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Possibility of Faster-Than-Light Particles*
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We consider the possibility of describing, within the special theory of relativity, particles with spacelike
four-momentum, which therefore have velocities greater than that of light in vacuum. The usual objections
to such particles are discussed, and they are found to be unconvincing within the framework of relativistic
quantum theory, A quantum field theory of noninteracting, spinless, faster-than-light particles is described.
The field theory is Lorentz-invariant, but must be quantized with Fermi statistics. The associated particle
theory has the property that the particle number is not Lorentz-invariant, and the no-particle state is not
Lorentz-invariant either. Nevertheless, the principle of relativity is satisfied. The Lorentz invariance
implies a relation between emission and absorption processes, in contradiction to the usual case. Some com-
ments are made about the problem of introducing interactions into the field theory. The limiting velocity is
c, but a limit has two sides.

I. INTRODUCTION

''T is generally, although not universally, ' believed
& - that the validity of the special theory of relativity
precludes the possibility of transmitting energy from
point to point in space-time at velocities greater than
c, the speed of light in a vacuum. The erst statement to
this effect appears in the first paper' of Einstein on the
special theory. After pointing out that the relativistic
formula for kinetic energy approaches infinity as v —+ |,-
from below, Einstein concludes ".. . velocities greater
than that of light. . . have no possibility of existence. "
Other versions of this argument, as well as some others
which will be considered later, are presented in the
standard textbooks on relativity. '

It is the purpose of this paper to note that the stand-
ard arguments are not compelling in the context of
relativistic quantum mechanics, with its characteristic
discontinuous creation of particles. This has already
been noted by other physicists. ' The possibility of
particles whose four-momenta are always spacelike, and
whose velocities are therefore always greater than c is
not in contradiction with special relativity, and such
particles might be created in pairs without any necessity
of accelerating ordinary particles through the "light
barrier. "

There are other problems with faster-than-light
particles in relativistic quantum theory which arise from
the fact that for a spacelike momentum vector, the
sign of the energy can be changed by a Lorentz trans-
formation, implying a more direct connection between
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the positive- and negative-energy solutions of the wave
equation than for timelike momenta. This connection
has been thought to imply that faster than light particles
would necessarily involve the existence of negative-
energy states with their resultant unphysical properties.
This is, however, not the case, and we shall see that the
negative-energy solutions for faster-than-light particles
can be dealt with in a way quite similar to that used
for ordinary particles, i.e., these solutions are associated
with creation operators instead of annihilation operators
in a quantum field theory.

It is perhaps worth noting that particles which travel
faster than light do not involve logical inconsistencies.
Indeed, no observations can be logically inconsistent. 4

To determine that a particle is moving faster than light
it is only necessary to measure its position at two times
and then calculate its velocity, by division, to be
greater than c. None of these operations wouM seem to
involve inconsistencies. Alternatively, one could meas-
ure the energy and momentum of the particle and note
that

E2(P'cu

Such a measurement could easily be done for example
in a bubble chamber. Because of the problems associated
with localization of faster-than-light particles, to be
discussed below, the latter alternative seems more
promising for demonstrating their existence.

In this paper we begin the program of describing the
properties that faster-than-light particles would have if
they exist within the context of the special theory of
relativity. Our considerations will be mainly restricted
here to noninteracting particles, although I hope to
return to the description of interactions of such particles
at another time.

In the absence of such a description of interactions, it
cannot be regarded as demonstrated that it would be
possible to detect faster-than-light particles even if they
exist. It is perhaps worth mentioning here that the
problems involved in describing the interactions of
faster-than-light particles within quantum held theory

4 I am indebted to Dr. M. Tausner for this remark.
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are very similar to those in describing interactions of
ordinary particles, i.e., in reconciling the singularities
in local interaction with the requirements of I.orentz
invariance and quantization. It is partly through long
familiarity with ordinary particles that such problems
are considered inessential for ordinary quantum 6elds
by most physicists. In any case, it is as clear to the
author as it will be to the readers that the theory pre-
sented, here remains incomplete until the possibility of
at least electromagnetic interactions of the particles is
demonstrated. Some remarks in this direction mill be
found in Sec. VI and Appendix D.

While it is possible to discuss qualitatively the proper-
ties of faster-than-light particles and to answer the ob-
jections usually raised to their existence, within a
relativistic theory, one cannot be sure about what new

problems might arise without a detailed mathematical
description of such particles, Such a description can be
constructed, at least for spinless faster than light
particles, within the formalism of relativistic quantum
Geld theory. One description is presented in Sec. IV for
noninteracting faster than light particles, which we

call tachyoes. ' It is not clear whether there is a unique
description of this type, as is the case for ordinary
particles.

