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Diseases of Infinite-Component Field Theories*
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Examples are presented of local, covariant 6eld theories for which the familiar spin and statistics and PCT
theorems do not apply. The field theories employ infinite-dimensional representations of the homogeneous
Lorentz group and are formulated in terms of 6elds satisfying local commutation rules. Since the existing
proofs of PCT and spin and statistics assume fields with a finite number of components, our conclusions do
not violate these theorems. The existence of solutions with spacelike momenta is discussed.

I. INTRODUCTION

'HE point of this note is to discuss some examples
of local, Lorentz-covariant field theories which

can independently violate the PCT theorem and the
usual connection between spin and statistics. The
theories are formulated in terms of fields P (x), where
the index n labels a basis for an infinite dimensional
representation of the homogeneous I orentz group. Since
the existing proofs of PCT, spin, and statistics, etc.
assume fields with a finite number of components, our
conclusions do not contradict these theorems.

We were led to the study of these field theories by a
search for a linear, relativistic wave equation similar to
the Dirac or Kemmer equations, but sufficiently
generalized so that the solutions describe a set of
particles with a nontrivial mass spectrum. It will be
evident from our discussion, and also by referring to
examples studied in recent literature, that there are
several such theories. ' '

The most general first-order wave equation can be
written

either by
o""—+z (x"B" B"—x") (1.3)

or by
J~"= ', o ~"+r~—"+i(x~B" B"x~) .— (1.4)

That is, we can consider the r&" either as an 5L(2,C)
internal symmetry completely decoupled from the spin,
or as a part of the physical Lorentz transformations. If
we generalize this simple theory to obtain a nontrivial
mass spectrum, we shall find that we are always forced
to choose definition (1.4).

In this paper two theories are discussed, in detail.
Both are presented, in Sec. II; the first is characterized

by an equation of motion similar in form to an equation
proposed by Corben' to describe a relativistic rotator,
and the second is based on a theory discovered by
Majorana' in 1932 and recently revived by Fradkin. '
In Sec. III we show how the second quantization of
either theory can lead. to the violation of the spin-
statistics theorem, and in Sec. IV we discuss the PCT
transformation. Section V includes a discussion of the
spacelike solutions.

where P& and OR are some (vector and scalar) matrices
operating on the indexed field f. Consider an example
with a degenerate mass spectrum: Let f be a doubly
indexed field, where the indices label a basis for a tensor-
product representation of the homogeneous Lorentz
group. For instance, let the first index label the four-
dimensional Dirac representation, ' and for the time
being leave the second representation unspecified. To
get a degenerate mass spectrum, the wave function must
satisfy the Dirac equation

II. TWO WAVE EQUATIONS

As a first example, we study a field which can be
defined by a I.agrangian density

Z p g(x) pic&B„——mp ,'mro„„r—&"]p(—x)—, (2.1)

where y& and, o-&" are the usual Dirac operators, and the
r&" are the generators of some representation of SL(2,C).

o-"=g'=zo, ' and. I""=A' In
Ir, ) r

our notation, o and 0. are Hermitian.
The equation of motion following from (2.1) is

(i'll'B„mp)P =0—. (1 2) [ill"B„mp ,'m—,o„„r—l""-]tJ (x) 0, =(2.2)

Let F&" be the generators of the second, unspecified,
representation and —,'o-&" the generators of the Dirac
representation. Notice that Eq. (1.2) is covariant under

physical Lorentz transformations J&" if these are defined

* Partially supported by The National Science Foundation.
' E. Majorana, Nuovo Cimento 9, 335 (1932). See also I. M.

Gel'fand and A. M. Yaglom, Zh. Eksperim. i Teor. Fiz. 18, 703
(1948).' H. C. Corben, Proc. Natl. Acad. Sci. US 48, 1559 (1962).

