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The melting anomaly of He' enables one to produce very low temperatures through adiabatic solidi6cation.
Exchange eGects in the solid are expected to prevent the reaching of temperatures very much below the
one de6ned by the exchange-energy parameter, where the melting anomaly should cease. Relaxation-
time measurements in the solid de6ne this parameter within the limitations of the assumed exchange-
interaction scheme, as well as of those of the formalism which connects the coupling scheme with the re-
laxation times. With the empirical exchange parameter, the entropy of the solid at melting can be obtained
down to quite low temperatures. This entropy combined with that of the liquid, available from an earlier
theory of this phase, enables one to calculate the melting-pressure line, essentially from fundamentals.
The agreement between the theoretical melting-pressure line and the available data at low and medium
temperatures is satisfactory. The theoretical melting line has an inaction point, outside the range of
measurements, due to the magnetic ordering process imposed by the assumed interaction scheme. The
most promising way of verifying this prediction, at temperatures well above the ordering temperature,
appears to be through the observation of the crossing of the heat-capacity curves of the liquid and solid
at or near melting. The theoretical entropies of the two phases suggest that in starting with liquid He' at
saturation and at an easily accessible temperature, adiabatic compression alone ensures, in principle, the
reaching of quite low temperatures. This process is discussed in detail, and its use toward reaching tem-
peratures in the millidegree range will be described. An analysis of the thermal anomalies of low-pressure
solid He3 due to the assumed exchange coupling will be presented. At melting these anomalies should extend
up to near 0.25'K. The solid at and near melting is shown to exhibit a narrow entropy wedge over a fairly
wide pressure range around the melting-line minimum. With its spin entropy being practically complete
at 0.1'K, solid He should have very small derivative thermal properties, expansion coef6cient, and heat
capacity over a fairly wide temperature and pressure range. The expansion coefBcient at or near melting
is estimated to vanish, and to become negative, somewhat below 0.25'K. This technically difBcult region of
the thermal properties extends down to a few hundredths of a degree, below which the thermal anomalies
of the low-pressure soM should increase rapidly to become more accessible to observations and measure-
ments.

l. INTRODUCTION

~ IHK interesting prediction of the possibility of
producing extremely low temperatures, below the

microdegree range, through adiabatic solidification of
He', due to Pomeranchuk, ' was shown to be founded' on
completely neglecting exchange eGects in the solid.
The latter phenomenon determines the smooth spin-
ordering process in the liquid phase. ' It also ensures the
dominance of the nuclear-spin system in the thermal
properties of the liquid at temperatures where the
average thermal energy per atom is of the same order
of magnitude or less than the characteristic exchange
energy per atom in this nonideal nuclear paramagnetic
system. 4 In the anomalous liquid-solid transformation
which wouM enable one to reach very low temperatures,
it was assumed' that the solid remained an ideal nuclear
paramagnet down to extremely low temperatures.
This is, of course, equivalent to assuming that solid
He' exhibits complete spin disorder down to extremely
low temperatures, less than a microdegree. The
persistence of the ideality of the spin system, if real,
would represent an extreme statistical thermodynamic
situation. Indeed, in order for it to be signi6cant or

~ I. Pomeranchuk, Zh. Eksperim. i Teor. Fiz. 20, 1919 (1950).' H. PrimakoG, Bull. Am. Phys. Soc. 2, 63 (1957).' L. Goldstein and M. Goldstein, J. Chem. Phys. 18, 538 (1950).'L Goldstein, Phys. Rev. 90, 1455 (1954); 102, 1205 (1956).
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observable, one had to imply that there exist efBcient
mechanisms of energy exchange and, hence, interactions
within the nuclear-spin system, as well as between this
system and the degrees of freedom of the solid other
than spin, for the reaching of temperature equilibrium
and the measurement or verification of the predicted
equilibrium magnetic properties. Simultaneously, the
effective switching-oG of these interactions had to be
accounted for, once equilibrium has been established.
And this occurs at extremely low temperatures, where
the thermal energy may be of similar or even lower order
of magnitude than the interaction energies responsible
for the eventual reaching of equilibrium. It appeared
rather dif6cult, to say the least, to satisfy these various
and contradictory requirements imposed upon the
formal description of this system. These types of prob-
lems arising in connection with the predicted ac-
cessibility of extremely low temperatures have been,
apparently, completely ignored.

On the other hand, the characteristic spin ordering or
exchange energies have also been grossly overesti-
mated. "The origin of one of these estimates' was
connected with nuclear susceptibility data at medium
temperatures which, though attributed to the solid

' L. Goldstein, Ann. Phys. (N.Y.) 8, 390 (1959).
6N. Bernardes and H. Primako8, Phys. Rev. Letters 2, 290

(1959);3, 144 (1959); Phys. Rev. 119, 968 (1960).
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phase, ~ referred to a liquid —solid mixture with probably
very small solid content. The other estimate' resulted
from an attempt to calculate directly the exchange
energy of pairs of atoms in the solid interacting through
their mutual Van der Waals potential energy. Recent
experimental determinations of nuclear spin —spin and
spin-lattice relaxation times in solid He', over a wide
pressure or volume range, by two groups of workers, 9

have yielded possibly fair approximations to the
exchange energy. Within the limitations of the fairly
complex formalism which allows one to derive from
relaxation times —on the basis of an assumed. exchange-
coupling schem" the exchange-energy parameter in a
speciled state of the solid, the thermal properties of the
latter also become formally available. Subject to these
limitations, the analysis of the liquid-solid equilibrium
becomes formally accessible, and its use toward a
detailed theoretical description of processes which may
allow the reaching of very low temperature, limited
though downward bccoIDcs possible.

The thermal properties of the liquid will be described
here with the help of the formalism elaborated earlier"
and the ensuing universal character of the spin system
of the liquid. m" We discuss 6rst the constant-spin-
entropy transformations in the liquid phase; this is
complemented by the consideration of transformations
at constant total entropy which alone are observable.
At low enough temperatures, the latter process is well
approximated by the former. These adiabatic trans-
formations in the liquid are of a preparatory character,
since the actual production of very low temperatures
involves an adiabatic solidi6cation process in the tw'o-

phase system. The quantitative description of the
adiabatic solidification phenomenon requires the knowl-
edge of the entropy of the liquid Sr„sr(T) and of the
solid S„sr(T) along the melting line, where these phases
are in equilibrium with each other. With the empirically
estimated exchange parameter of the solid, subject to
the assumed interatomic coupling scheme, its thermal
properties, including its entropy, can be evaluated
exactly. The theory of the melting line of He' thus
acquires a solid foundation. With the start of the rapid
decrease of the entropy of the solid from its asymptotic
high-temperature limit, estimated with fair approxima-
tion, one locates the temperature, accessible experi-
mentally without excessive CGort, where the inQcction
point of the melting line determines qualitatively the

I W. M. Fairbank and G. K. Walters, Proceedhage of Ihe
SymPosium oe Iiglid used Solid He' (Ohio State University
Press, Columbus, Ohio, 1957), Suppl. , p. 1.

8 R. C. Richardson, E. Hunt, and H. Meyer, Phys. Rev. 138,
A1326 {1965).For a correction see R. C. Richardson, A. Landes-
man, E. Hunt, and H. Meyer, Phys. Rev. 145, 244 (1966).

9H. G. Richards, J. Hatton, and R. P. GiGard, Phys. Rev.
139, A91 (1965)."L.Goldstein, Phys. Rev. 133, A52 (1964).

"A. L. Thomson, H. Meyer, and E. P. Adams, Phys. Rev.
128, 509 (1962);cf. also H. T. Seal and J. Hatton, ibid. 139,
A1751 (1965).
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~.LTs/Ts(pr) j=~.LT'/To(p') j,

Tf/To(pr) = T'/Te(p').

The reduced temperature is an adiabatic invariant of
the nuclear-spin system of liquid He . Since Ts(p) is a
monotonically decreasing function of the pressure, it is

impending spin-ordering transformation in the solid
and, with it, the approximate lower limit of the temper-
ature that can be produced with He'. The assumed
exchange-coupling scheme in the solid, with the
empirical pressure variation of the exchange parameter,
discloses the region of the thermally anomalous low-
pressure solid. An additional anomaly of this solid will
be shown to correspond to its having a peculiar narrow
entropy wedge where both temperature and pressure
variations are very small, thus ensuring very small
heat capacity and expansion coefficient of the solid
around its anoInalous melting-prcssul c minimum.

2. TRAN'SFORMATIO5'8 AT CONSTANT
ENTROPY IN LIQUID He'

The nuclear-spin system of liquid He' was shown to
conti'Ibutc thc coIIlpollcII't spin-entropy '

~.(» p)/&= (i») Lx(» p)/xs(» p) 3 (&)

to the total entropy of this liquid in the state with
thermodynamic coordinates of temperature 1', pressure
p, and volume V, connected by the equation of state of
the liquid. In (I), R is the gas constant, x(T, p) the
nuclear paramagnetic susceptibility of the liquid, and
xe(T, p) the susceptibility it would have if it were an
ideal Curie-Langevin paramagnetic system. A funda-
mental property of 5, or (X/Xe) is their universal
character, '0 that is,

~ (» p) =~.LT/To(p)j (2)

x(T p)/xo(T, p) =&IT/Ts(p) j (3)

The entropy 5, or the susceptibility ratio r are universal
functions of the reduced temperature LT/Ts(p) j,
with Te(p) being the characteristic temperature of the
nuclear-spin system. As discussed earher, 4 5 '0 the func-
tion Ts(p) is available empirically from susceptibihty
measurements. We have made use systematically of
the empirical, and hence necessarily approximate
Ts(p) function obtained by the Duke University
workers " As emphasized In our previous work '0

however, the accuracy of this function may improve
through new and refined susceptibility measurements.