In the following, it will be found that a number of
peculiar properties have been ascribed to tachyons.
Some of these, such as the increase in velocity with
decrease in energy follow directly from the kinematics
of faster than light motion. Others, such as the necessity
of the exclusion principle for spinless particles may be
peculiar to our description, and, come from trying to
follow the conventional quantum-field-theory formalism

as closely as possible.

(1 i/2/P)1/2 (1 i/2/~2)1/2
(2 1)

Hence as v —+ c from below,
~ p ~

and E become infinite,

and would become imaginary if we take e&c.

'The name "tachyon" is suggested by the Greek work 7nx~z

(tachys) meaning swift.
~I refer to the transmission of energy, rather than a signal,

because the concept of a signal is somewhat more ambiguous. See
the discussion in Appendix B.

IL OBJECTIONS TO FASTER-THAN-LIGHT
PARTICLES

A number of diferent arguments have been advanced
to demonstrate that the transmission of energy' at
vdocities greater than c is impossible if the special
theory of relativity is true. We shall present several of
these arguments followed by the reasons that we con-

sider them insufficient to warrant the conclusion that
faster-than-light objects can not exist. The counter-

arguments will lead us to some of the properties of the

particles.
I. From the usual expressions for the energy-mo-

mentum of R relativistic particle, we have

Taken literally, the first part of this argument only
shows that if a particle is at one time moving with e&c,
it cannot be ma, de to move with e& c.The argument does
not rule out objects for which ~&c always. After all, we

know of photons, for which v=c, and the argument
taken literally would seem to rule them out as well.

To deal with the second part of the argument, we

note that the quantity m, or the rest mass, that ap-
pears in Kq. (1) is not a directly measurable quantity,
unless the particle can be brought to rest. We are there-
fore free to hypothesize particles for which v&c always,
Rnd 5$1s Ml imaginary quantity

m=//i (/i real). (2.2)

In this case, the energy and momentum will remain
I'cal quantities) satisfying

pC p, 'V

(i/~/c2 1)1 2 (i/2/c2 —1) /

and c'p' —E'=/i'c4, so that the four-momentum is a
spacelil~e vector. We note that

~
pc~ )E, and that the

velocity may still be defined by

Ipl

C E
(2.4)

Furthermore, the range of the energy and momentum
are given by

0(F(~, /c(ipse(~, (2.5)

(1—u i//c')y
(2.6)

~ —(1 ~2/~2) —i /2

It is easy to see that

(2.7)

so that v'&c if v&c.
This formulation of the kinematics of faster-than-

light particles leads directly to another objection to
their existence which has been often raised.

2. When the momentum four-vector is spacehke, the

sign of the fourth component, or energy, can be changed

by an ordinary (orthochronous) Lorentz transforma-

and both the energy and momentum are monotonic
decreasing functions of the velocity, so that tachyons,
as we shall call these particles, speed up as they lose

energy.
Thc vRluc t)= oo is allowed foI' tachyons, Rnd Rt this

velocity we have E=o and ~p~ =p/:, so tachyons at
infinite speed carry momentum but no energy. Of
course, infinite velocity is not invariant since the usual

velocity transformation law remains valid:
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p ' QU QEl1
V'= a+ (v—1)

N C

(2.8)

Since
~
pc

~
)E, one can always choose u so that for

instance E'= —E. The occurrence of negative-energy
states for particles has always been objected to on the
grounds that no other system could be stable against
the emission of these negative-energy particles, an
entirely unphysical behavior.

Before analyzing this objection further, it is useful
to cite another objection, as the two are really part of
the same problem.

3. When the velocity of an object is greater than c,
it is possible to change the sense of the propagation in
time by an ordinary Lorentz transformation. That is,
suppose that for one observer, a particle moves through
two points x~, x~ at times t~, t2, with

&c and at= t,—t»0. (2.9)

For a second observer moving along the s axis with
velocity I, we have

Dx'= (hx ud, t)y, —

( uAx) / uv

c' ) 4 c'

and clearly by choosing Nv) c', we can make At' have
the opposite sign to At, i.e., change the time ordering
of the points along the trajectory.

It can be seen that this change occurs under the same
circumstances as the change in the sign of the energy.
In fact from (2.8) and (2.9) we have

E'/E = At'/At =y (1 us/c') . —(2.10)

This circumstance provides the key to the under-
standing of the negative energies. ~ Any observer will
insist on a time ordering of events consistent with
primitive ideas of causality, such as that emission occur
before absorption. However, emission generally refers
to the production of a positive-energy system and ab-
sorption to the destruction of a positive-energy system.
It is clear that at a single point there is no distinction

' This interpretation is suggested in the work of Bilaniuk,
Deshpande and Sudarshan (Ref. 1) who have also described
much of the material in Sec. II of this paper.

tion. Hence, a particle which is seen by one observer
to have positive energy will have negative energy to
another observer. By the principle of relativity, any
state which is possible for one observer must be possible
for all observers, and hence faster-than-light particles
can exist in negative-energy states for all observers.