' Y. Xambu (to be published).
4 G. Feldman and P. T. Matthews, Ann. Phys. (N. Y.) 40, 19

(1966};Phys. Rev. 151, 1176 (1966);154, 1241 (1967).
~ Harish-Chandra, Proc. Roy. Soc. (London) A189, 372 (1947).
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where a„„I""=2Lo X—s A.$.
It is evident that when m&&0, the o-„„I'&' term will be

I orentz invariant only if we choose definition (1.4) for
the physical transformations.

The discrete mass spectrum arising from Eq. (2.2)
can be obtained without difficulty. The Hamiltonian is

II= izr V+m—pyP+m, yP(o X ~ A), (2.3)

and hence the masses m„are determined. by the solu-

6 D. M. Fradkin, Am. J. Phys. 34, 4 (1966); 34, 314 (1966).
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tions to
(2.4)3K Ng=mglg )

where the mass operator 5K' is

OR'=m, ~'+~,~'( X—'~). (2.5)

The I, can also be chosen as eigenvectors of the total
spin J~=(-',e+X)' and of J3. Each solution is then
characterized by a definite mass, spin, and helicity.

The matrices for y', y'e, and y z are Hermitian. If the
mass operator 5K' is to be self-conjugate —thus insuring
the reality of the m„—the matrices X and A must also
be Hermitian. For the ordinary spin representations of
the Lorentz group, X is Hermitian, but A. is anti-
Hermitian. We are therefore forced to take the unitary,
infinite dimensional representations generated by
Hermitian I'~".

For simplicity, let us restrict ourselves to irreducible
representations. The values of the Casimir operators
Cp= ~I"q„I'~"=X2—A.2 and Cg ——~qj"" &I'q„I' p

——g ~
characteristic of any irreducible representation. How-
ever, C& must be zero if there is to exist a parity opera-
tion which is a symmetry of the wave equation. That
is, the reflexion operator I' must commute with rota-
tions J and anticommute with rapidity transformationsI (X'—=J").But these operators have the form of Eq.
(1.4), so that I'=y~(PR, where R accomplishes the

spatial reQexion, and (P is a matrix in the space of the
I'I"".Thus (PX = X(P and O'A. = —A(P from which follows

(P(X A.)IP = —X A.. If the representation is irreducible,
x.~=C,=O.

In order to solve for the m„, one need only remember
that for the unitary representations the basis vectors
can be labeled by j and m, which indicate the eigen-

values of X' and Z3, respectively. ' For each j there are
2j+1 states which transform under X like the j repre-
sentation of the rotation group. When X A.=O, the A.
matrices connect states of different j, and all j occur
which are integrally larger than some minimum jp,
which may be integral or half-int, egral. Since A is a
vector under X, it connects

~ j,m) only to
~
j+1,m)

and
~
j+1,m+1). A. can have no diagonal matrix

elements since it has odd parity.
Thus, a complete set of states can be labeled by the

eigenvalues of y', 0.3, X' and Z3, or alternatively, using
an orthogonal transformation whose matrix elements
are rotational Clebsch-Gordan coefl]cients, as ~PJM j),
where P and M are the eigenvalues of y' and J3. Since
y' does not commute with 5K', these are not the eigen-
states of the mass. However, OR' connects

~ p, J,M, J+-', )
only to itself and

~

—P, J', M, J+—',), and can be shown
to have the following form between two such states of
spin J.

m o
—m g[J+2] —im g[J(J+1)—Co—-', ]'~

5K'=
~m, [J(1+1)—c,—,']'l' —m, —m, [J——',]

(2.6)

For each J there are two solutions for the mass m:

m=m, (J+-',)
+[(mo—m~)'+mP(J(J+1) —Co—-')]"' (2.7)

There are also two more solutions, with m replaced by—m, coming from the eigenvalues of another 2&& 2 block.
The Casimir operator Cp is related the minimum value
jo(jo+1) of X' so that the square root is never complex.
In fact for the case considered here (X A.=C~——0) we
have Co ——jo' —1 (unless jo——0), so that

m=m~(J j-', )
+((mo —m, )'+mp[(J+-,')' —jo']}"', (2.8)

which is obviously real.
Notice that in one sequence of states the mass in-

creases indefinitely with J, but that the second sequence,
obtained by using the minus sign in Eq. (2.7), decreases
asymptotically to m= 0. Thus there is no discrete lowest
mass; rather, the mass spectrum has an accumulation
point.

