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It is shown that lf busts+ (1688) and nits+" (1920) are the Regge recurrences of Estd+(940) and he~re (1238),
respectively, they can be classi6ed along vrith other particles in the (56, 1;L=2) representation of the rest-
symmetry group U(6) g U(6) QO(3). The couplings of these baryons are then fixed by the collinear U(6) g
yg(2)s grouP. This leads to the following Predictions:

(R1) (D/F)B 6/sew as/se+oseudosesler mesou= s r

(R2) r(ne(1920) ~ dv~)/r(Ãe(1688) ~ ftra) =1.84;
{R3-R4) the photoformation (l.e., the process y+p ~ resonance ~ ltlsr) of 6e (1920) and E*(1688)should

occur with the multipole ratios (Et+/3fs+)d "&loco& =0 and (hf e-/Ee —)Qe($eee} 0.1, respectively.

These predictions are shown to be in agreement vnth experiment. Generalizations to higher Regge recur-
rences are presented.

VER since complex-angular-momentum techniques
~ were first applied to dementary-particle physics,

it was suspected that the E*(1688) J~= as+ resonance

is the first Regge recurrence of the nucleon E(940).I

Similarly, the t),*{1920)J~=-,'+ resonance was suggested

as thc j1rst rccurl cncc of thc fRmous 33 rcsoilRncc

h(1240). In the course of time these ideas have received

some support. Thus, e.g., it has been argued' that the

SU(3) octet assignment for 1V*(1688) is strongly

favored over all other possible SU(3) representations.
Unfortunately, even if one accepts that X*(1688)
belongs to an octet Lalong with ('?) Fee(1815),
FI*(1915),and. *(1933)j this does not yet imply that
this octet lies on the same Regge trajectory as the

fundamental baryon J~=-',+ octet. In this paper we

vrish to present stronger evidence favoring the Regge-
recurrence hypothesis for Ne(1688) and he(1920).
Based on this hypothesis, we shall also make some

predictions that can easily be tested with available

experimental techniques.

The idea of our approach is that along a Regge

trajectory internal quantum numbers do not change.

The J~=—',+ baryon octet 8 and the J =-,'+ baryon

decimet D belong, as is commonly accepted, to a
(56, 1; L=O) representation of the group U(6) X U{6)
XO(3).s The Regge trajectory that accomodates this

representation can be syxnbolically represented as

(56, 1; L=cr(t)), where cr(t)=era(t) —s, na(t) being the

Regge trajectory of the baryon octet. The 6rst recur-

rencc of the basic {56,1;L=O) (taking into considera-

'tioI1 tllc sigIlatllrc ilile AL = 2) will tllelcforc be a
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3The group U(6)XO(3) has erst been used in elementary

particle physics by P. G. O. Freund and 3. W. Lee /Phys. Rev.
Letters 13, 392 (1964)g.

(56r 1 s L= 2) multlplet. ' This multiplet contains pieces
corresponding to all total angular momenta that can
be obtained by combining the S= ~ octet and the S= ~
decimet of (56, 1) with L=2 according to the usual
rules of addition for angular momenta. (56, 1; L=2)
thus contR1QS J =2+ RIld g+ octcts Rnd ~ =2+, 5+, 2

and —,'+ decimets, ' In particular, the -', + octet and —,'+
decimet are the 6rst recurrences of the —,'+ octet and &+

decimet contained in (56, 1; L=O), whereas the re-

lila111111g multlplcts of (56, 1 r L=2) hc 011 Rcggc
trajectories that become "11onscnse"4 at I=0. Our

arguments will explore the experimental consequences
of this (56, 1; L=2) assignment for Ãe(1688) and
h*(1920) and show that they are in accord with experi-
ment. Specifically, we shall find, that:

Rl: The D/F ratio for the couplings of the J~=-',+
baryon octet to the J~=-,'+ baryon octet Rnd pseudo-
scalar mesons is D//F =

R2: The partial widths F(he(1920) -+ Xsr) and
1'(Se(M88) —+ Err) are related by

r(~*(1920) X ) /2 /~„,qW. „,=184 (1)
P(fir'(1688) ~ Jl/sr) 175 kqsts/ Mr&s

where Mits (Jrlsts) and qrts (stets) are, respectively, the
mass of lP(1920) ($*(1688)) and the center-of-mass