This can be seen directly from the transformation
equations for energy and momentum

E,'= y(E pu)—

between absorption of a positive-energy particle and
emission of a negative-energy particle. This distinction
can only be made on the basis of whether the particle
is again detected in the future, or has been detected in
the past. But this is exactly the result that is altered
by a Lorentz transformation which changes the sign of
At. That is, suppose a process occurs which can be in-
terpreted by one observer as emission of a positive-
energy tachyon at one space-time point and absorption
of the tachyon at a later spacetime point. For a dif-
ferent, Lorentz-transformed, observer the second point
may be earlier in time than the first, and the energy of
the tachyon may be transformed to a negative value
by the Lorentz transformation. This observer will in-
terpret the process as the emission of a positive-energy
tachyon at point 2' and its absorption at the later
point 1', and therefore need not introduce the concept
of negative-energy particles at all. The consequence of
Lorentz transformations is therefore to relate the rates
of emission and absorption rather than to require the
introduction of negative-energy states. While this is a
novel situation in physics, it does not seem to be
intrinsically unphysical. We shall see that such a rela-
tionship naturally occurs in a quantum field theory of
tachyons. A more detailed analysis of some thought
experiments involving the emission and absorption of
tachyons as viewed by different Lorentz observers is
given in Appendix A.

4. If faster-than-light particles existed, it might ap-
pear natural to use them to synchronize the clocks of
observers in relative motion. Such observers would be
related not by Lorentz transformations, but by a new
group of transformations, and part of the justification
for the requirement of Lorentz invariance would be
lost.

A more detailed analysis shows that this remark is
misleading. We know from general relativity that it is
possible to relate the measurements made by any two
observers, with clocks synchronized in an arbitrary
way. However, in general the laws of physics will not
be invariant under the transformations obtmned in this
way. In particular, it is clear that if infinite speed
tachyons are used to synchronize clocks of diferent
observers, the velocity of light would not then be the
same for the different observers. Of course, within one
particular coordinate system, the laws of physics will
still be those of special relativity. This does not depend
on the method of clock synchronization of distinct
observers.

It might be further objected that the transformations
resulting from the new type of synchronizations could
leave some other laws invariant, such as the velocity
of propagation of tachyons. It would seem that this
cannot be the case. While the velocity of tachyons of
a single energy might be the same for two relatively
moving observers, this cannot be the case in general.
The invariance of the velocity of light from observer
to observer depends not only on the use of light rays to
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synchronize clocks, but also on the empirical fact that
for any observer, the velocity of light is independent of
its energy, i.e., of the velocity of the source of light.
Since this cannot be made the case for tachyons, their
velocity will also vary from observer to observer.

In view of the close connection between the form of
the laws of physics as seen by one observer, and, the
requirement of the invariance of certain quantities
under transformations between observers, it is not
surprising that a particular set of transformations and
hence of clock synchronizations should be more natural
than another, once the laws of physics have been deter-
mined by one observer. In our world, these are the
Lorentz transformations, and any other synchronization
will only produce complications.

5. Because of the possibility of changing the time
ordering of events along the path of a tachyon by a
Lorentz transformation, it seems possible to transmit
signals into the past of a single observer. ' This is in

apparent conflict with the natural view that one is free
to decide whether or not to carry out an experiment

up until the time that one actually does so.
Although this argument seems to be the most serious

qualitative objection to faster-than-light particles, its
force seems somewhat weaker than is generally stated.
A conclusion warranted by this argument is that
tachyons cannot be used to send reliable signals, either
forward or backward in time, in the sense that one
cannot completely control the outcome of an experiment
to produce or absorb them. Indeed, this also follows

from the relation between emission and absorption
that is contained in the theory to be presented. It does
not seem to me to follow from this argument that one
couM never detect a faster-than-light particle, or to
devise an apparatus which may produce them. Although
this difficulty of experimentally handling tachyons may
seem strange on the basis of our experience with ordi-

nary particles, it cannot by itself be used to conclude
that they do not exist.

A more detailed analysis of a particular example of
acausal behavior, from the standpoint of the interpreta-
tion given previously, will be presented in Appendix B.

I conclude that the usual objections to the existence
of faster-than-light particles need not be valid, and
that it may be possible to describe them consistently
within the special theory of relativity. It is to the con-
struction of such a description that we now turn.