Our second example is based upon Majorana's equa-
tion. If there exists in the infinite-dimensional repre-
sentation a set of 4 matrices I'I' which transform like a
vector under the I'&", we replace the Dirac p& by these
I'&, and take the other representation to be the identity

representation. The wave equation is then just

[il'~8„mo]P—(x) =0,

and this arises from the Lagrangian density

2 p $t (il'I'8„m——o)f. —

(2.9)

(2.10)

7 M. A. Naimark, Lirlear Represerrtatiorls of the Lorerlts Group,
(Pergamon Press, Ltd. , London, 1964).

The spin index of P(x) labels the basis of the unitary
representation.

Since polynomials in I"""span the space (because the
representation is irreducible), one might think that
odd-rank tensors cannot exist. Hut this is not necessarily
true, as the space is of infinite dimension and there exist
matrices which are not polynomials (of course, they
must be limits of polynomials).

Majorana wrote down explicitly the matrices I"&" for
the two representations with C~=O and Cp ———-„'. Each
of these has an infinite tower of spins, one starting from
jo——0 (integral spins) and the other from jo———,'(half-
integral spins). For these representations Majorana
exhibited a set of four Hermitian matrices I'& which
transform as the components of a four-vector.

It is not hard to show that such I'& exist omly for those
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two representations. The remaining C~ ——0 representa-
tions possess no I'/'. The I"matrix is diagonal (in either
case) in spin, and has eigenvalues (j+—,'). The discrete
mass spectrum of Kq. (2.9) is therefore m, =mo/(j+-', ).

We shall return to a theory based upn the Majorana
field in the following sections. We note here only that
these masses decrease asymptotically to zero, a feature
possessed also by one branch of the spectrum of our first
example.

&(~)= Z
m, &

where

d'p m

(2~) ///2 p
0

X La(m, h, y)u(m X p)e
—'&™.g

+bt(m, li, p)1/(m, li, p)e'& '~j, (3.1)

y~ p a„d p o (p2+m2)'/~ (3 2)

unless there are also space-like solutions which would

have to be included in the sum. We shall return to the
question of spacelike solutions in Sec. U.

If we require the creation and destruction operators
to satisfy usual commutation or anticommutation rules

La(m, l1,p), at(m', X',p') jp ——fb(m, l1,p), bt(m', l1',p') jp
=~- » ~'(p —y'), (33)

then the Geld f and its canonical conjugate ir= BZp/

8 (8,1P) =i1Pt satisfy at equal times

[P(x,/), ~(y, &)]+

d p m
Lu(m, li, y)ut (m, X,p)

(21r)3 m/ p o

W1/(m, l1, p)1/t(m, X,——p)j e'"'* ». (3.4)

Just as for the solutions to the Dirac equation we can

' I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, RePresenta-
tions of the Rotation and Lorene Groups and Their App/ications
(Pergamon Press, Inc. , New York, 1963), pp. 274 fF.

IIL SECOND QUANTIZATION

Next we discuss Eq. (2.2) as a quantized field theory.
We can proceed in complete analogy to the usual dis-

cussion of the Dirac field. By applying the appropriate
rapidity transformation to the y=0 solutions of the
wave equation, we can obtain functions describing
particles of mass m, spin s, helicity 'A, and momentum

p. Call these u(m, l,p)e '"~' The. re are corresponding
negative frequency solutions 1/(m, X,y)e'1'

Let a(m, X,y) and, b(m, X,p) be destruction operators
for particles and antiparticles, respectively, with the
indicated mass, helicity and momentum (the spin s is
determined by the mass). Similarly, let at(m, h, y) and

bt(m, l1,p) refer to the corresponding creation operators.
The most general solution to Eq. (2.2) can then be
written in a momentum expansion as

choose the orthonormality conditions

ut (m, X,y)u (m', l ',p) = et (m, l1,p) 1/(m', ) ',p)
=m—'p '8»i, (3.5)

ut(m, ).,y)1/(m, X, —y) =et(m, X, —p)u(m, &,y) =0.
With the choice of anticommutation rules in Kqs.