In virtue of the universal character of 8, or (x/xo),
a transformation of the liquid at constant spin-entropy,
or constant susceptibility-ratio r, must leave constant
the argument of 5 or r, that is, the reduced temper-
ature. Or, if s and f specify the initial and final states of
the constant spin-entropy transformation,
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seen that in a constant spin-entropy transformation
through compression, pf) p;, one obtains

Tf= T'LT (Pf)IT (P*)j&T', (6)
since

since the exact form of S„,(T, p) is lacking at the
present time. Nevertheless, we could show earlier"
that S,(T, p) must be of normal pressure variation, or

Cas-(T P)lap jr&0 (14)
Tp(pf) & To(,'), y), . (7)

and, equivalently, one must have
Such a transformation is thus accompanied by cooling,
which is one aspect of the fundamental thermal anomaly
of the nuclear-spin system.

In a differential compression process, at constant
spin-entropy, one obtains with (6), and

Tr= T+~T Pr=p+~p S= S.(T P)

lim(aT/ap) s.= (d T/d p) s,
hy~0

=CT!To(p)ll dTO(P)ldPj&o (g)

because of the indicated property of To(p), or

d To(p) /dp &0 (9)
With

dS, (T, p) = (BS,/BT)„dT+(BS,/ap)rdp

=0)

one obtains, at once, with (8),
(BS,/ap) r) 0, (11)

since (BS,/BT)„or (C, ,„/T), the constant-pressure
spin-heat capacity is positive definite at finite T.
In other words, the characteristic anomaly of the spin
system given by (8) has its complementary aspect,
namely isothermal compression accompanied by spin-
entropy generation according to (11).

With regard to the monotonically decreasing varia-
tions of To(p) it is to be noted that, although an early
attempt at an asymptotic-type evaluation of the ex-
change-energy parameter'4 led to a considerable over-
estimation of this quantity and the associated char-
acteristic temperature, the pressure or volume depend-
ence of the asymptotic To(p) function did correspond
qualitatively to the observed variations over the
physically relevant interatomic separations in liquid
He.

The anomalous spin-entropy increase on isothermal
compression expressed by (11) is compensated by the
normal decrease of thermal disorder of the nonspin
degrees of freedom on isothermal compression. In
the present formalism of the theory of liquid He', the
total entropy of the liquid is given by

S(T p) = S (T p)+S.(T p)
= S.LTITo(P) 3+S-(T, P) (12)

In a constant-entropy transformation, one must have

S.CT'/To(p')]+S-(T' p')

= S.C Tq/To(px) g+ S„.( T&, pr), (13)

which is only an implicit relation between T; and T~,

n, &0, n, &0,

i.e., with the nuclear-spin system being thermally
anomalous at finite temperatures and the system of
degrees of freedom other than spin being normal, " the
locus T (p), which is the root of the equation

«(T P)+~-(T, P) =o, (2o)

defines two regions in the various phase diagrams. In
the region T&T (p) in the (p, T) diagram, where the
liquid is thermally anomalous, the thermal properties
of the nuclear-spin system are dominant. In the region
T) T (p) the normal nonspin degrees of freedom
become dominant and the liquid exhibits normal
thermal properties. Hence,

(BTIBP)s)o T) T-(P)

P-~&p&p~, (»)
or, the locus T„(p) is also the locus of points where the
temperature remains stationary on differential adi-
abatic compression.

"L.Goldstein, Phys. Rev. 112, 1483 (1958); 117, 375 (1960),"L.Goldstein, Phys. Rev. 148, j.08 (1966).

(a TIBP)s..)o. (15)

Furthermore, we could prove recently" that the nonspin
entropy does not have universal character, in contrast
with the spin entropy. This means that S„(T, p)
cannot be represented by a unique function throughout
the whole phase diagram of liquid He', whereas
S,CT/To(p) j is a universal function of the reduced
temperature. In an adiabatic compression process,
that is, a transformation at constant total entropy
which alone is accessible experimentally, one has, in
virtue of the equation-of-state

f(S, T, p) =0, (16)

(a S/a T)~(a T/BP) s(BP/a S)z
—1. —— (17)

Hence, with C.,„and C.,„referring to the respective
components of the constant-pressure heat capacity,
one has with (12)

(BT!BP)s

CTI(c. ,+c..—..) jC(as./ap), +(as../ap), l
=CTVI(c.,n+C-, p) lL~.(» P)+~-(T, P) j (1g)

where —(aS,/ap) z and —(aS„,/ap) z have been
replaced by (Va, ) and ( Vn„,), respectively. The
n's are the components of the isobaric expansion
coeScients. 4 ' "With
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(BTIBP)8, (T/C ) (BS IBP)r&0 (22)

where the double subscripts serve to distinguish the
terms in the decomposition (18) from the eGect de-
scribed by (8), where the spin system is described as an
autonomous subsystem representing approximately the
total system as far as cooling on adiabatic compression
is concerned. Vhth the total constant-pressure heat
capacity

Cn(T, P) = C..LTITo(P) j+C-;(T P) (23)

which appears in (18), one has with (22), for the com-
ponent derivatives,

(BTIBP)8 .= (TIC..n)—(BS./Bp) r
&&L1/1+ (C-,n/C. ,n) j

=(BTIBP)s.l:&I1+(C-.n/C. .n) j
& (BT/Bp) 8., (24a)

(BTIBP) ...,=(BTIBP)B..L&l1+(C.;/C-, )j
& (BTIBP)8.; (24b)

These relations describe a situation encountered previ-
ously in the apphcation of the theory of the nuclear-spin
system to derivative thermal properties of liquid
He'. Namely, the formal statistical-thermodynamic
approach' ' " to the equilibrium thermal properties of
liquid He', based on the linear superposition of the
component entropies of the spin system and of the
system of nonspin degrees of freedom, Eq. (12), ceases
to yield separable derivative thermal properties, as
shown by Eqs. (24).

In the limit of low temperatures and higher pressures,
one has,"with T small referring to T & To(p),

lim S,(T, p))&S„.(T, p), (25)
F small, y&y, a~

lim C.(T, p) &C..(T, p),
T small, p&yea~

and along the melting-pressure line pjr(T),
lim C,(T, p))&C„,(T, p).

7 small, ~@~
Hence, by (24), one finds

lim (BT/BP) s. , +(BTIBP)s., —
T small y

lim

(26a)

(26b)

(BTIBP)8...o~(BTIBP)s.. (C-/C. )~.
T small, ~@~

(2&)

Using Eq. (18) the temperature variations on adi-
abatic compression can be represented as the hnear
superposition of two component processes. These are

(BTIBP)8..o= (T—ICn) (BS./BP) r &o

for the derivatives expressing the differential temper-
ature variations on constant-total-entropy pressure in-
crease.

The thermal anomalies of liquid He' have been shown
to originate with its nuclear-spin system. 4'" In this
system, the ensemble average of the number of spins
which have escaped spin blocking or spin ordering due
to the exclusion principle and the interatomic couplings,
is given by'

&(T, P)l&o=x(T P)lxo(» P) (28)

Xo being the total number of spins of the system. By
virtue of the universal character" of the spin fraction
(28), or the susceptibility ratio, " these quantities
depend only on the reduced temperature T/To(P), or
«(p), increasing monotonically with it. One has then

=«L (P) j (P) = TITo(p) (29)

and, on isothermal compression, using (9),

(BIBP)rf&LTITo(p) jl&oI = («l~«) (B«IBP)r
= (—) («!~«)

~L (P)/T (P) jL&To(p) I&p]&o (30)

The number of spins which become free increases be-
cause the ordering energy of about kTo(p) decreases on
compression. This behavior was seen to arise, over the
relevant interatomic distances in the liquid, with the
pressure or volume dependence of the exchange energyo 4

of He' atoms, which are assumed to interact pairwise
through their mutual potential. The origin of the char-
acteristic thermal anomaly expressed by Eq. (11) goes
back to Eq. (30) or to the increase of the number of free
spins on isothermal compression. This fundamental
property of the nuclear-spin system finds its extreme
manifestation in the adiabatic solidification of liquid
He'. In this process, and over a fairly wide temperature
range, essentially all of the spins of the liquid become
free in the paramagnetic solid, because the spin-order-
ing energy kTO, , in the solid becomes extremely small
in comparison with the energy kTo z, (P~) in the liquid
along the melting line PoI(T) . Formally,

To,r. (P~)&&To,.(P~), (31)

because of the very much reduced overlap of the
localized wave functions of the assumedly pairwise-
interacting atoms in the paramagnetic solid. Hence,
at temperatures T such that