III. IMAGINARY-MASS SCALAR FIELDS

In this section, we study the solutions to the Klein-
Gordon equation for a scalar c-number field. P(x), with
an imaginary mass m=ip. This is a necessary prelimi-

nary to quantizing the Geld. Ke restrict the discussion

to scalar fields because it is known that there are no
Gnite-dimensional representations of the Lorentz group

' Essentially this argument is given by D. Bohm (Ref. 3).It was
pointed out to me by Dr. P. 3, Kantor,

corresponding to imaginary mass, other than the one-
dimensional representation.

Ke consider the equation

(3 I)

A set of elementary solutions to this are clearly

p+, /,
—— expi(k x—a&t) —= exp(ikx) (3.2)

(2~) 3/2 (2x) 3/2

and

all k

we have

„*(x,t=0)p, (x', t=0)=—5'(x—x') (3.4)
fkj& p,

with

6'(x—x') = /t'k 8(~ k~
—ti) expik (x—x')

expik (x—x')
= 8'(x—x') — k'd k did

0 (2vr)'

P cosh —sink)
= 5'(x—x')+—

~

x—x'~ '2x2
(3.S)

with X=/ (x—x'~.
The incompleteness of the allowed set of solutions

has several consequences.
1. Tachyons cannot be localized in space, i.e., a

superposition of solutions of the form

P(x) = y+, /, (x)f(k)d'k, ( ~

k
~

)p),

which could be a tachyon wave function, cannot be
made into 5'(x). In fact, such a superposition cannot be

made to vanish outside a sphere of Gnite radius, but

expL —i(k.x—cot) j—=
(2~) 3/2 (2w)'/2

&& exp( —ikx) .

Here co=+(k' —ti')'/' always. We restrict k by the
condition

)k/ &ti. (3.3)

This is done in order that M as defined should be real,
i.e., that the solutions should be oscillatory in time.
This would appear to be necessary if we are to interpret
a superposition of such solutions as the wave function
of a particle with real energy, which we require.

Because of the restriction of the wave numbers given

by (3.3), the set of functions'+, /, *(x, t=o) =Q,q(x, t=O)
does not form a complete set. Instead of the usual

completeness relation,
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which is not related. to the incompleteness of the Py.
To see this, we consider the condition of Lorentz invari-
ance of the geld theory, which is the existence of unitary
operators L(l,a), associated with a, Lorentz transforma-
tion x'=le+a, and satisfying

L(l a)y(z)L-'(E, a) =y(a+a). (4.2)

The space-time translations are generated by the
energy and momentum operators in the usual way, and.

Eqs. (4.2) are equivalent to the differential equations

~A (*)= -'O'. A (*)j (4 3)

It is clear that these relations and the assumption
that I. is unitary are inconsistent with the canonical
commutation relations

[a(k),at(k')] = P(k —k'),

[a(k),a(k')]=0,

since a Lorentz transform changing a(k) into a&(k) will

change the sign of the left-hand. side of (4.8) without

changing the right-hand, side. On the other hand, if we

quantize with anticommutators, no such trouble will

arise. Therefore, we shall take the a, a~ to satisfy

with E„ the 4-vector momentum operators. Upon sub-
stitution of (4.1), this implies

a(k)at(k')+at(k')a(k) = 6 (2k k')—,
a(k)a{k')+a{k')a(k) =0, (kp, kp'80)

(4 9)

k„a'(k)a(k)d'k, (4 5)

where the a(k) can be of one of the usual types of annihi-

lation operators, i.e., fermions, bosons, or parafermions,
parabosons. '0 Note that I'o has no negative eigenvalues.

It is remarkable that by choosing the Lorentz trans-
formation in (4.2) to be a homogeneous Lorentz
transformation (boost), we can rule out the boson and
paraboson solutions. In order to see this, we compute,
for a "boost" with velocity u, the exponent in p(lx)

k(lx) =k„l„„x,=k„x„, —

(k u)u;
k;= k;+ (y+ I) +pipe;, i= I, 2, 3 (4.6)

Q

kp ——y(kp+k u).

(Note that kp can be negative, although kp is taken
positive. ) For any u there will be a set of k such that
ko will be negative. These are just those k whose energies
are mad, e negative by the inverse Lorentz transform.
The corresponding terms in the positive-frequency part
of p(x) must therefore be transformed by I. into terms
in the negative-frequency part of Q(x), that is, the
operators a(k) multiplying these terms must be trans-
formed by L lllto tile at{k) opel'atols. It ls not. hard to
show that the condition (4.2) implies that

)kp'q '"
I.a(k)I. '=

i

—
i

a(k')
Ek, i

if kp'/kp& 0

and ko) ko +0 p

(4.7)
// kp'

La(k)L '=
(

— a (—k') if kp'jkp(0
&kp

ko, 40'~0
Here k„'=l„„k„.