(3.3) and (3.4), and if the timelike solutions are com-

plete, the expression inside the curly bracket of Kq. (3.4)
becomes the unit matrix. The canonical anticommuta-
tion rules,

Lip (x,t),1r (y, t)7+——iP (x—y), (3.6)

p
0 (p2+m 2)1/2

and the u(p, s,X) satisfy

(I' p, —mp)u(y, s,li) =0. (3.8)

From Eq. (2.10), the momentum canonically con-

jugate to f(x) is 1r=820/8(80~5)=gtI', . Applying the

usual rules (3.3) for the particle creation and destruction

operators, we obtain from (3.7) the following expression

for the equal time commutation (anticommutation)
relations of the field 11/ and its canonical momentum 1r:

L~(x~) (yl)3+= &'P
(2~)'

X Q u(p, s,l1)ut(p, s,X)I" -11' &*-». (3.9)
si 2p+

If the timeline solutions were complete, the expression

inside the square bracket of Eq. (3.9) would be the

unit matrix (see Appendix A) and there would result

are then obtained and the theory is local and formally

similar to the Dirac field theory, In contrast, the choice

of commutation rules would not have led to a local

theory.
The theory which results from this discussion is a

local, Lorentz-covariant field theory of fermions. The
spins of these particles are obtained by combining the
Dirac spin of —,'with the "unitary spin" which increases

integrally from some lowest value of jo. In the case that

jo is half-integral, the theory describes integral spin

particles satisfying Fermi statistics. If jo is integral, the

usual connection between spin and statistics is obtained.
Let us now discuss the second quantization of the free

Majorana theory which has the field Kq. (2.14). As we

have mentioned. , the one particle mass spectrum is

,m= m(so+- )2', where s is the particle spin. A par-

ticular feature of this theory is that there are no

negative frequency timeline solutions, and hence no

antiparticles.
The general solution to Eq. (2.9) involving timelike

momenta can be decomposed as

d p
0(*)= a(p, s,li)u(y, s,X)e

—'"", (3.7)
(21 )8/2 hi (2p 0)1/2

where
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the canonical commutation rules

l4(,f), (y, f)j+=ia'(» —y) (3 1o)

The Hamiltonian density from Eq. (2.15) is

X=:Pt(ir V+ms)P:, (3.11)

and therefore, substituting Eq. (3.7) into Eq. (3.11)
and using the orthonormality properties of the N(y, s,X)
discussed in the Appendix, we would obtain for the
total energy operator

H= P dsP (ps+ m, ') '~sat (y,s,X)a(p, s,X) . (3.12)
Xe

Thus we would obtain local commutation or anti-
commutation rules and a positive-definite energy,
without a restriction on the connection between spin
and statistics.

O~ 'F&"0+=F&".Because the F&" generate an irreducible

representation, by Schur's lemma, must be a multiple
of the identity.

The standard proof continues by demonstrating
that all tensor densities L:p(x)yQ(x):, :p(x)ag(x):,
:f(x)a&"f(x):, etc.] are even or odd under PCT with
the rank of the tensor; and therefore that all invariants,
like the Lagrangian, are even.

However, we may choose the I'&" to generate one of
the two Majorana representations. Then there exist
four-vector matrices I"& in the space spanned by the
I'&". But 0+ is a multiple of the identity, and so
0 'r&Q=F&. Thus 8 'F&8=F&, whereas 8 'y&8= —y&.

Now we can construct a vector density p(x)rg(x),
which is even under I'CT.