To,/4TQ+8,

where 0 is the characteristic temperature of the phonon
system of excitations associated with the simple model
of the solid phase, one must have, per mole of the solid

In these limits, the description of the liquid in terms of
linearly superposed subsystems tends to become exact

lim S...(Tor) R ln2,
&o,e&&jl & 8

(33)
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the second line being the Clausius-Clapeyron expression,
and VL„~ and V, ,~ standing for the molar volumes of
the liquid and solid at the melting pressure p~(T).
The higher-temperature heat-of-melting L(T), Eq.
(35), remains anomalous or negative until the melting
pressure p~(T) reaches its minimum' at T~„.Here the
entropy of the liquid becomes equal to that of the solid.
Approximately, because we neglect the very small
phonon-entropy of the solid in comparison with its
essentially complete spin-entropy, we have

= R ln2. (36)

In the present work we will limit ourselves essentially
to temperatures T &T~„. The possibility of reaching
very low temperatures is connected with the exploita-
tion of the negative latent-heat of melting. ' Before
considering the problem of the production of very low

temperatures with the dense phases of He', as well as
the limitations due to spin or magnetic ordering in the
solid, it seems necessary to formulate a theoretical
description of solid He'. This then should allow us to
give a satisfactory quantitative account of the liquid-

'4E. C. Heltemes and C, A. Swenson, Phys. Rev. 128, 1512
(1962).

T~ standing for the temperature of the solid at melting,
with the additional state coordinates p~ and V~. It
is to be remembered here that approximate 0 values
have been obtained recently" from heat-capacity
measurements on solid He' at moderate temperatures,
T)0.30'K. These measurements imply that along the
melting line and over the pressure range relevant for
the present work, 8 may be as low as 17—18'K. At the
low temperatures of interest here, and along the melting
line, the thermal excitations of the solid, and to a large
extent those of the liquid also, reduce to spin excita-
tions. At these low temperatures, the latent heat of
melting in a constant-temperature and constant-pres-
sure transformation is then the spin latent-heat. Thus

lim L,(T)
&(j', &0,L,(u~)

—T(sn, L,M S~,8,M)

= RT(ln2) }X(T/To,z, (p~) $/Xo(p~) —1}(0, (34)

since the susceptibility ratio of the liquid is less than
unity. The entropy of the solid S...,~, as given by Kq.
(33), was used here. At increasing temperatures the
nonspin degrees of freedom of the liquid at melting
also contribute to the entropy, and (34) has to be
changed to

L(T) T(sr„~ S...,m)—
= T(&p~/d T) (Vz„m V. ,~—),

S,= R ln2, T) Tg~) (3&)

or, this solid would be an ideal spin--,'nuclear-para-
magnet' down to the vicinity of the extremely low
temperature of about Tq~. The incomplete character
of the above reasoning, as implied already, consists, in

part, of ignoring the existence of those various mechan-
isms of energy and. momentum exchange between the
various subsystems of degrees of freedom of the solid
that are responsible for the establishment of thermo-
dynamic equilibrium in the solid. Clearly, in the ab-
sence of the latter, the indicated equilibrium thermal
properties, such as entropy and magnetic susceptibility,
lose their meaning.

The small but 6nite exchange-coupling parameter
is compatible with almost complete spin disorder in
solid He' down to quite low temperatures To,, Also,
over the interval

&&0,.& ~& &~p,

one should have, along the melting line,

S.,jr(T))SL„as(T) ~

(38)

solid equilibrium as well as of the adiabatic solidifica-
tion phenomenon leading to very low temperatures.

3. THE LIQUID-SOLID EQUILIBRIUM IN He' AT
LOW AND VERY LOW TEMPERATURES:

THEORY OF THE MELTING LINE

We have noted above that the possibility of reaching
quite low temperatures through adiabatic solidification
of He' required the existence of a negative latent-heat of
melting. The region of the He' phase diagram where this
anomaly exists might, however, be limited at low tem-
peratures as a consequence of spin ordering in the solid
arising from the exchange interaction between near
atoms of spin —,. While direct experimental evidence for
such spin ordering in solid He' is lacking at the present
time, indirect evaluation of the exchange parameter in
the low-pressure solid, near or at melting, indicates
that it may occur at around a few millidegrees, or at a
temperature about 100 times lower than the char-
acteristic temperature4 of the spin system of saturated
liquid He'. The exchange spin-ordering temperature
thus is still some 10' to 104 times larger than the mag-
netic dipole —dipole ordering temperature which was
suggested originally' to be the only source of spin- and
magnetic-moment ordering in solid He'. If the spin
system started to order only around the temperature

T,~ p'/kr

~10 ''K,
p, being the magnitude of the nuclear magnetic-dipole
moment of He', r the nearest-neighbor interatomic
separation in the solid, and k the Boltzmann constant,
then the spin system would remain completely dis-
ordered down to the vicinity of T& d. The entropy of the
solid per mole would thus be
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T+ TMp p
Tpr„'= prp, „p(1. (40)

There is thus a temperature T~„' where the entropy
curves of the liquid and solid cross again, as they did at
T~„, at the higher temperature. This second anomaly
of the melting line at very low temperatures arises,
in part, because of the linear decrease in temperature
of the entropy of the liquid. "

For the low-pressure solid He', whose structure is
body-centered-cubic at melting, " recent work on the
exact high-temperature infinite series representation"
of the spin susceptibility and heat capacity of a system
of exchange-coupled spins, allows one to calculate the
melting-pressure line practically from Grst principles.
In the solid, the pairwise coupling of nearest-neighbor
spins according to

V, ,;=—2q js; (s, ), (41)

represents their hypothetical mutual potential energy,
q being the number of nearest neighbors j of atom i,
and (s;) their averaged spin vector, in units of k, J
standing for the exchange-energy parameter. The latter
is assumed to be negative, ensuring in antiferromagnetic
systems the antiparallel configuration of neighboring
spins as the low-potential-energy conGguration ac-
cording to (41). The evaluation of the partition func-
tion of the system arising from the interactions (41) is a
combinatorial problem, which was solved for high
temperatures by Rushbrooke and Wood' in various
cubic structures.

The low-magnetic-Geld susceptibility in the above
system results from the evaluation of the corresponding

'5 A. F. Schuch, E. R. Grilly, and R. L. Mills, Phys. Rev. 110,
775 (1958).' G. S. Rushbrooke and P. J. Rood, Mol. Phys. 1, 257
(i958); 0, 409 (1963).

The characteristic temperature To,, is determined by
the strength of the exchange coupling. However, the
exact connection between To,, and the strength of the
exchange parameter is not known, in general.

At equilibrium, it appears justiGed to write the
entropy of the solid along the melting line,

s„(r)=s.„, (T)+.s„, (r), (39)

as the linear superposition of the entropies of the spin
system and of the phonon system of excitations. Over
the whole temperature range of interest in the present
work, S„,~ is completely negligible in comparison with
S...,M and may be omitted in (39). As the region of
high spin heat capacity is approached from the high-
temperature side of Tp, „(dS,/d T) becomes quite large,
or the entropy of the solid starts falling at a faster rate
with decreasing temperature. In an antiferromagnetic
system, a hypothetical but plausible behavior of solid
He', it is then reasonable to expect' that over a temper-
ature range where spin excitations correspond approx-
imately to spin waves, one should have, at melting,

S,,ir(T) & Sr„pr(T),

partition function in presence of a constant homo-
geneous Geld H arising from the Hamiltonian

Hpr= Q V;,;—gp Q s; H (42)

the i and j atoms belonging to the two sublattices into
which the indicated cubic structures can be decomposed.
It is to be noted that in contrast with the Hamiltonian
(42), in (43) the field-dependent terms do not com-
mute with the one term which is independent of the
Geld." The high-temperature paramagnetic staggered
susceptibility resembles the paramagnetic susceptibility
of a ferromagnetic system. More exactly, if the Hamil-
tonian (42) referred to a real paramagnetic system, at
large T-values one would have for its susceptibility
ratio

x(r)/xo(r) (1, » I ~
I /k,

lim g(T)/xp(T)~1,
7 large

xp(T) being the limiting ideal susceptibility of that
system. The susceptibility of the system described
by (42) is always lower than its asymptotic ideal
susceptibility. The staggered-paramagnetic-suscepti-
bility ratio is such that

x.(r)/x. (r))1, »
I
J

I /k,

lim y, (T)/xp(T)~1,
T large

(45)

or x,(T) approaches the ideal asymptotic limit from
above, as does the paramagnetic susceptibility of a
ferromagnet.