0. W. Greenberg and A. M. L. Messiah, Phys, Rev. 138,
81155 I,'1965).

[&„,a(k) j=—a(k)k„, [kp ——+(k' —/l')'"], (4.4)

which has the natural solution, although perhaps not
the unique solution

and these are consistent with (4.7) and a unitary L.
Therefore the tachyons are fermions, even though they
have spin-zero. Such a violation of the connection be-
tweeli spin and statistics is not in contradiction with the
known theorems on this connection, " since we do not
assume "microscopic causality. "

A special remark must be mad. e about the momenta
satisfying ko= 0, since a change of sign of ko is not defined,

for them. The distinction between creation and annihila-
tion of particles with such momenta is arbitrary, since
the ermssion of a zero-energy particle with momentum
k is indistinguishable from the absorption of a zero-

energy particle of momentum —k. Ke can introduce
the linear combination

a(k) —=a(k)+at( —k), [cop=0j

n(k) =ut( —k),

for which we require the commutation relations

(n(k), nt(k') }= 8(k —k'),

and the n(k') commute with all a(k) for kp/0. We then
obtain for the Lorentz transformation of operators cor-
responding to zero energy

Ln(k)L —'= — a(k')
ko

if ko'& 0,

( P~ 1/2

Ln(k)L '=( — at( —k') if kp'(0.

On the other hand, if a given nonzero energy is trans-
formed, to zero by a Lorentz transformation, we have

1/2

La(k) I.—'=
~

— n{k') .

Finally, if both ko and ko' vanish, we have

LQ. (k)L '=n(k').

"See R. P. Streater and A. S. Wightman, I'CT, Spin amfj,

Statistics, amd ALl That I'%. A. Benjamin, Inc., New Pork, 1964),
p. 1466'.
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direct use of the conventional form

d'k expilr (x—x')

(2s)'
(4.2o)

Lexpik (x—x.'}j8(k'—p2)
= I(x—x') = d'k (4.21)

(2s)'

Unlike the Green s function G~, this is clearly an invari-
ant function. It can be evaluated explicitly, using the
reduction formulas for Fourier transforms of invariant
functions. "

leads to the result I=0. This can be traced to the fact
that any invariant formed of Q and its derivatives of
finite order, other than g itself, reduces to a c number by
the anticommutation relations. "This does not seem to
be a real problem for the free fields, although it makes
the introduction of self interactions dificult. As we
shall see, there is no corresponding problem for complex
Geld s.

It is of interest to evaluate the anticommutator Rt
arbitrary space-time points, which is also a c number
function.

so that P is essentially the tachyon number. This
quantity is not however I.orentz invariant.

It is interesting that in this theory, the tachyon
number can be written as the integral of a local charge
density, while the Hamiltonian cannot be written as
the integral of a local energy density. This is precisely
the reverse of the situation in the 6eld theory of ordinary
neutral particles.

The current g„does not generate a local transforma-
tion of the field P. Instead, it generates opposite phase
transformations on the fields @+, g, defined as the
positive- and negative-frequency parts of P. Since P+,

Rlc Ilot scRlal Gelds lt ls not fcRslblc to write lIlvRrl-

ant interactions using them, and the conservation of g„
would not be valid in the presence of interactions.

This completes the Geld theory of the noninteracting
real tachyon 6eld. The generalization of this 6eld
theory to noninteracting complex GeMs is straight-
forward and is done in Appendix D. The main addi-
tional feature that occurs in that case is that for
l,orentz transformations that would geometrically
change the sign of the energy, the creation operators
for particles at(k) are changed into annihilation oper-
ators for antiparticles b(k') and vice versa. The necessity
for this is clear in view of the fact that emitting a
particle induces the same change of charge at a vertex
Rs absorbing Rn RntlpRrtlcle.

The particle aspects of the field theory we have con-
structed involves several new features, however, which

will now be considered.

The anticommutator does not vanish outside the light
cone, and in fact falls off only as (x—x') ' at large
spacelike separations.

One other point worth noting about the 6eld theory
is the existence of a conserved current g„. The current
is given by

8~=4'~A' ~A'4')

and dearly the Geld equation implies

(4.23)

Ib') = I' (~V'b'))0(X')-
4~V'(y') 2 'V'( —X')

&&&i(~V'(—y'))~(-X') (4 22)

V. PARTICLE ASPECTS OF TACHYON FIELDS

The particle interpretation of a conventional 6eld
theory is obtained by assuming the existence of a no-

particle, or vacuum, state defined by

o(k) io)=0, (5.1)

and forming the particle states by acting on the vacuum
with various creation operators. The vacuum will be a
null eigenstate of four-momentum, and the eigenstate
of lowest energy.

