators and vertex functions over internal mo-
menta (see Fig. 5):

« kidk v2(k
IM(m)——:f ———d j( ) (34)
and ’
® ktdk v2(k)
IE'(m)=/ — (35)

where w?= k?4-m? and v(k) is the usual function appear-
ing in the static model to represent the spatial distribu-
tion of the nucleon. Actually, what occurs in the equa-
tions for the magnetic moments is, according to Fig. 5,
the difference

IM(’mg)—IM(’WLe) = AIM y

mg being the SU(3) average pseudoscalar mass and g,
the SU(6) s average meson mass given in the present
case by?”

me2=24ms? cos20s+8my2(1+3 sin2fs)+3mxe.
Similarly, the difference
I g(ms)—1g(me)=Alg

appears in the proton charge equation.

Because of the form of the integral I, [Eq. (34)] it is
clear that Al will not depend strongly on the momen-
tum cutoff % introduced by setting the square of the
baryon density, v2(k)=60(k—k,). We shall thus set %,
equal to infinity in A, However, the charge part of
the electromagnetic current, which involves the differ-
ence Al g, does depend strongly on the cutoff &,.

For each baryon we again obtain two equations, each
containing the over-all strength g as a parameter. In
order to eliminate this g from both equations, which is
equivalent to the normalization performed in the pole
model [Eq. (23)], we write now g= go\, where g, is the
result of using the charge equation to normalize the

(36)

2 J. G. Belinfante has considered a simplified bootstrap model
of the nucleon magnetic moments in which the ratio u,/us, can
vary between —11/8 and —3£, depending on the magnetic proper-
ties assumed for the mesons (unpublished). A. Kanazawa and M.
Saito have investigated a similar bootstrap model in a recent re-
port; Hokkaido University, Sapporo, Japan (unpublished).

% J. G. Belinfante (private communication).
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F16. 6. The variation of u,
with the momentum cutoff for
various values of 6s.
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SU(6) coupling constant in Eq. (23). By making use
of the relations between gy® and g, derived above, we
find that N\2=(gy®)?/(yy?/4r). As a function of X the
equations for the magnetic moments of the nucleons are
now

vv? Am 2M,
Hp= {(%)1/ %5infsA+ 15— cosz()g——)@] , (37)
T my ) my
'yV2 Am ZMp
U= — { (%)V2%sinfgA+ 12— COSZBS—)\Z} (38)
T my mv

with Am=mg¢—ms, while the equation for the proton
charge is

9 yy? Alg
Qp=1=N\—— cos2s—N\?. (39)
T 4 my?

In order to make use of these equations we must de-
cide how to evaluate AJ g and what to use for g? or, alter-
natively, for yy2 The simplest way of evaluating ATy is
to put k%2%(k)=£k,%6(k—k )/5. This choice of 2(k) in the
charge equation [Eq. (39)] will be referred to as the
“§-function model.” Then, since the combination
2k 4%/ 2003, w?="Fkp*+me® occurs in the continuum con-
tribution, we can use the results of the Appendix of Ref.
9 to set this equal to 2. Or we can simply replace vy by
v, and use the experimental value v,2/4r=3/5, deter-
mined by measuring the decay rate of p into lepton

pairs.?8 In both cases we vary A and 65 to fit both the
proton and the neutron moments. These two methods
give similar results: When u, and u, are reasonably close
to the observed values, we find that £,=2250 MeV/c,
A=0.6-0.7, and 03=45°-70°. Thus, both of these treat-
ments give a value of X smaller than desired (the pole
contribution being then less important than expected)
and only a fairly wide range of 6s is determined.

The §-function model might be thought a bit extreme
because of its strange dependence on &, so that the
more usual model obtained by setting v%(k)=0(k—k,)
might be expected to improve the results somewhat.
This “pure cutoff” model was also used, in conjunction
with yy2/4r=2. The only significant change is that now
ka=21-1.5 BeV/c, the parameters N and 65 falling within
the same range as in the §-function model.

An alternative procedure was suggested to us by
Cutkosky: The factor (yy?/4m)cos®9s\? appearing in
Egs. (37) and (38) can be replaced by (3/25)(f,%/ms?)
Xmy? [obtained from Eq. (14) and the relation

3 J. K. de Pagter, J. I. Friedman, G. Glass, R. C. Chase, M.
Gettner, E. von Goeler, R. Weinstein, and A. M. Boyarski, Phys.
Rev. Letters 16, 35 (1966). These authors give (o — wu*)/(p —
7~ wt) = (0.334:0.04) X107 and using

T(p— 2r)=124 MeV, m,=765 MeV (40)

we get v,2/4r=4/5. However, the result of de Pagter et al. should
be corrected by a factor of 4 [R. Weinstein, in Proceedings of the
Thirteenth International Conference on High-Energy Physics,
Berkeley, 1966 (University of California Press, Berkeley, 1967);
see also J. J. Sakurai, Phys. Rev. Letters 17, 1021 (1966) ].
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A\(yy2/4r) = (gyF)?]. Since the kaon-nucleon couplings,
expressed in terms of f, are not significantly smaller
than the corresponding pion ones, we will simply replace
the SU(3) average coupling f,? introduced in Eq. (11),
by the experimental number f,2=0.08. Instead of Egs.
(37) and (38), then, we have

9 Ammy\212M,
o= @prsinnact () =2 )
S my\ms my
and
36  Am/mv\212M,
= =[ @simoat—r(2) 2,
25 my\m3 my
while the charge equation, Eq. (39), becomes
1=\ a fa (43)
- 257!' " ﬂ'l32