Inasmuch as the paramagnetic susceptibility of real
antiferromagnetic systems is always less than the
limiting ideal susceptibility zp(T), the staggered sus-
ceptibility is Qctitious. It appears, however, to be
useful for estimating the transiti:on or Neel temperature
of some cubic structures. '

The exact series representations, " in ascending

where (i, j) refers to nearest neighbors, the i sum-
mations extending over the whole system. The Geld-

dependent term commutes here with the direct coupling
term, (gps;) is the elementary magnetic-dipole moment
vector of atom i, p being a relevant unit moment, and

g the splitting factor associated with the spins s;.
At high temperatures, T) J/k, in ferromagnetic
systems, and at T) I

J
I /k, in antiferromagnetic

systems, the exact if incomplete series representations
in (J/kr) hav'e been worked out, 'P as briefly men-
tioned, in the three cubic structures for several spin
values s, for the heat capacity and susceptibility. In
simple cubic and body-centered-cubic structures, and
for several spin values, the staggered or two-sublattice
antiferromagnetic susceptibilities have also been ob-
tained. The latter arise from the Hamiltonian

8,= Q V;,;—gp[ Q s,'H —Q s; H], (43)
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with
SL,M(T) Su,L,M(T) +Sns, L,M(T))

S,,L M(T)/R= (ln2) Lg(TM)/Xo(TM) j,
TM= TM(p),

(46)

(47)

the latter being the thermodynamic equation of the
melting line. In virtue of the universal character' of
the susceptibility ratio (x/xo) and of the spin entropy
S„one has

S., r„M(T) = S., Lt) TM/To(pM) j, (4g)

T,(PM) being the characteristic temperature of the spin
system of the liquid at the melting pressure PM. It
is to be remembered that the To(p) function is avail-
able empirically over most of the pressure range of
interest here. By (36), one has at TM„, using (46),

powers of ( J/kT), of the susceptibility, heat capacity
and of the ensuing entropy, at high temperatures, of
the indicated systems can only be used quantitatively
in solid He' if the exchange parameter J is known.
As mentioned already, recent experimental investiga-
tions'' of the characteristic relaxation times in solid
He' at T&0.10'K, have yielded approximate values
of the exchange parameter J at a series of densities
both in the body-centered-cubic' and the hexagonal-
close-packed' solid He'. However the J values are ob-
tained through the intermediary of a fairly elaborate
formalism, wherein the coupling schemes (41) and (42)
are assumed at the start. If the indirectly derived J
values are accepted as representing approximately the
exchange parameters of solid He', they enable one to
evaluate various thermodynamic properties of this
solid, within the limitations of the assumed Hamil-
tonians (41), (42), and (43). We have made use of
one set of J values. ' These had to be extrapolated over
a fair range of interatomic distances. If d~ is the char-
acteristic nearest-neighbor separation at melting of the
boyd-centered solid He', an estimate of J(dM) was
found to be

J(dM) /k~1. 25 && 10-' 'K.

In view of the highly approximate value of this esti-
mated parameter, it appeared well justified to neglect
its variations over several atmospheres along the melt-
ing line.

%ithin the stated limitations of the derived J values,
and the approximate character of J(dM), we are now
prepared to evaluate the melting pressure PM(T), at
the lower temperatures.

As a 6rst step, we have to obtain the entropy
SL,M(T) of the liquid along the melting line. It will be
seen below that SL,M(T) can be obtained along the
melting line through a rapidly converging iteration
procedure. Let SL,M(T) be represented, according to
the theory elaborated for the liquid phase, as

This empirical normalization determines the nonspin
entropy of the liquid at the minimum PM„(T) of the
melting line. One finds S,,L(TM„) to be about 0.11R,
or approximately 16% of the total entropy of the liquid
in this state. If S„,,„)( T) refers to the nonspin entropy
of the saturated liquid, one has

S...L(TM„) =VS...„r,(TM„), y—0./2. (50)

Thus, on compressing the liquid isothermally from the
saturation pressure to the melting pressure along the
isotherm T~„, the normal nonspin entropy loses about
28% of its value at saturation. It will henceforth be
assumed, in the absence of data on the nonspin entropy
of compressed liquid He', that at all temperatures
T&T~„ this property of the saturated liquid is re-
duced by the same constant factor p on compressing
the liquid from the saturation pressure to the melting
pressure. Thus, in some approximation,

S„., L,M(T) =PS„.„,t,(T), T&TM. (51)

The factor y is assumed to be independent of the
temperature and pressure along the melting line over
the relevant ranges of these variables, T &0.4'K,
PM(T~~TMu) +p PMu

According to Eq. (35), in order to derive the melting-
pressure line PM(T), we have to obtain explicitly the
entropy of the solid at melting. This entropy at high
temperatures T&

~
J

~
/k, neglecting, as noted above,

the very small phonon-entropy, can be obtained from
the exact heat-capacity series expansion" in a body-
centered-cubic structure of atoms of spin--,' coupled
through the exchange potential (41) . The heat capacity
arising from (41) is, '6

(52)

The coefficients c„known to date are co through cs,
these are, respectively, 1, —1, 1.75, 2.5, 5.3125,
—6.4458. The exchange entropy is thus,

T

s,(r)/R= f [c,(r)/Rr]dr
0

= In2 —(3/0') g (—) -c./(~+2) 0-. (53)
n=o

The entropy expressions of the liquid and solid, Eqs.
(46)—(51) and (53), define the temperature derivative
(dpM/dT) of the melting-pressure line, on the rela-
tively mild assumption that

&I/'M(T) = &L,M(T) I/. ,M(T) (54—)

S„L[TMu/To(pMu) j+S„„L(TM„)= R ln2. (49) The volume change on solidification remains approxi-
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mately constant below about 0.40'K, VL„~ and

V, ,~ being the molar volumes of the liquid and solid at
melting. Hence, with the above expressions for the
entropies, one has

der/IT=AS~/DVm

= (aVm) 'I S.,
—r[T/To(p~) ]+S...r,3r(T)

—S.,~L&T/I J(p~) I)I T&I J I/»

J(pir) being the exchange parameter at melting.
It is seen that the unknown pir appears in To(p~) as
well as in J(pir). However, the empirical rates of
variation of J(p) with pressure turn out to be con-
siderably smaller than those of To(pir) over the
relevant range of pir. The ratio of the pressure deriva-
tives (dT0/dp~)/[d( JiLi/k)/der] appears to be about
50. This, then, is the justification for completely
neglecting the pressure variations of the exchange
parameter (55). Actually To(p~) itself varies only by
less than 10% from its value at p~„ to the highest
pressure considered here above pir„, at T( Tjr„.
Hence, to a first approximation, To(pir„) alone could
be used in (55) without thereby modifying noticeably
the theoretical melting pressure obtained on performing
the integration of (55). Inasmuch as melting-pressure
data are available down to about 0.03'K, it appeared
justified to use these data in To(pir) appearing in

S.,z„ir on the right-hand side of (55). These data thus
define the initial approximate (dpi''/d T) -values,
which in turn, on integration, yield pir (T), a first
approximation of the theoretical melting line. When
substituted into To(pv), these values of pir' yield a
set of values, of der"/d T which in turn define pir" ( T) .
This procedure is continued until the melting pressure
becomes stable under the iterations. The iteration
procedure was found to converge rapidly, because of
the slow variations of To(p) over the relevant pressure
range.

With the above approximate value of J~, it was
found that (dpi'/dT) exhibited a minimum at about
10.5 m deg, where its value reached —42.6 atm/'K.
This inflection point of pitr(T) indicates its bending
over and a reduced rate of growth with the lowering of
the temperature. In an earlier and quite rough analysis"
there were some indications that the melting-pressure
data were compatible with the occurrence of an in-
flection point at temperatures higher than 0.01'K
resulting from the above derivation of (der/dT).
As far as the location of the inRection point T~,b

at 10.5 m deg is concerned, it should be clearly kept in
mind that this point is closely tied to the empirical
and extrapolated J~ value estimated above. If an
improved J~ value became available, the infI.ection
point T~,b will be displaced toward higher or lower
temperatures, depending on whether the more accurate
J~ value is larger or smaller than the one used here.
The best experimental approach toward actually

locating the inQection point of the melting line will be
considered below.

It is seen that Eq. (55) could yield an analytical, if
complicated, expression for the melting pressure

piir(T), if the entropies inside the brackets in (55)
could be integrated analytically. It is to be noted that
S„,,„i(T) has been discussed recently" on the basis of
an approximate analytical fit. Since S,z„ir ( T) is

only available' ' at the present time through asymptotic
series representations for T«TO(p~) and T))T0(p~)
with S,,ir(T) known only at T&~ J~ ~/k, no satis-
factory analytical expression can be given for p~(T).
We have obtained here, numerically,

7 Mgs

pair(T) —pii, = (dpss/dT) dT,
T(Tjgp

&)7Mp

p~(T) p~.= — (imp~/d T) d»
TMy

with the upper limit of the second integral taken to be
0.4'K, and the lower limit of the first integral 5 m deg
or about 4(Jif/k), where the entropy of the solid
S.,M, Eq. (53), exhibited good convergence with the
indicated coefIicients c„of its infinite series representa-
tion.

We give in Fig. 1 the calculated melting-pressure
curve, using Eq. (55), with EVir equal to 1.2 cm'/mole,
which results from the measurements of the Los
Alamos group. '7 The experimental points in Fig. 1

refer to the data of the Los Alamos group" at T&0.3'K,
to those of the Ohio State University group" as modi-
fied by the University of Illinois workers, ' and to the
data of this latter group The v.alue of pir„was taken
to be the practically coincident value of the Los
Alamos' and Illinois groups, " namely 28.9 atm at
about 0.33'K. It is seen that the theoretical melting
curve does give a fairly satisfactory account of the data.
It should be noted that the entropies entering into
Eq. (55) are all calculated entropies, the most critical
being the theoretical liquid entropy Sz. ,M ( T) at
T)0.07'K, that of the solid reducing at those temper-
atures to its full, almost constant, value of R ln2.
The fair agreement between the calculated and ex-
perimental pressures indicates that the entropy of the
liquid is well represented by the theory of this phase.