These conditions will also be satis6ed in the tachyon
theory, and the particle states can be constructed in
thc same ways l,c.~ R state contRlnlng particles of
momentum k~, ~ ~, k„ is

~~8~=4&'4 t:l'44 =o— (4.24} ski, ku, , k )=at(ki)ut(k;) at(k„) jo). (5.2)

The conserved charge associated with g„can be
written

g4d'x= d'k at(k)a(k)

+infinite constant, (4.25)

"There does exist a nonvanishing pseudoscalar vrhich is
quartic in the Geld @. This is the quantity e„,„p8„&8„&8&Bpp=81@82$83@84@.

"See G. I'einberg and A. Pais, Phys. Rev. 131, 2724 (1963),
Appendix B.

The state so constructed are eigenstates of four-
momentum in the usual way, i.e.,

Z„~k„",k„)=(k,„+k,„+ "k.„)~k„"k.). (5.3)

Of course, since the spinless tachyons are fermions, the
momenta k~, . k„must be distinct. Also, there are
other states of zero energy than

~
0).

A novel feature of the tachyon-particle theory is the
behavior of the particle states under Lorentz transfor-
mations. In conventional theories, the vacuum state is
Lorentz invariant. This foBows from the fact that it is



Therefore IQ/. ) contains one particle with each mo-
mentum whose energy changes sign under the inverse
Lorentz transformation. As we have seen, these are
the momenta k* satisfying the condition

&a*+it* u&0, (5.8)
where I is the velocity corresponding to the "boost."

It is of interest to compute the number of particles
in the state

I Qz&. As this is proportional to the quantiza-
tion volulTlc, we consldel thc nuD1bcl pcI' Unit vohGIlc.IQ.)= 9'/&) IQ.&:

—=—P a/, ta/, ~ d'k at (k)a(k), (5.9)

plQz&= d'k a'(k)a(k) J.I0& (5.10)

(5.11)

the unique null eigenstate of four-momentum, Rnd the
behavior of the energy-momentum operators under
Lorentz transformations. Since the number of particles
in a state is also Lorentz-invariant, it foHows that in
convcntlonRl theories R Lol cntz trRnsf ormation CRn

only change the momenta and spins of the particles in
a state, without affecting the number.

The situation is quite different for tachyons. It
follows directly from Eq. (4.7) that the vacuum state
is not Lorentz invariant. To see this, we consider the
state

lk&=at(k)IO&.

By (4.7), there exists a Lorentz transformation I. that
changes at(k) into some annihilation operator a(k). If
the vacuum were invariant under L, then we would have

I.lk) =«t(k) lo) =a(k) I0)=0 (5.5)

which is impossible for a unitary operator. We ean
calculate what the Lorentz transform of the vacuum is
by using (4.7). Let us denote the transform of the vac-
uum corresponding to the Lorentz transformation L by

IQ.)-=1-10&.

Clearly IQr, ) will be different for different Lorentz
transformations. If k is a momentum such that kp is
positive when kp is positive, then

q
i/2

a(k) IQz&=a(k)L Io)=I —
I «(k) I0& (56)

k koi
=0

so that these momenta are not present in IQz&. If
however k is a momentun1 such that kp is negative
when kp is positive, then

p k ~
1/2

at(k) IQ,&=at(k)L l0&=
I

—
I «(—k) I0& (5.'I)

Ek, i

where the integral is over the k~ satisfying (5.8). This
integral is easily done, and gives —,7r/i'(y —1), which is
clearly Qnite. Therefore, a state which contains no
tachyons according to one observer will be seen by
another observer to contain a large number of particles.
This can occur since the four-momentum does not
transform geometrically in this theory, but instead
there are additional constant terms appearing in Eq.
(4.10). As a result, the state IQ/. & does not have the
sRn1c foUl nlomentUIQ Rs thc vacuUIQ,

Similarly, we can calculate the transformation proper-
tlcs of stRtcs GontRlnlng soIl1c number of pRltlelcs,

The following rules describe what happens to a general
state under Lorentz transformation. We suppose that
in the initial coordinate system there are particles of
momentum k~, ~ ~ k, whose fourth components do not
change sign under the given Lorentz transformation,
and particles of n1omentum k„+~, ~ ~, k whose fourth
components do change sign under the Lorentz trans-
formation. The Lorentz-transformed state then will
contain all those particles satisfying (5.8) with the
exception of those whose momenta are the negative
of the Lorentz transforms of k„+~, ~, k~. In addition,
it will contain the Lorentz transforms of kj, ~ ~, k„.

For example, a state containing one particle of mo-
menta k„whose energy sign changes under a given
Lorentz transformation will, by the new observer, be
seen as a state with all the particles whose momenta k'
satisfy (5.8), omitting the momentum (—k, ', —(0,')
which is in that set.