Thus we can construct interaction Lagrangians, local
in these fields, which must violate I'CT invariance. For
example,

IV. THE PCT THEOREM
zr ——s:&r+A „:, (4.5)

The failure of the usual connection between spin and
statistics for the theories discussed in Secs. II and III
suggests that the I'CT theorem might also fail. We
show in this section that this can be the case for our
theories (and for others like them) even for those cases
where the spin-statistics theorem holds.

For the field of Eq. (2.2), let us imitate the usual
proof for the Dirac field. Since in the free-field, theory
we know that for every particle state there exists the
corresponding antiparticle state, it follows that a I'CT
operator can be de6ned on the fields, which leaves the
free Lagrangian invariant. We now investigate the
properties any such operator must have, and then will
show that in, contrast to usual theories, it is possible
to construct local interactions which break I'CT
invariance, although the operator can still be de6ned on
the interacting fields.

Any PCT operator must be an antiunitary operator
satisfying

(PCT)f (x) (PCT) '= 8*&t(—x), —

where 8 is a matrix operating on the indices. First
apply PCT to the wave Eq. (2.2):

(PCT) fig&a„mp ,'mio„.r—&"jp(—X)—(PCT) '=0. (4.2)-
Since I'CT is anti-unitary, it complex-conjugates all
c numbers; therefore

i&"a„—m, ,'m—, r—„„—*ja*yt( x) =O —(4.3).
Next take the Hermitian conjugate of this equation,
change x to —x (and therefore a„ to —a„), and multiply
by8 —'

8-i[—i~ a„m,——,'m, „„r ]—8' (x) =O. (4.4)

This is consistent with the wave equation only if
8—'y&0= —y& and 0—'O„„I'&"8=o„„l'&".The first condition
implies 8=iysO~, where O~ is a matrix in the unitary
space only. Since pz commutes with 0I'", it follows that

where A„ is any ordinary vector 6eld. Or,

(4.6)

Both of these are odd under I'CT, whereas the free
Lagrangian is even.

The free quantized Majorana theory violates I'CT
in a more direct but physically less interesting way:
there simply are no antiparticles, so clearly no I'CT
operator exists in the theory.

V. DISCUSSION

The conventional proof of the connection between
spin and statistics is based upon comparing the Wight-
man function M p(x)=(~$ (x)pp(0)~) to Ms (—x)
= (~P(0)p(x) ~).' The functions cV p(x) and cM' p( —x)
are connected by a complex Lorentz transformation,
which can be taken to be e' ( +'~». For finite-dimen-
sional representations the matrices are the usual D("'»,
or an appropriate sum of these, and the index can 1abel
the eigenvalues ( ~,m)mof (J+iE)s, which are always
integer or half integer for the nonunitary representa-
tions. Therefore, the matrix part of e' & +'~» is diagonal
in this basis, and is +i or +1 according as the spin is
integral or half integral. Thus

M.s(x) = (—1)2'M.s(—x) . (5.1)

The axiomatic proof therefore depends crucially on the
use of the D&'&'» representations, and does not apply
to our examples. ' Similar remarks apply to the axio-
matic proofs of the I'CT theorem.

Let us now consider the question of space-like
solutions of our field equations. The existence of such
solutions of the Majorana equation has been known for

R. F. Streater and A. S. Wightman, I'CT, SPin and Statistics,
and All That {W. A. Benjamin and Company, Inc. , New York,
1964).' In our case, J+iK generate an infinite-dimensional repre-
sentation of SU(2), and therefore the eigenvalues are not neces-
sarily integers or half integers.
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many years, ' and in Append, ix 3 we show that these
space-like momenta must be included in the spectrum
for completeness. Although we have not shown it
explicitly, we suspect that space-like solutions also are
required in the first theory of Sec. II. Equation (3.1)
and Eqs. (3.3)—(3.5), as well as Eqs. (3.8), (3.9), would
then have to be extended to include the contributions
from the elementary creation and destruction operators
which refer to these space-like modes. The canonical
commutation, or anticommutation, rules (3.6) and
(3.10) would then again be obtained, and our con-
clusions concerning spin and statistics and PCT viola-
tion would remain unaltered. .