The insert on Fig. 1 gives the calculated (dpir/dT)
as a function of temperature between 5 and 15 mdeg.
The graph displays the minimum of (dp~/dT), or
indirectly, the inflection or bend-over point of the
melting line, tied to the estimated value of the exchange

'7 R. L. Mills, E. R. Grilly, and S. G. Sydoriak, Ann. Phys.
(N.Y.) 12, 4t (1961).' D. O. Edwards, J.L. Baum, D. F. Brewer, J. G. Daunt, and
A. S. McWilliams, in Helium Three, edited by J. G. Daunt |',Ohio
State University Press, 196D), p. 126.

"A. C. Anderson, W'. Reese, and J. C. Nheatley, Phys. Rev.
130) 1644 (1963).
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FIo. I. The theoretical melting-pressure curve pJiI(T) of Hea
as a function of the temperature. The data points are from three
independent sets of measurements. Insert: the temperature
derivative (dp~/dT) at very low temperatures, displaying the
inflection point of the melting curve.

parameter J~ of the solid, as well as to the assumed
exchange coupling (41) through the entropy (53).

To the approximation that 6V~ is independent of the
temperature, one has with (55),

d'p~/d T'= (hV~) '(A, S~(T)/d T7

= (T~V~) 'kCr„~(T) —C, ,~(T)7. (56)

In this approximation of a constant AV~ the existence
of an inQection point of the melting-pressure line is
equivalent to the crossing of the heat capacities
Cl„~ of the liquid, and C, ,~ of the solid, along the
melting line. The limited variations of the temperature
slopes dp~/dT around the inflection point, as is ap-
parent in Fig. 1, would make it very dificult to observe
the bend-over of the melting line itself. Unless one is

prepared to investigate experimentally the melting line

to temperatures very much lower than T~ &, the ex-
perimental proof of the existence of the latter point
can be obtained directly through heat-capacity meas-
urements at or near the melting line.

It should be noted that the observation of the cross-

ing of the heat capacities Cl. ,~ and C, ,~ would also
indicate the approach of the heat-capacity anomaly in
the solid as a consequence of its increasing behavior
with decreasing temperature. The latter qualitative
result does not, in itself, constitute a satisfactory test
of the interactomic coupling scheme, although it indi-
cates the presence of an approaching anomaly of the
solid.

.2--

I

.2
v('K)

4

I xo. 2. The theoretical molar-heat-capacity curves of liquid
and solid He' along the melting line.

We give in Fig. 2 the calculated heat capacities of the
liquid and solid. The former exhibits the characteristic
maximum, in common with the heat capacity of com-
pressed liquid He' at pressures higher than 10—12
atm, as shown recently. "The heat capacity of the liquid
along the melting line results from (46) and (51), as

C*jr(,T) = C.,r. ,m(T)+vC. .;.~(T), (57)

and the formation of the maximum of this property was
shown to result" from the competition between the
temperature variations of its spin and nonspin heat-
capacity components. At very low temperatures, the
heat capacity of the liquid tends to vanish linearly, "
while that of the solid decreases rapidly above its spin
or magnetic-ordering temperature. The heat capacity
of the solid exhibits its rapidly decreasing character
with the (1/T') factor of the exact heat-capacity series

(52), valid at T)
~
J~ ~/k and above all at T))

~
Jw (/k.

While the heat capacity of the solid given in Fig. 2
refers to Eq. (52) with the indicated value of the
exchange parameter

~
J~ ~/k, at the present time, as

emphasized already, the latter quantity is a mere
estimate, and the heat-capacity curve is mainly of
qualitative interest. The indicated crossing temper-
ature of the heat capacities is, of course, also an esti-
mate, and even if antiferromagnetic, the correct heat-
capacity curve of solid He may still deviate signifi-
cantly from the calculated one given in Fig. 2.

Expressions for the heat capacity and entropy arising
from the interaction scheme (41), are not available at
the present time near the transition temperature
To,„on its high-temperature side as well as throughout
the region T( To,, Nevertheless, a number of remarks
of a semiquantitative character can be made on the
expected behavior of these thermal properties as well

as on the melting line p~(T) at the very low temper-
atures.

To start with, if the inflection point of p~(T) at
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and
C, ,jr(T& To,.) R, (61)

d S,,~(T& To,,) /d T 200R/'K, (62)

indicating that the solid may lose essentially all its
entropy over a few millidegrees of temperature around
To, Hence, on the basis of the very rapid entropy loss

by the solid, its entropy should fall below that of the
liquid on the low-temperature side of To. The maxi-
mum of the melting line at T~„' should thus occur as
indicated by (58), and it may be estimated roughly to
be at about ( J~/k) or around one millidegree absolute.

Assuming tentatively T~„' to be at 1.0X10 ' 'K, the
entropy of the solid, equal to that of the liquid at this
temperature, is found from the expressions (46),
(48), and (50) for Sr„~(T) to be about (4-5) X10 ' R
per mole. The average number of disordered spins, the
fractional number of spins which have escaped the
ordering effect of the coupling scheme (41), at T( To,.
is approximately,

&...( Tjr„')-S.,ns( T~,') /k

~(4—5) XX10 '

= 3X 10"/mole, (63)

E being Avogadro's number. At temperatures which are
low in comparison with the transition temperature,
the spin-wave formalism appears to describe approxi-
mately the thermal properties of antiferromagnetic
systems. If we accept this formalism as valid also, in
some approximation, in solid He' near melting and at
T& T~„', then at the characteristic temperature
Td~ one has for the average number of disordered
splIls

1V, ,( Tg~) ~S,,( T~„') ( Tg~/T~„') ', (64)

according to the T' variation of the entropy of anti-

T~,t, is effectively located, then a maximum of Pjr(T)
must occur at TM„, and the characteristic temper-
atures of the system should be in the following sequence:

TMp, + To,s+ TM, b

At T~„', by (55), the entropy curves Sr„~ and S,,M

cross, as they do at T~„, the minimum of the melting
line at higher temperatures. On the basis of the em-

pirically observed behavior of various antiferromag-
netic systems one expects the entropy of the solid to
vary or to decrease very rapidly with decreasing temper-
ature around To „at both its high and low temperature
sides. If the estimate" of To, as

T0, 8 5
~
J~ ~/kp 8~2.9—3.0, (59)

is accepted as a fair approximation for the spin or
magnetic-ordering temperature of the solid, then with

dS, ,~(T)/dT= C, ,~(T)/T, (60)

at T~4—5 X10 ' 'K, one has

1V...(Tg~) &10 "E,„(T~„')~10'. (65)

It is instructive to compare this estimate of the number
of free or disordered spins at Tq~ with the normal root-
mean-square fiuctuations of the number of atoms in
one mole of the solid at this same temperature. One
obtains for this number at melting,

((~&') )"=L&(&/I'. j )kTx 1'" (66a)

where t/, ,~ is the molar volume and xp the isothermal
compressibility of the solid. At T&~, taken to be -ap-

proximately 10—' 'K or some ten times the temper-
ature (p'/kd~'), and with V, ,jr about 25 cm'/mole
and xz estimated roughly to be about 2—4X10
cgs from the direct measurements of Grilly'0 at high
temperatures, one obtains

((6Ã'(Ta~) ), )"'&3X10', (66b)

showing that 1V, ,,(T& z), given by (65), is uncom-
fortably close to the fluctuation range. Actually, with
Tq & taken to be p'/kd~', E...(Tq q) would be entirely
within the fluctuation-range estimate of (66b). In
addition, it may be noted here that if the dipole —dipole
transition existed, one might have expected the entropy
of the solid to fall even faster with temperature at the
approach of T~ d than the rate estimated on the basis of
the spin-wave formalism. The estimate (65) is quite
conservative, and the existence of the dipole-dipole
transition thereby becomes ill defined. The physical
importance of the dipole —dipole ordering phenomenon
tends to be reduced in view of the above estimates,
which indicate that the number of magnetic dipoles
available for the ordering process appears to approach
the normal statistical-thermodynamic root-mean-square
fluctuations of the total number of atoms in the chosen
volume. The number of dipoles available for the
transformation tends to lose its meaning, and, with it,
the physical significance of the transformation disap-
pears.

The problem of the existence of the dipole —dipole

» E. R. Grilly (to be published).

ferromagnetic systems describable with the spin-wave
formalism. Actually, if T~„' is still outside the range of
validity of this formalism, being too close possibly to
To,„then at T~„' the temperature dependence of the
entropy is even stronger than T', so that the right-
hand side of (64) is an estimated upper limit for
S...(Tq~) at very low temperatures. With Tq z
taken to be about 10 ~ 'K, one has a possible upper
limit, since in solid He' near melting the nearest-
neighbor distance d~ is about 3.75 A, so that with p
equal to about 10 "cgs. ,

p'/kd~' 10 ' 'K.