This is clearly a very strange result, and upon 6rst
sight might be taken to imply that the particle theory
was in fact not Lorentz invariant. I do not think. that
this is the case, however. Every observer will have a
vacuum state and the particle states constructed from
it with a corrlmon set of creation operators. A Lorentz
transformation induces a transformation between these
states which is unitary (in a finite space). The fact that
this transformation links states with different numbers
of particles is a new feature of taehyons, but does not
imply noninvariance, since RH the equations of the
theory are invariant under the transformation.

A more subtle question involves the usual use of the
vacuum as an invariant reference state which is taken
as the natural state of the world. That is, the states that
occur in theoretical physics are the vacuum state for
most kinds of particles and, contain only a small number
of the other particles, which have been prod. uced through
known definite processes. This cannot be done in-
variantly for tachyons, and it can therefore be asked
what wouM be a reasonable tachyon state to occur in
some situation for a particular observer. I do not have
an answer to suggest to this, but it is worthwhile to
remark that even for particles such as electrons, the
actual state of the world is not approximately the vac-
uum, but rather contains some 108P particles, and is
not at all Lorentz invariant. We do not regard this as
any indication of a lack. of Lorentz invariance in nature,
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but rather as a part of the boundary conditions for any
physical situation. A similar approach may be useful in
dealing with tachyons if they indeed exist.

Ke note that the change in the number of particles
present from observer to observer is required in order
to bring about the relation between emission and ab-
sorption that was described qualitatively in Sec. II. 3.
This relation requires that a situation described by one
observer as the emission at a point of a tachyon, which
then escapes to infinity, may be described by another
observer as the absolptlon of a tachyon which enters
from inhnity. Clearly, in order for this to work, it is
necessary that the initial state, which contains no
tachyon for the first observer, contain at least one
tachyon for the second observer. In fact, from the rule
for transforming states, we see that a process described

by one observer as emission of a single tachyon, would

by another observer, for whom the energy of the initial
tachyon would have changed sign geometrically, be
described as a transition from the state

I
QI,) to a state

with one less tachyon. In generalq sllppose we have a
tlansltlon of tile form:

as viewed in one coordinate system, and the quantities
h1, 4, k„,4,

' Pl, 4
. P, , 4 do not change sign under

some Lorentz transformation, while k„& l, 4 k, 4 and

p~+1,4' ' 'p&, 4 do change sign. Then ill thc transformed
coordinate system, this will be seen as a transition be-
tween an initial state containing the momenta k~,
~ k„', and the momenta in IQI,), missing —k„+I',

to a 6nal state containing the momenta in

I
Qi,), IIllssillg the IIlolllCIlta pp+I ' ' p and lll-

cluding in addition the momenta Pl', P,'.
Note that most of the large number of momenta

present mill not have changed in the transition, and
indeed would occur as disconnected lines in a Feynman
graph. For that reason, the high density of tachyons
implied by (5.11) may not be in obvious disagreement

with experiment.
These results for the relations between the transitions

seen by Lorentz-transformed. observers are valid under

the assumption that it is possible to de6ne a Lorentz-
invariant 5matrix in the theory of interacting tachyons.
This would in turn be the case if the 5 matrix is a scalar
function of the field operators p(x), just as for ordinary
6eld theories. Homever, in order to tell if this is so, it is

necessary to produce a theory of interacting tachyons.
This will not be done in this paper, although some com-

ments on interactions are to be found. in the next section.

VI. INTERACTI05'8 OF TACHVONS

In order to understand better the interactions possible
for tachyons, we shall study quahtatively what produc-
tion and scattering processes tachyons can take part in.
Ke consider 6rst restrictions coming from the conserva-

tion of energy and linear momentum. %e shall de6ne

both initial and final states so that all tachyons ap-
pearing therein have positive energy. In accordance with
our previous discussion this implies that a given tachyon
may be transferred from initial to final state by a
Lorentz transformation. Therefore, the decision as to
whether a given process is allowed by four-momentum
conservation must be considered separately in each
coordinate system, and the rules we obtain will depend
on the energies of the particles involved.

Ke must consider 6ve possibilities, in which either
the initial or 6nal states contain the folloming particles.

Case A. State contains only normal particles, with
timehke total momentum.

Case B. State contains normal particles and tachyons,
with spacelike total momentum.

Case C. State contains normal particles and tachyons,
with timelike or null total momentum.

Case D. State contains only tachyons, with spacelike
total momentum.

Case E. State contains only tachyons, with timelike
total momentum.

In considering selection rules, it is sufficient to
consider that part of the total state which undergoes
the reactions, and I shall take the cases A—K to refer
to that. The detailed selection rules are given in Table I.
It is clear that transitions in which the total momentum
changes from spacdike to timehke, or vice versa are
forbidden.

One consequence of the selection rules is that any
system of normal particles, including a single particle
at rest is energetically unstable against emission of
tachyons. This occurs because a system of two tachyons
can be found with any value of total mass whatsoever,

by varying the energies and directions of the two

tachyons. Because of this, strong restrictions must exist
on the interactions of tachyons in order to be consistent
with the observed behavior of the proton, electron,
neutrino, and photon.