(c.m.) momentum of its decay products.
R3: Photoformation of h*(1920) (i.e., the process

y+p —e 6*—+ srÃ) occurs purely in the magnetic
octopole (&Vs~) channel. The ratio

(+8+/~3+) a*(rsssl

R4: Pllo'tofoliilatlon of E (1688) 1'ccc1vcs colltI'1bll-

tions from both the electric quadrupole (Es ) and

' A similar argument in the case of U(6))&0(3}symmetry has
been advanced by M. Gell-Mann LPhys. Rev. Letters 14, 77
(1965)j.
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magnetic octopole (Ma ) amplitudes and their ratio is

(bf 3 /B3 )N~(M88) =0.1.
We now present the proof of statements R1—R4. The

most convenient way to describe a (56, 1; L=2)
representation is by means of the kinetic supermultiplet
technique, ' which is a generalization of the Rarita-
Schwinger formalism to the U(6) case. We introduce
a kinetic supermultiplet (P,q,)„„for the (56, 1; L=2)
representation. Here a, b, and c are 12-valued pairs of
Dirac and SU(3) indices (a=nA, u=1, , 4, A =1,2,3;
b=PB, etc.) and p, v are usual Lorentz tensor
indices p, v=0, 1,2,3. The fact that g describes a (56, 1;
L=2) representation is expressed by the following set
of subsidiary conditions:

(p, b, (p))„„=totally symmetric in u, b,c,

b p-~)."(~. .(p)).,=0
(Bargmann-Wigner equation), (2a)

and

abc pv abc vp p

p"(4.~.(p))p.=O, g""(4.~.(p))p. =O (2b)

The conditions (2a) ensure the requisite U(6)XU(6)
transformation properties, whereas (2b) project out
the L= 2 part of the second-rank Lorentz tensor. Using
the conditions (2), we can explicitly construct p. We
find

(y.g, (P))„„=(y"C) p[(Dil,*(P))pl~ac

We will first construct the couplings of (56, 1;L= 2)
to the basic (56, 1; L=O) baryons and (6,6) mesons.
To this end we describe the latter by the familiar
spinors iP,q, and M, », respectively. i To construct the
couplings we will break the rest symmetry U(6) XU(6)
XO(3) down to the collinear U(6)s XO(2)s sym-
metry. ' In a system of reference in which the collinear
motion proceeds in the s direction, 0(s)s is just the
group of plane rotations generated by 1., %e will
achieve this breakdown by standard kineton tech-
niques. ' In practice this means that the orbital indices
pv of p should be contracted with momenta and never
with y matrices, ' for the latter would mix 0(3) and
U(6) indices and thus cause the breakdown of U(6) s .
The most general U(6) s XO(2) s -invariant /PM vertex
contains two independent coupling constants g and g'
and has the explicit form

I'~e~ =uP "(p')(4.a.(P)):q"q"~."(q)

+gV""(P')(4.t.(P)) q"q"L"ev'(P+P')]~'~'(q) (4)

with q= p' —p.
Observe that because of the )ie in the kineton factor

($p (p+p')Xe$z') the second term only couples SU(3)-
singlet vector mesons to p and f. Since in this paper
we are only interested in the couplings to the pseudo-
scalar and vector octets, all relevant couplings can be
expressed in terms of only one coupling constant g.
Inserting Eq. (3) into Eq. (4), we find in particular for
the couplings of the pseudoscalar octet I' to p and f
the form

Z

+ — -(~'~C).s[(PiD,„,*(P) P,D),„,*(P))—,]gag2' gq q' —2(q"l~)(B(P')B"~(P)&(q))io

1 y p+- 1+ V~C L(Bu *(P)).3~'e»~
3 M p

(3f+m)' —p'
(BI'B)D+ &2(g) p+ ~ ~

2m%
(5)

+cyclic permutations of u, b,c + . (3)