By taking 10—~ 'K for Tz z, and on the assumption of
the approximate validity of the estimate (64), and
using (63), one obtains
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Fzc. 3. The theoretical entropy curves of liquid He', at satura-
tion and along the melting line, and of solid He' along the melting
line. The dashed lines refer to transformation paths in the two-
phase system.

transition would appear in an entirely different light if
solid He' were paramagnetic down to temperatures very
much lower than (3—4) (~ J~ ~/k), with the indicated
empirical

~
J~ ~/k of about 10 ' 'K. At the present

time, the antiferromagnetic transformation of solid
He' at Tp is essentially hypothetical, and the possi-
bility that this very loosely bound solid may exhibit
nuclear paramagnetism down to extremely low temper-
atures cannot be ruled out. It is thus seen that ex-
perimental investigations of solid He' leading toward
a determination of its spin-ordering properties appear
to be of particular interest.

4. PRODUCTION OF VERY LOW TEMPERATURES
ON ADIABATIC SOLIDIFICATION OF He'

We gave through Eqs. (46)—(50) and (52) the ex-

pressions representing with good approximation the
entropy of the liquid and the solid along the melting
line, within the limitations of the assumed specific
pairwise coupling (42) in the solid. These entropies
determine the derivative (dp~/d T) of the melting line,
and with the help of the empirical value of the solid

entropy at the point of anomaly (T~„,p~„) the melting
line itself p~(T) could be evaluated. In the present
section, devoted to the problem of the solidification and
the production of very low temperatures, a close
analysis is to be made of the separate entropies,
Sz,~(T) and $, ~(T). We give these in Fig. 3, to-
gether with the entropy of the saturated liquid $„&(T),
all as a function of temperature. It is to be recalled that
in the expression for the entropy of the solid, Eq. (52),
we have neglected the small phonon-entropy in com-
parison with the very large spin-entropy.

The formal representations of $„~(T) and. Sz ~(T)
are available, with good approximation, down to the

absolute zero, but the entropy of the solid $, ~(T),
given by (52), is only known down to temperatures of
(4—5) (~ J~ ~/k) . The limiting very-low-temperature
expressions for the entropy of the liquid at saturation
and at melting can be given explicitly. In a recent
work" we gave

lim $„,(T)/8=-,'(1n2) (T/To. ..g)+aT, (67)
T~PoK

where To,„tappears to be close to 0.43—0.45'K, and the
coefficient a of the linear nonspin-entropy term was
found to be approximately 0.49/'K. The limiting value
of the characteristic temperature TOM of the spin
system of the liquid at melting can be estimated with
the empirical relation' " for To(p), within the limita-
tions due to the relatively small pressure variations at
very low temperatures. One obtains here,

lim Sz ~(T)/R=-', (ln2) (T/To, ~)+puT,
T~O+K

~4.58 T,

Si,~(T) = $..~(T.) (69)

In terms of the component entropies, this can be written
as

Sg,L,M [T/ To(p3E) ]+Sna, L,M ( T)

= $.(T./T ,- o)+tS .;.t, (T ). (70)

It is to be noted that p~ in the argument of To appear-
ing in S, l. M can be replaced by its expression in T, so
that the left-hand side is a unique function of T.
In general, however, no analytic representation is avail-
able for the root T~ of (70) . One can make good use, in

this connection, of the entropy-temperature diagram of
Fig. 3. Indeed, let the initial state of the liquid at
saturation be represented by the point I.o, whose
coordinates are (To, Sp „,). Then, on adiabatic com-

pression as represented by the path 1.01-;, the state I.;
of temperature T; and entropy SM;= So,„& is reached at
melting. It is seen that, necessarily, T,(TM„. On the
graph of Fig. 3, To was chosen to be 0.35'K, a temper-
ature of the saturated liquid which can be reached easily

with the coeS.cient p derived in the previous section,
Eq. (50).

It is seen on Fig. 3 that the entropy of the saturated
liquid $„&(T) crosses that of the solid at melting,
$, ,~(T), at a T, „~ of about 0.37'K, well above the
temperature TM„of the melting-pressure minimum,
where S, M and S&,M cross. The physical significance
of the crossing temperature T, ,„t, is the following:
On cooling saturated liquid He' by evaporation below
T, ,„t,, this state can serve as an initial state for the
adiabatic compression process to reach the melting
line p~ ( T) . The temperature of the melting line
reached in this process from the state of temperature
T (T, ,„t, of the saturated liquid, is the root TM of
the equation
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by current forced-evaporation techniques; the temper-
ature T; reached then is approximately 0.29'K.

The melting anomaly of He' can now be fully ex-
ploited toward the production of very low temper-
atures. For this, the initial state actually is the one of
the liquid at the melting entropy line Ss„sts(T) . On the
path under consideration this state is represented by
L,(T;, Ss„is,;). On adiabatic compression from this
state the two-phase system is penetrated, since solidi-
fication occurs at the constant-entropy path Sl.,~,;
at T&T~;. Consider, indeed, the two-phase system
represented in the diagram of Fig. 3 by the point 3f,
coordinates 5(M) = Ss„is(T,) = S„i(TO), and T. This
system is made up of liquid in the state I, at melting,
and the solid or crystal in the state C, at melting. Let
x be the fraction of the liquid in the system at M; its
complement (1—x) is the fraction of the solid. Then
the entropy of the system is, omitting surface effects,

5(x) =xSs„is(T)+(1—x) S,,sts(T), (71)

of the solidification process. Using (53) for S, is(T),
Ts, or Hs, the latter standing for (~ JM ~/kTs), is the
root of

ln2 —(3/0') P (—) "c„/(e+2)0"=Ss„is(T~)/R. (77)
n=o

As long as T; is not too low, one may write approxi-
mately, using only the first term of the infinite series
in (1/g),

Ts T[x——=O, Ss.,is(T,)]
=

L(~ As) ~/0]{-2(ln2 —(Ss„is(T~)/R)]I 's', (78)

and
Ts(x, Ss, is(T,)])Ts(x=0, Ss. is(T,)].

The limiting relation (78) states that the lower T;,
and with it Ss, is(T;), the lower will be Ts. To the
extent that the series in S,,~ may be approximated by
its first term, even at Ss,is(T,)/R« ln2, one obtains,

with
S(x) = 5= Ss„ss(T;) = S,.t(TO). (72)

lim Ts (~ Juris ~/k) (—', ln2)'s'
Ts Small

Or,
x=x(T, 5)
= t:S,~(T) 5]/I:5,~(T)—5~,~(T)]—
= CM/CL, (73)

5= Ss„ss(Ts); x(T,; Ss,~„)=1, (74)

and the system is all liquid. At the point Cp,

5= 5~,~(T') = S.~(Ts); *(Ts, S.;.s) = o, (75)

and solidification is complete. For the particular path
indicated on the diagram,

T;=0.293'K; T)~0.010'K;

S(T,) = 5(Ts) =0.670R.

Thus, starting with the directly accessible initial
temperature of 0.35'K of the saturated liquid, it is
possible to reach 0.01'K after adiabatic solidification
of the liquid along the indicated entropy path. With the
assumed exchange coupling in the solid and the esti-
mated coupling strength

~
Jis ~, this is the lowest

temperature accessible in the constant-entropy trans-
formation indicated in the diagram, with the chosen
value of the entropy of parameter 5.

The lowest final temperature which can be produced
in an adiabatic solidification process of entropy
Ss„is(T;), starting from some temperature T, of the
liquid at melting, is the root Tf of

5, ,~(T) = R,~r(T,).
From (71) and (72) this lowest temperature is also
TLx=O, Ss, is(T;)], corresponding to the completion

where in the last relation the entropy differences are
represented by the indicated segments in the entropy
diagram. Clearly, at 1.;,

&& [1+—'Ss is(T~)/R ln2+ ~ ~ .], (79)

the asymptotic lower limit of T~ being of the order of
magnitude of

~
Jis ~/k.

The adiabatic solidification process for the produc-
tion of low temperatures refers to initial states T,& T~„,
or 5,(Ss„M(T,) (Sir„. This confines the x(T, S),
or x(p, 5) functions to limited regions of the (x, T) or

(x, p) planes. The x(p, 5) functions result from the
x(T, S) functions on replacing T by the melting
pressure pcs at T in the entropies at melting, S, is(T)
and Ss, is(T), on the right-hand side of Eq. (73).
%bile x varies between zero and unity, the temper-
ature and pressure intervals of these functions decrease
with decreasing T;, or with decreasing values of the
constant-entropy parameter 5 or Ss,ss. (T,). It is seen
that the pressure variations of x(p, S) are opposite to
the temperature variations of x( T, S) . One has,
indeed,

xCs, is(T)+(1—x) C, , (Tis)

Tt;S.,~ (T) —Ss,its( T)]
and

dx/dp~ (dx/d T)——/(dpsis/d T), (80b)

where (dpis/dT) (0 in the melting-pressure region,
where the anomalous cooling processes take place. At
increasing x values, x&0.4, and at not too low temper-
atures, the second term in the numerator on the right-
hand side of (80a) becomes negligible, the heat ca-
pacity C, ,~ being very small. Since (Cs. is/T) and
(S,,~—Sc its) are both of moderate variation there,
(80a) practically defines x(T) as an exponential func-
tion of (T T,) . At lower x val—ues, and over the lower
temperatures, the temperature variations of x become
more moderate, and increase as x—+0, where C, ,~
becomes rapidly varying, and the denominator on the
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FIG. 4. The theoretical entropy curves of liquid and solid He',
along the melting line, as a function of pressure. The dashed
lines, in the two-phase region, refer to specific transformation
paths.