Here again we are faced with the problem of evaluat-
ing AIg. By using the pure cutoff model, mentioned
above, in this difference, the results for u, and u, shown
in Figs. 6 and 7 are obtained. The experimental values
of these moments are now attained for a value of A quite
close to unity, which is in accord with the concept of
pole dominance. The cutoff momentum is now about
1 BeV/c. More significant than the new values of A and
ky is the fact that this method permits a much better
determination of the assignment mixing angle. Indeed,
if we accept ky=21 BeV/c as a reasonable value of the
momentum cutoff, we see from Figs. 6 and 7 that ;=20
turns out to be the angle which is definitely preferred
(we recall that the pole term alone gave 8:2268°). For
values of the angle smaller than 6y, in fact, either the
experimental values are never reached, or they are at-
tained only for cutoff momenta very near zero. For
larger values, the opposite is true: u, and u, take on

reasonable values only at excessively high cut-off mo-
menta (at 60° &, is already about 2 BeV/c. In Table ITI
we list the values obtained for ky=1 BeV/c. Further-
more, it is apparent from these two figures that only for
angles quite close to 6w is the fit to the magnetic mo-
ments fairly insensitive to k,.

The ratio R=—pu,/u. obtained from Egs. (26) and
(27) decreases very slowly with %, and is also quite in-
sensitive to the angle; for example, R(45°)=R(6w)
= R(60°)=1.44 for values of %, in the range from 0.5 to
1.5 BeV/c. This value of the ratio is very close to the
experimental value, Rex,t=1.46.

The calculations and considerations made above for
the proton and neutron can be extended to the remain-
ing members of the baryon octet and also to the M1
decuplet-octet transitions.

V. SUMMARY OF RESULTS

The simple pole model of the baryon magnetic mo-
ments in conjunction with SU(6)x not only gives an
estimate of the assignment mixing angle of 3=68°, but
also determines the M1 transition moments involved in
the electromagnetic decays of the baryon resonances
rather well. There are arguments, however, that 6;
should be about 55°, the W-spin value. By including
some of the nonresonant effects of the baryon-pseudo-
scalar meson scattering amplitude, we have been able

TasLe III. Magnetic moments (in proton magnetons) from
Egs. (41) and (42), using ka=1 BeV/c.

s

M 0° 30° 45° ow 60° 75° 90°

o 0.296 1.769 2.429 2.785 2.946 3.276 3.388
123 —0.237 —1.235 —1.688 —1.935 -2.046 —2.275 -—2.352
by 0.998 0.994 0.990 0.988 0.987 0.985 0.984




1246

to construct a phenomenological model of the magnetic
moments which does, in fact, determine 65 to be about
55°. In this correction to the pole model, the angle s now
depends on a parameter N describing the relative
amounts of resonant and nonresonant effects, while \
depends on a momentum cutoff £, arising in the charge
form factor. The ratio —pu,/u. turns out to be almost
constant and=1.44 for a wide range of k,, while the
angle 0s has a preferred value approximately equal to
0w, the W-spin angle, for values of \ quite close to unity
and k,=1 BeV/c.
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APPENDIX

Here we will discuss in greater detail the steps con-
necting Egs. (4) and (5). Both the SU(6) symmetric us
and the broken moment p; consist of two terms, arising
from the pole contribution and the nonresonant correc-
tion. Thus, Eq. (4) may be rewritten as

Uz= ,U6+ 6upole+ BMcontinuum A

If we can show that us (when the charge equation is
taken into account) is essentially just the pole term, then
the equation

us =,U6p013+ 5Mpole__|_ 5#continuum

holds. By making use of the definition oupole= pyzpole
—peP in this last equation, we are led immediately to
Eq. (5).

That ¢ should be the simple pole term is suggested by
group theoretic and dimensional arguments. To show
that, in fact, this form emerges from the symmetric
moment and charge equations is the purpose of the en-
suing discussion. The photon is now considered as be-
longing solely to the 35-dimensional representation of
SU(6), so that the proton moment in this limit is

A 9'y V2 >\2
wp=(3)V2%infs—+—— cos?s—I 1,
me 2m? Me

where I is the integral given_by Eq."(34). The corre-
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sponding charge equation is
1 971{2 )\2

where Iz is the integral given by Eq. (35). We can now
use the charge equation to eliminate the coupling con-
stant from the magnetic-moment equation and so obtain

A Iy
pp=(3)"%sinfs—+2(1—N)—.
e IE

The ratio I /Iy represents some sort of average virtual
meson energy in the cloud surrounding the nucleon, so
that this ratio can be denoted by {w), whose dependence
on the meson mass is governed by the specific model
used. The proton moment then becomes

N 2(1—=N)
up=(3)'’sinfs —+ )
Mme (w)

which is of the form

o= (3)V35ind5 — .
m

This is a definition of the mass m. If A=1 or if {w)™?
= (2)Y/2sinfg/2mg¢, then m=m;, and the moment resumes
the form of the pole contribution. The case A=1 is just
the pole term with no continuum correction, while the
case m=me=(3)%infg(w)/2 is not trivial. In the 8-
function model of Ref. 9, the average meson energy is

(w)=wA= (kA2+m2)1/2,

where kj is the cutoff in momentum, and the charge
equation [after using Eq. (12)] becomes

1257 ’Wla2 wA3 .
By using f,%2f,2=0.08, we find that
m/mz==3[10(1—\)]V/2,

From this relation we find, for example, that when
A=0.90, m=1260 MeV, and k,=2180 MeV/¢, while
when A=0.98, m=570 MeV and ky=990 MeV/c. For
values of %, in the vicinity of 1 BeV/c, then, the param-
eters \ and m=mg assume reasonable values and, as a
consequence, the assumption that the exact SU(6) limit
of the model we have used should be equivalent to the
pole model is made quite plausible.