Here C is the usual charge-conjugation matrix;
n,P,y=1,2,3,4 are Dirac indices; A,B,C=1,2,3; the
corresponding SU(3) indices a, b, and c stand for the
pairs of indices nA, PB, and yC, respectively, and
X,p, p, ,v =0,1,2,3 are I.orentz four-vector indices. D* and
8* are the Rarita-Schwinger spin vectors that describe
the J = ~+ decimet and the J"=2+ octet, respectively.
The dots in Eq. (3) stand for the remaining spin-
unitary spin multiplets contained in (56, 1;L= 2) which
we have chosen not to write out explicitly because in
this paper we will not consider any processes that
involve them.

where 3E is the central mass of the (56, 1;L=2) super-
multiplet=M~ (M88~=3fg*(y920~, tn is the central Inass
of the (56, 1;L=0) supermultiplet= 1100MeV, p is the
central mass of the (6, 6; L=O) supermultiplet=750
MeV, q= p' —p. ( )ie means SU(3)-invariant 10X8X8
coupling, and ( )D+&2~3&F an 8XSX8 invariant coupling
with the strength of D and Ii equal to 1 and -'„respec-
tively. The dots now stand for the couplings of the
pseudoscalar octet to other pairs of multiplets from P
and f, like rV AI', etc. , which we shall not discuss here.
The constant g in (5a) is proportional to g of Eq. (4).
Ri is already contained in Eq. (5). This equation also
fixes the ratio of the 6*Ex and E*Ex couplings.
Calculating the corresponding partial widths one
readily obtains Eq. (1) of R2.

'Throughout this paper we use the multipole amplitudes
defined by G. F. Chew, M. L. Goldberger, F. E. Low, and Y.
Nambu t Phys. Rev. 106, 134S (1N7)j.' R. Gatto, L. Maiani, and G. Preparata, Nuovo Cimento 39,
1192 (1965).

7 See, e.g., B. Sakita and K. C. Wali, Phys. Rev. 139, B1355
(1965).

8 P. G. O. Freund, Phys. Rev. Letters 16, 291 (1966).
9 P. G. O. Freund, Phys. Rev. Letters 14, 803 (1965);R. Oehme,

z'bzd. 14, 664 (1965).
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We now consider the processes of photoformation

(yP ~ resonance —+ i') of 1V*(1688) and h*(1920).
The relevant matrix elements are

(E„*(1688)
~

j" (0) tp, )=u P(p')

X(q gp„(M m)—Fs(q')+q qp

X[~„F,(q)+('/(M+ )) „q F,(q)
( /(M+ ))F (')]} (p) (6 )

(~'"(1920)
I j (0) I p.)= "(p')

X((1+M/2//s+m/2M)q qpgy„Go(q')+q qpqq

X[((P+P')./2-M)G (q)-(~./-)G. (q)
—(qs!~')Gs(q')]}v»(p), (6b)

using the notation of Eq. (5). Gauge invariance
requires

Fs (q')+ F,(q') = q'F, (q')/(M' —m'),

LGo(q') —Gs(q')]+ (~/2M) [Go(q') —Gi(q')]
+ (M/2m) [Gs (q') +Gi(q') —2Gs (q')]

= (q'///ss)Gs(q') . (7)

The nonexistence of massless scalar hadrons requires
the right-hand sides of these equations to vanish at
q'=0. Thus

Fp(0)+Fr(0) =0,
[Gs (0)—Gs (0)]+(m/23II) [Gs (0)—Gi(0)]

+ (M/2m) [Gs (0)+Gi (0)—2Gs(0)]=0. (8)

Assuming the elect, romagnetic (vector) form factors in

Eqs. (6) to be dominated by vector-meson poles at low

momentuin transfers, we find using the U(6) w XO(2)s
couplings [Eqs. (3), (4)]"

Fs(0)/Fi(0) (M+™)///
Gp (0)=Gi (0)=Gs (0) . (9)

Furthermore, Gi(0) and Fi(0) can be related by
U(6)ir XO(2) s symmetry but we shall not explore this

point here. In photoformation by real photons, the
terms proportional to Fs and Gs in Eqs. (6) do not
contribute. Therefore both matrix elements (6) are
determined in terms of a single parameter. Using the
formulas worked out by Brudnoy" that express the
CGI.N' electric and magnetic multipole amplitudes in

terms of the values of the vertices (6) at q'=0, we can
translate our Eqs. (8) and (9) into relations for these

multipole amplitudes. We And that for the photo-
formation of the 6*(1920) the electric 16-pole Zs+