~' Some x(T, S) curves, with estimated entropy values of the
liquid (presumably) have been given by Yu. D. Anufriyev,
JETP Pis'ma v Redalptsiyn 1, 155 (1965) )English transl. :
JETP Letters 1, 155 (1965)g, ignoring all limitations dne to
exchange eGects. However, several of these curves, unless wrongly
labeled, carry entropy-parameter values larger than E ln2,
which":are excluded by the expression (73) given in the text of
the present,"'paper.

right-hand side of (80a) becomes smaller at an in-

creasing rate. Since the entropy diagram of Fig. 3
enables one to calculate the pp(T, S) as well as the
x(p, S) curves, the latter with the help of the melting-
pressure line of Fig. 1, they need not be displayed
here."

The entropy diagram shows that in order to reach
temperatures in the millidegree range, the adiabatic
solidification process must be initiated at the melting
line at T &0.2'K. As pointed out to us by our colleague
Dr. R. I.. Mills, a two-stage or even multistage arrange-
ment could, in principle, be used to overcome the
limitations on T~, the final accessible temperature,
arising from an initial state T; close to T~„.This latter
high initial temperature was imposed by the indicated
method of producing the low temperatures starting
with the saturated liquid cooled by forced evaporation.
While the principle of the method of reaching very low
temperatures through a single type of thermodynamic
process, that is by adiabatic compression alone, is
relatively simple, the technical problems which arise
in the actual performance of producing the cooling
eGect, outlined schematically on the entropy diagram,
are of various character. The first part, Lo—+L;, of the
full process, Lp~L ~C~, involves adiabatic com-
pression over a large pressure interval AP of about 30
atm. This first and strictly preparatory stage of the
method appears to be quite complex in itself.

It is instructive both for the problem at hand and for
that of the pressure anomalies of the entropy of the

solid at melting, to display part of the entropy-pressure
diagram of He . This is given in Fig. 4. It is seen that,
if the liquid can be prepared in an initial state repre-
sented by the point I'(p&p~„, S(Ssr„), the com-
pression range in the two-phase system is then alone
involved in the reaching of low temperatures. This
range is reduced to a few atmospheres. It may equally
be noted that with an initial state of fairly low temper-
ature T,, and increased pressure p;, a considerable
degree of irreversibility can be tolerated in the adiabatic
solidification, without thereby increasing significantly
the low temperature to be reached. While the theo-
retical constant-entropy process is an idealization, it is
likely that it can be approached fairly closely, even
though the compression agent itself must undergo
cooling in the course of the process, thereby causing the
He' to be at temperatures T& T(x, S), which is the
ideal thermodynamic limit of the process in the state of
given coordinates. Needless to say, the list of technical
difhculties opposing the performance of the ideal limit-
ing compression process mentioned brieQy here is far
from exhaustive. Its further consideration is, however,
entirely outside the subject matter of the present work.

5. THERMAL ANOMALIES OF SOLID He'.
CONCLUDING REMARKS

d J/dP(0, (81)

on J(p), the exchange parameter. In the particular case
of liquid He, and to some extent in the solid also, this
behavior was discussed in early work4 ' on these dense
phases. In the liquid phase this behavior was formulated
as

d Tp(P)/dP(0, (82)

giving the qualitative pressure effect of the charac-
teristic temperature Tp(p) of the nuclear-spin system
of the liquid. The qualitative pressure behavior (81)
of the exchange parameter J(P) is the origin of the
anomalous thermal properties of the solid at low
temperatures, in some similarity with the thermal
anomalies of the liquid caused by the pressure de-
pendence of Tp(p).

The entropy of the exchange-coupled solid, Eq. (52),
yields at once, omitting for a moment the phonon

The dominance of the nuclear-spin system in de-
termining the thermal properties of solid He' at low
temperatures as in the case of the liquid phase, 4 sug-
gested already in earlier work' ' the existence of thermal
anomalies in the solid at the low temperatures. As
mentioned, however, the overestimation of the ex-
change parameter J~ in the solid led to a similar
overestimation of the temperature below which the
solid should have become thermally anomalous.

The assumed exchange coupling (41) imposes in
general the following pressure behavior
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entropy which will be taken into account subsequently,

[BS (T p)/Bpjr= (dS /d9) (do/d J) (d J/dp)

= (3R/8p)
l

d ln J/dp l

~..= I'xr C.;/V (85)

V, being the molar volume of the solid and F the
empirical Grueneisen parameter. At low enough temper-
atures, with the approximate experimental values of
2.5 for I', of 16.9'K for the characteristic temperature
0 of the solid, '4 of 24.8 cm'/mole for V, '~, and of about
10—' cgs, for gz" one obtains'

where use was made of the inequality (81). In the
limit 0))1, this reduces to

lim (—) (BS,/Bp) = V„pm, ,„(T,p)
&)) l J'~l/&

= —(3R/tt')
l

d ln Jjr/dp I, (84)

where we reintroduce the exchange parameter at melt-
ing J~, and where the first relation is just the thermo-
dynamic connection between the pressure derivative of
the entropy in the exchange-coupling scheme and the
isobaric volume-expansion coefficient in the same in-
teraction scheme. The exchange-coupled solid is thus
thermally anomalous, the magnitude of the anomaly
increasing rapidly with decreasing temperatures.

We now have to compare the exchange-coupled
anomaly with the normal behavior of the solid due to
phonon excitations. Here one may use the thermo-
dynamic relation connecting the isobaric phonon ex-
pansion-coefhcient n„,„with the constant-volume
phonon heat capacity C„,„and the isothermal com-
pressibility x&, or

on the basis of the estimates (86) and (87) . It is seen
that, even though

l Jiir l/k is estimated to be somewhat
above one millidegree absolute, or the magnetic transi-
tion to occur'. at a T of about 3

l Jpr l/k or around
4 mdeg, the thermal anomaly of the solid is predicted
to persist over a temperature range of about 50 T,.
This approximate numerical result con6rms the quali-
tative results of earlier work, ' according to which the
thermal anomalies were shown to persist up to rela-
tively high temperatures compared to the critical spin-
ordering temperature.

In the present theory of solid He' based on the
coupling scheme (41), one is led to predict, beside the
locus of the magnetic transition temperature associ-
ated with the pressure or volume variations of the
exchange parameter J(p), a locus T (p) of the zeros of
the isobaric expansion coefficient n„(T, p) . In the body-
centered-cubic solid the locus T (p) must extend
from the melting line pia (T) up to the transition line

p„(T), separating the body-centered-cubic structure
from the hexagonal-close-packed one. Using (84) and
(85), recalling that 9 stands for kT/l J (p) l, and with

C„,„written out explicitly in terms of (T/e(p)),
e(p) being the characteristic temperature of the solid
at pressure p, one obtains the following equation for the
locus:

T.(p) =
I (5/4 ') [I/I'xr(p) j I d»J(p) ldP I

X[e(p)]'[J(p)/k)'}'I'. (89)

Let us add here that the locus of the spin or magnetic-
ordering temperature T,(p) results, approximately,
from [J(p)/kj through

T.(P)=p*[J(p)/&7 (90)

where e may be about 3, its exact value being unknown
at the present time. "One has then

n„„~p„T', p„~4X10—'/('K) '. (86) T-(p) ».(p), (91)

It should be kept in mind, however, that this component
expansion coeScient as well as o, „, are both only
estimates as far as their various numerical elements are
concerned. For a, ,„ the data of the Duke University
group' yield, with d J~/dp estimated by us, and using
the asymptotic formula (84),

lim n, „= p. ( J, ~/k T) ', —
&)) I ~nil&

p, = (0.5—0."I)/('K) .

(87)

T =p(ppi) ~(0.25 —0.3) 'K; p, p(Tir) 29.2 atm,

Kith the actual isobaric expansion coefFicient of the
solid resulting from the representation (39) for its
entropy,

~~,.(T P) =~*,n(T P)+~.,n(T P) (88)

the zero of this quantity along the melting line turns
out to be at

over the pressure interval of definition of the locus
T (p), that is, over the range p„,~&p& pi„,~.