The presence of space-like momenta in the asymptotic
fields of our two example theories sufFices to eliminate
them from any direct physical applications. In fact,
it may be that all I,orentz-covariant field theories with
first-order wave equations and nondegenerate mass
spectra which employ a unitary representation suffer
from this same disease; although this is certainly not
true for second-order equations. It is amusing to note
that to guarantee a real spectrum of the mass operator
in Eq. (2.5), we were led to the use of infinite dimen-

sional, unitary representations of the X and A. only to
be faced with the space-like momenta, which are no
more physically acceptable than complex masses.

Despite the existence of space-like momenta in the
two theories which we have studied, it nevertheless may
be possible to construct a J'CT-violating theory without
these pathological solutions. If such theories could be
constructed, ECT violation would be compatible with

local, covariant field theory; on the other hand, a
proof that this is not possible would extend the existing
PCT theorem to theories with infinite component fie]ds.
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APPENDIX A

In this Appendix we outline the few steps leading
from Eq. (3.9) to Eq. (3.10). Equation (3.8) can be
written as

(P) '(I' p+mo)u(y, s,X)=p,on(p, s,X) . (A1)

Defining B(p)—= (P) '(I p+mo), it is easy to see that

(A2)

and this relation guarantees that the eigenvectors of

h(p) belonging to different eigenvalues are orthogonal

n (y,s,1~) =P Ei~ D (L)n (p', s,l~'), (A4)

where R is a, unitary matrix, and p' is the momentum
obtained from (p,pa= (p2+m, 2)'~') by the Lorentz trans-
formation J ', that is,

pp=Lp p
&

From Eq. (A4), and the fact that

Di(L)r&D(L)=L& I'"

it follows that

(A5)

(A6)

u'(p, s, li) r~u(p, s,X')

=L&„P Ri'x "xRg x u" (P',s,).'")r"u(y', s,X"). (A7)

Choose the Lorentz transformation in (A5) to lie

along the direction of p and of such a magnitude that
p'=0. Then Ri&,.=8&, i, and Eq. (A'7) reads

u~(p, s,1 )r"n(p, s, 'A) =L&.u~(0, s, l~) r"u(0,s,X') . (A8)

Since the r'(i=i, 2, 3) have no diagonal elements in

the Majoranna representation (that is, they have no
matrix elements between states with the same eigen-
value of P), only v=0 contributes to the right-hand
side of Eq. (A8). If the u(0, s,h) are normalized ac-
cord, ing to

(A9)u" (O,s,z) ron (o,s, l~') = 2m, 8„, ,

Eq. (A8) takes the form

ur (y, s,P,)r&u(p, s,1')= 8i&,L~,2m, ,

and by comparing this with Eq. (A5), we have

ut(p, s,X)r&u(p, s,1 ') =2p~big. .

Combining (A10) with (A3) finally leads to

ui'(p, s,X)Pu(p, s', X') = 2p, 'h„, bgx. . (A11)

This normalization and the assumed completeness of
the u(p, s,X) imply that the expression inside the bracket
of (3.9) is the unit matrix. Apparently, it is the s-depen-
dent normalization of the u(p, s,X) given in Eq. (A11)
which allows us to contradict one of the conclusions

of Ref. 4.