' It is useful to observe that in as far as the -', + octet and ~7+

decimet are concerned only the combinations q gpD*&"& and

q (JpB*~& appear in Eq. {4).These moreover appear precisely in
the same way as the L=O ~+ and &+ multiplets, so that one can
readily obtain the required results from the L=0 work of Ref. 7.
Note that this work includes Mf; ai/3I;;t;, I, as is our case. In
this sense the first Eq. {9) is a straightforward generalization of
the well-known SU(6)s result p„~~= L(2//r„/p) —1j."D. Brudnoy, Phys. Rev. 145, 1229 (1966).We wish to thank
Dr. J. Schechter for calling this very useful reference to our
attention.

amplitude should vanish. This is precisely R3. For the
$*(1688)we find in the same way

353 2 1 33'' m' 4m% —2p,3f
=—-+

&3— x*(iess) HEI' —m'
(10)

One may wonder whether this relation is connected
with our result R2, or in other words, whether the
sum rule of Ref. 13 is equivalent to U(6)s XO(2)s
symmetry. To make a meaningful comparison we go
to the case of exact syminetry (Ms/s M'f/s q5/2 q7/s).

Equation (1) then becomes

175 P(6*—+ ir7V) =1. (13)

"A. H. Rosenfeld et at. , Rev. Mod. Phys. 39, 1 (1967).
"B.Sakita and K. C. Wali, Phys. Rev. Letters 18, 29 (1967).

Inserting BE=1688 MeV, N'=940 MeV, and @=750
MeV, we find (Ms /Es ) &Mss& =0.09. If instead we had
used M=m+/i and 2m//r=/i„=2 79,. so that Fs(0)/
Fi(0)=2.79 by Eq. (9), we would have obtained =0.1.
Because of (M—/r/)//i=O(1), the result is thus in-

sensitive to small variations in the values of the central
masses /i and m. (Ms /Es )//~&riess~=0. 1 is precisely
our result R4.

We now wish to compare our results R1—R4 with
experiment.

R1: The D/F ratio for the B*BP couplings can be
determined from a study of 8*—+BE decay rates.
Preliminary results' appear to indicate that D/F&1
which is compatible with our prediction. A more
detailed comparison of R1 with experiment first
requires more precise experimental determinations of
as many B*—+ BP decay rates as possible (at present
only 6 are known and 3 of them very poorly) and/or a
better theory of the breakdown of SU(3) coupling-
constant relations.

R2: Experimentally "
P(A*(1920)~ 1Vir) = 1.4&0.4, (11)
I'(Ã*(1688)~ Sir)

in agreement with our prediction R2.
It is interesting to note at this point that recently

Sakita and Wali" have written down a superconvergent
dispersion relation for a particular PB scattering
amplitude. Saturating their sum rule with the nucleon
S and the 33-resonance h(1238), they obtain precisely
the SU(6) relation between I'(6(1238) -+ 1Vir) and the
xS coupling constant. If in addition they include the
cV*(1688) and d*(1920), they obtain the relation

r (~* ~X) 8 3 (D/F)'—
r(IV*~ ~IV) 3 (lyD/F)'

24ir/Ms/s+3[(Ms/s —m) /r ]x . (»)
24/NMp/, —4[(Mr/s —m)' —/i']
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FIG. 1. Comparison of the differential cross section for photo-
production of m.+ at the 6*(1920) resonance )Eq. (16)j following
from our prediction (E3+/3f3+)q*(1920)=0 with the experimental
results of the DESY group (Ref. 14) at this energy (E~=1.48
BeV). The over-all normalization of the theoretical curve is
arbitrary.