For the main purposes of the present paper it was
sufhcient to explore the properties of the cubic solid
at or near the melting line. In so doing we have been
led to consider briefly the two loci T,(p) and T (p).
Inasmuch as datap exist on J&(p), and consequently
on Tri, (p), we may mention a problem raised by this
last locus. According to the data, ' on the starting
line of Tir, (p) or at pi, (T), the solid-solid phase-
transition line, T, (p ) &Tiii,,(p„), or the end point
of the locus in the cubic solid is at a higher temper-
ature than the starting point of Tir, ,(p„,) on the
phase-separation line. Empirically, the pressure be-
havior of Tii„(p) is similar to that T,(p): they both
decrease with increasing pressure. The locus in the
hexagonal structure TH, ,(p) must, however, end on a
characteristic line of this solid, unless one allows for the
possibility of the parameter Jzz(p) vanishing at some
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high pressure. In the latter case the locus Tzz,,(p)
would approach the pressure axis in the pressure-
temperature diagram in the limit of T~O'K. The
nature of the characteristic line of this solid has to be
determined.

Our final topic concerns the somewhat singular
aspect of the entropy of solid He' at and around the
melting-pressure minimum (p~„, T~„). In the entropy-
pressure diagram, with 5, ,~(p) and Sz, jz(p), one has
along the melting line

dSz„~/dp= (BSi, zz/B, p)r+C„i, (T, , p)/T(dpzz/dT),

X=s, L. (92)

The singular character of S,,~ concerns the extreme
sharpness of the vertex of the entropy at piz„. We do
not give in Fig. 4 the entropy curve of the solid at
melting at the approaches of p3z„because of the omission
of the phonon entropy. Actually, only fairly rough
values of the phonon entropy are available at the
present time. It is justified, however, to expect that the
two entropy curves, 5&,zz(p) and S, itz(p), being
continuous, should have an internal contact at the
point of anomaly (p~„, T~„), with the pressure slope
of their common tangent at pzz„having an infinite
discontinuity across the contact. One would have here

lim (d Sz sz/dp) = lim (dS, iLz/dp)

(93)

because of the vanishing of (dp~/d T) in the denomina-
tor of the second term on the right-hand side of (92),
and where C„z, and C~,, are finite. The partial deriva-
tives (BSi„ia/Bp)r, X= L, s, cannot be infinite either at
the point of anomaly of the melting line. As a conse-
quence of the very small phonon-entropy, in comparison
with the practically complete spin-entropy of the solid
of R ln2, it is seen that the singular behavior of the
entropy of the solid corresponds, with its extremely
sharp vortex, to the very narrow wedge formed by
its two branches on both sides of S~„, the entropy
vertex common to the liquid and the solid. No attempt
was made to represent graphically this entropy wedge
of S,,~ in Fig. 4.

The entropy-pressure diagram, even though in-

complete with the upper branch of S,,~ omitted, can
be used to derive the qualitative pressure behavior of
the locus T (p) of the solid. It is clear that, if the
exact pressure dependence of xz(p) and e(p) in the
expression (84) of T (p) were known, then T, (p)
would be fully defined, assuming knowledge of the
function J (p) . This is not the case at the present time.
Now, the locus T (p) is also the locus of the pressure
maxima of the entropy along isotherms. We have
shown above that the solid was thermally anomalous
on the low temperature side of T (p), or along a sub-

family of isotherms

LOS, (p, T)/Bp]r&0, T& T.(p), (94a)

and normal along the higher-temperature isotherms

(~ S./~p) z & o, » T-(p) (94b)

The entropy diagrams in the (5, T) and (S, p)
planes, Figs. 3 and 4, each have two isotherms drawn

up in the two-phase region. In this region, these
finite isotherm segments are also isobaric segments.
For instance, the segment L'C' in the (S, p) plane
represents the isotherm of 0.10'K as well as the iso-
bar of pressure close to 30.8 atm. While omitted in
the diagram, the isotherm of this temperature in the
liquid phase, the area of the diagram on the low-
entropy and low-pressure side of Sz, zz(p), must reach
the latter entropy curve at L'. The liquid phase being
completely anomalous at low temperatures, these low-
temperature isotherms originate on the saturated-
liquid entropy-line and increase monotonically with
pressure reaching the melting-entropy curve Sz„~(p)
with a positive pressure slope. The 0.10'K isotherm of
the liquid increases from low pressures to reach Sz„,~
in the state represented by J.'. At C' this isotherm
penetrates the solid phase. We have shown above that
T, (p~), the starting temperature of the locus of vanish-

ing expansion coeS.cients, is somewhat higher than
0.2'K. Hence, the 0.1'K isotherm must be anomalous
in the solid and leave C' with a positive pressure slope.
However, with the upper branch of the entropy wedge
being very close to the lower branch, the only branch
indicated approximately on the diagram, the pressure
slope of this isotherm must be very small, and the
entropy maximum must also be very Qat. As a conse-
quence of the very narrow entropy wedge, over a
temperature range around the temperature of the vertex
T~„, whether normal or anomalous, the isotherms must
have very small negative or positive pressure slopes.
The expansion coefficient of the solid, whether normal
or anomalous, must be very small in the indicated
temperature range. A glance on the entropy-temper-
ature diagram, Fig. 3, shows that the heat capacity of
the solid must also become quite small over the same
range. Even though very Rat, these entropy maxima
must develop inside the entropy wedge for the relevant
isotherms. Since the entropy isotherms cannot cross, it
is seen that the maxima of successive isotherms of
decreasing temperature will have to appear at increas-
ing pressures. Indeed, if the entropy isotherm T de-

veloped its pressure maximum at a pressure lower than
the isotherm (T+AT), then the former, beyond its
maximum, would start to diverge from the latter, the
entropy falling with increasing pressure while the
(T+d T) isotherm would still be increasing toward its
maximum. This situation is, however, excluded, since
these iso therms cover the entropy-pressure plane
densely, and there is always one and only one isotherm
that passes through each point of the physically sig-
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while, simultaneously,

S,(p, T+aT) y S,(p, T), (96)

since the constant-pressure heat-capacity or the ratio
(C~/T), which is (BS/BT)„, is positive definite at
finite temperatures.

The region of the thermal anomalies of the cubic
solid may be said to extend at least over the region
between the two loci T,(P) and T (p). The possible
modifications which may arise in the properties of the
solid at very low temperatures T&T,(p), where the
melting anomaly may disappear, as discussed in Sect.
2 above, could be studied more profitably once experi-
mental evidence became available on the correct if
approximate nature of the exchange-coupling scheme
used here.

In concluding, it may be said that we have explored
various problems arising from the liquid-solid equilib-
rium of He'at low temperatures. Thesolidwas assumed to
be subject to an exchange-coupling scheme which appears
compatible with, though not imposed by, recent data on
the characteristic relaxation times associated with its
spin and lattice degrees of freedom. The coupling
scheme requires the solid to undergo spin or magnetic
ordering in the range of a few millidegrees absolute.
As a consequence, the anomalous melting-pressure line
must have an infIection or bend-over point, which was
estimated to be around 10 mdeg. Its observation, which
would confirm the impending spin-ordering phenom-
enon, would be feasible only through measurements of
the heat capacity of the liquid and solid at or near
melting at temperatures well above the ordering
temperature. The melting or entropy anomaly of the
solid enables one to produce very low temperatures
through a single thermodynamic process, that is
through adiabatic compression, starting at saturation
and at an easily accessible temperature. The lowest
temperature obtainable is limited downward by the
spin- or magnetic-ordering temperature arising from
the assumed exchange coupling. The solid is thermally
anomalous, its anomalies at or near melting extending

nificant region of the (S, p)-plane. Hence, one must
have

(95)

approximately up to temperatures somewhat above
0.2'K. The temperature locus of its vanishing ex-
pansion coeKcient, or that of the pressure maxima
of its entropy isotherms, starts at the indicated temper-
ature at the melting line, decreases with increasing
pressures toward lower temperatures to end on the
phase-separation line of the low-pressure body-centered-
cubic solid and the high-pressure hexagonal solid. The
latter is expected to be thermally anomalous also.

The low-pressure solid at melting has a very narrow
entropy wedge as a function of the pressure. As a con-
sequence, the expansion coefIicient of this solid becomes
very small over a significant pressure and temperature
range. Since over a wide temperature interval the
entropy too remains almost constant, the solid heat
capacity becomes very small there. In this region of the
phase diagram of the solid the phonon excitations alone
determine the thermal properties of the solid. Sig-
nificant variations in the thermal properties occur only
at temperatures in the range of a few hundredths of a
degree absolute, where the thermally anomalous spin-
excitations tend to become large and dominant.

The consideration of the specific equilibrium mag-
netic properties of the solid was not within the scope of
the present paper. It is clear, however, that para-
magnetic susceptibility measurements would be of
particular interest for deciding the presence and loca-
tion of the expected magnetic transformation. These
measurements should be made, however, in the range
of a few hundredths of a degree, still well above the
expected transition temperature. The susceptibilities
are accessible through nuclear-magnetic-resonance tech-
niques where, necessarily, the spin and nonspin sub-
systems of degrees of freedom are separated and become
autonomous. This raises difFiculties connected with the
possibly inordinately long time intervals needed for
the subsystems to reach equilibrium to ensure the
measurement of the correct susceptibilities at the
indicated very low temperatures. This problem of the
equilibrium times, while present, may be less acute in
thermal measurements, where an extreme specification
of the subsystems of degrees of freedom is avoided.

It may be hoped that experimental investigations
of the problems studied in this paper leading toward a
claridcation of the qualitative characteristics of solid
He' will be forthcoming in a not too distant future.