APPENDIX 8
The existence of spacelike solutions to Eq. (2.9) was

first pointed out by Majorana himself. ' In our language,
the set of infinite-component vectors u, (p) which satisfy

(I'Opo —r p —mo)u(p) =0 (81)

with respect to the metric I"'. Since there is only one
mass associated with each spin s, we have therefore

ut (p,s,X)Pu (p,s',X') (A3)

Let L be a Lorentz transformation and D(L) its
realization in the Majoranna representation. Then
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is not the identity matrix. The u(y, s,X) are the eigen-
vectors of 8=—rp '(I' y+mp); we can show that in
addition to the discrete timelike values pp

——(y'+m, ')"',
h has a continuous spectrum, as follows:

Since h is Hermitian in the I' metric, its spectrum
must be real, and to show that pp is in the spectrum it
sufficies to construct a sequence of vectors N~ which are
in the Hilbert space (i.e., such that u~trou~( n ) and
such that

uip'(8 —pp) r'(h —pp) u~ —+0
N~fF sg

(83)

as X—+~.
I et p(s) be the basis vectors for the Nfajorana repre-

sentation having eigenvalues s(s+1) and 0 of Z' and Zz,
respectively Lwhich we have called u(o, s,o)]. The
matrix I'3 is known explicitly':

rop(s) = ipiLsp(s —1)—(s+ I)p(s+ I)1, s)0

I'p (0)= L
—ip (I)/2]. (84)

A natural way to find a sequence I~ is to construct a
vector u= Pop a, it(s) which is an eigenvector of 8. No
generality is lost by choosing pi ——pp

——0. Thus we seek
a solution to

(rpp+mo —ropo)u(p) =0 (85)

for
I ppI &

I p I. The vector u(p) satisfying (85) will not
be normalizable, since all the discrete eigenvalues are
timelike; but we may choose

u~ ——P a,v(s)

for fixed P and P,'—y') 0 is not complete with the ro
metric we used in Sec. III; i.e., the quantity in the
brackets in Eq. (3.9),

P 2P,ou (y, s,X)ut (y,s,X)r p

The only feature of the above rule, which defines the a„
that we shall need is that for very large s, it becomes a
second-order difference equation for a, with constant
coefficients:

a +i—a i+2lPa =0, s))1.
A solution is u, =y', where

(89)

or
7'+ 2ipy 1—=0

v= —e~(I—C')'"

(81o)

The two solutions may be labeled y~ and y2, and the
most general solution to (89) is

a.= ao'Yi'+ bop'. (812)

For spacelike eigenvalues, P(1, and
I yi I

=
I yp I

= 1, so
that

a, =i'(aoe"&+bpe "o) (813)

where p is real and determined by P.
One of the constants is determined by (88) for s=o

and the "boundary condition" that a, &=0. The other
is an arbitrary normalization, so that we are free to
choose bp/ap real. Thus, a, is bounded:

I
a

I

= L I
ap+bp

I

' cos'sf+
I
ao—bo

I

' sin'sgj' '. (814)

I For timelike eigenvalues, P) 1, g is not real, the a, are
not bounded, and (83) will not be satisfied except by
some miraculous cancellation which presumably occurs
for po=+ (p'+m. ')"' j

Now we can evaluate (83).With u~ defined by (86),

(ro+n —pr, )u

,'i(N+1) [a~—+—ip(N)+a~p(N+1)j (815)

and the fraction in (83) becomes

1 u„i (r,+n —pr, )r;i(r,+n —pr, )u„

Ng FpQ~

and hope to satisfy (83).
Equation (85) reads

s=p
i4 (N+ I)'I

I a~+i I
'/(N+ ip)+

I
a~

I
'/(N+-') 3

2 I
a I'(s+l)

s=p

P L-,'iso(s —1)——',i(s+I)p(s+1)

+nV"—(s+ p)PV"3= o, (»)
where n=mo/p, P= pp/p. The eigenvalue is spacelike,
lightlike or timelike according as P&1, P= I, or P) 1.
Equation (87) becomes a recursion relation for the a. :

,'i(s+1)a,+i—~pisa, i+na, P(s+ ', )a, =—0 (8—8).

Because
I
a~I' is bounded from above, the numerator

grows asymptotically like N. Because
I
a,

I
equals (or, if

g/vr is irrational, comes arbitrarily close to) its maximum
with periodic regularity, the denominator grows asymp-
totically like E', and therefore the fraction becomes
small like 1/N as N ~op, and pp is in the continuous
spectrum of 8.