Even in this limit, Kq. (12) is still dependent on the
central masses M, m, and p through the kinematical
factor on the right-hand side. For the particular case
M=m+u, this kinematical factor is unity, snd for
D/F=-,' Eq. (12) becomes

175 I'(A*~ mÃ) 7

72 I'(Ã*~ vrE) 9
(14)

' G. Buschhorn, J. Carroll, R. D. Eaudi, P. Heide, R. Hubner,
W. Kern, U. Kotz, P. Schrunser, and H. J. Skronn, Phys. Rev.
Letters 17, 1027 (1966). Note added i7/I, p~oof. Here recent results
of this group (to be published} show in the near-forward direction
a sizeable departure from Eq. (16). This could well be due to
interference with a possibly diGractive background.

The relative factor 7/9 between Eqs. (13) and (14) is
presumably to be accounted for by the fact that
M =m+u does not hold exactly even though it is a fair
6rst approximation (for m=1100 MeV u=m„=750
MeV, the result M would be =1850 MeV).

R3: Ignoring in a rough first-approximation inter-
ference effects between the resonant pure Ms+ amplitude
in photoproduction at E..~. q,q,q= 1.92 BeV [i.e., at the
position of h*(1920)] and nonresonant background,
we obtain the c.m. angular distribution:

lo
=u( —175) (cosg)'

dQ,
+255 (cos8)4—65 (cos8)'+ 17. (15)

This function (in an arbitrary normalization) is com-
pared with the experimental data of the DESY group'4
at E~=1.48 BeV (E. ~,&,~=1.92 BeV corresponds to
E~=1.49 BeV) in Fig. 1. Our prediction of pure M3+
photoformation of 5*(1920), as can be seen in Fig. 1,
appears to be in agreement with experiment" even in

J 2
(16)

Equation (10) is a special case of this equation for J=2.
Observe that for J—+~, provided that Ms/m —+~
or approaches a limit ))1, $s will approach the
limiting value of 3. Photoformation should thus be
a useful tool in investigating the Regge parentage of
known 7' resonances to the nucleon or to A(1238).

"R.F. Peierls, Phys. Rev. 118, 325 (1960)."Ph. Salin, Nuovo Cimento 28, 1294 (1963).Salin's parameters
XI and N~ are related to E3 and M3 by NI ———(45j2)M3 and
X =15(u +E ).

'7 D. Beder, Nuovo Cimento 33, 94 (1964).
'According to R. Moorhouse )Phys. Rev. Letters 16, 771

(1966); 16, 968(E) (1966)j the photoformation of the SII and
D15 7fE resonances is forbidden under certain assumptions about
their U(6) &(U(6) XO(3) classification or equivalently of their
quark structure."F.Berends, A. Donnachie, and D. Weaver, CERN Report
No. 66, 1120/5-TH 703 (unpublished).

the approximation of neglecting interference with the
nonresonant background.

R4: In the case of photoproduction in the 1V*(1688)
region, several analyses" ' have been made that
include possible interference effects with a background
estimated as reasonable at the time when these analyses
were performed. We quote the results of these analyses:
Peierls" argues that $*(1688) photoformation occurs
predominantly via the E3 multipole, Salin" finds

M3 /E3 =1.0, and Beder'r quotes M3 /E& =0.5. Our

prediction M~ /E3 =0.1 thus gives the correct sign
and agrees with the common finding of these authors
that Mq /Eq & 1. It is noteworthy, however, that none
of the above analyses includes the S~~ and D~5 E*'s
recently discovered very close to 1688 MeV. '8 We
understand that a detailed phenomenological analysis
is now under way by a CERN group' and this should
throw more light on the validity of both our predictions
R3 and R4.

We finally wish to add two more remarks.

(1) The fact that the mass splittings within the —',+

octet and the —,'+ decimet are very nearly equal to those
of their lower-spin counterparts (e.g. , mr, *tq8r5&—m~ &r68~&=mq —rrt~) supports the Regge-recurrence
hypothesis.

(2) Our results are readily generalized to higher
Regge recurrences, and, specifically we find:

(R3') The nth Regge recurrence of h(1238) having
spin J =(-', +2m)+ can be photoformed only with a
pure magnetic M(J ~)+ multipole transition; and

(R4') the photoformation of the nth Regge recurrence
of the nucleon of spin J~= (-,'+2m)+ and mass Ms
proceeds with a ratio of magnetic to electric multipoles
of