It also follows from Table I that tachyons can emit
massless particles such as photons or neutrinos without
changing their own mass, that is, the decay

is allowed, where T represents a tachyon with a 6xed
value of p,

' and any energy. This is just a restatement of
the long known fact that Cerenkov radiation can be
emitted in free space by a charged particle that moves
faster than light. It has been well known for many
years that this was possible. "I shaH call the emission

of a particle or particles without a change of mass of the
tachyon, elastic decay. The elastic decay of a tachyon
of mass p with emission of a particle of mass m is
energetically possible when the tachyon has an energy

"This seems to have been first recognized by A. Sommerfeld,
K. Akad. Wet. Amsterdam Proc. 8, 346 (1904}.See also G. A.
Sehott, E/ectrowagmet~c Radiation (Cambridge University Press,
Cambridge, England, 1912).
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ALE I. Kinematic restrictions on tachyon transitions. In this table are given the minimum initial-state energies 8 for which a
transition is allowed. Forbidden transitions are marked x. Transitions which can occur as elastic scattering are marked 0. I have taken
all tachyons to have mass p, and all normal particles to have mass m. The generalization to other cases is straightforward. The labels
A, 8, C, D, E are dehned in paragraph 2 of Sec. VI. The initial and anal states contain at most two particles.

ontent of
Gnal state

Content ofi
initial state+

E& -,'w+p' jm if m, '& 2p' g) (p'+m4/4y'l'~' if m') 2p'
g Ep Pl +p, /28$

E&m g

E& (m'+-', p')'"

Possible for all
values of 8

Z& (F2+~~4/4&~) ~~2

Possible for all
values of E

Possible for all
values of E

0

at least equal to
m4

Er'=m'+
4~2

Hence, if the mass of tachyons is much smaller in
absolute value than that of the normal massive particles,
elastic decays involving emission of these particles will
be possible only for very energetic tachyons.

Finally, we note that it is always energetically possible
for a single tachyon to decay into several tachyons with
the same value of p2. This implies that unless the tachyon
self-interaction is very weak, there will be a rapid
degradation of the energy spectrum of tachyons pro-
duced in any way, as the tachyons decay into numbers
of less energetic tachyons.

It ls of interest to apply thcsc considerations to thc
particles present in the state ~Or, ). That is, we assume
that for some given system, one observer sees no tachyon
present, and another, related by a Lorentz transforma-
tion L, sees the state ~Qz, ). The particles in this state
have energies E; and momenta p; satisfying

~~+p n&0, (6.5)

where u is the velocity associated, with the Iorentz
transformation I.. Now

However

(d p~+ p ' ll =8p+ p ' ll ((0)+k ' 8) . (6.6)

mined, by examining those processes that can occur in
the tachyon vacuum state.

It is interesting to examine whether a tachyon in
~QI,) could emit an ordinary particle or particles. Ac-
cording to the comment of the last section this is impos-
sible, since in the Lorentz-transformed state with no
tachyons originally present, this is forbidden by energy
conservation. To see why this cannot occur in any
coordinate sytem, we note that if a tachyon emits a
particle, the four-momentum conservation implies that

(6.4)

with k a timelike or null momentum and p, p' spacelike
momenta, with p satisfying

E;&p;.u, (6 2) {6.7)

My~+p 'n(0,

where I is the velocity of the "boost." If we take any
subset of these particles, their total energy and mo- since ~~ k, and I& . ere ore

mentum will therefore also satisfy

Et,q=g E;(n P p, =n pt, t. (6.3)

Hence the total momentum is also a spacelike vector,
and the tachyons in ~Qr, ) cannot make a spontaneous
transition into normal particles alone. This, of course,
also follows from the fact that for the original observer
there mere no particles present at all, and. so no such
transitions could, occur.

If other particles are present, either tachyons or
normal, in addition to those in ~QI.), then transitions
could in general occur. But these transitions must be
the Lorentz transform of a transition which occurs,
according to the erst observer, without the presence of
the particles in

~
Ql, ).Thus the large number of particles

in ~QI.) is rather irrelevant insofar as their physical
effects are concerned, since these CGects can be d.eter-

and therefore p' is also in
~
01.). However, by the exclu-

sion principle, this is impossible unless p = p, in which
case k=coA, ——0 which is no transition. Therefore, the
quantization by Fermi statistics is required here to
ensure that a transition forbidden in one coordinate
system is not the Lorentz transform of an allowed
process, This suggests, but hardly proves, that fermion
quantization is necessary for any particle of spacelike
four-momentum.

In addition to the energy and momentum restrictions
on tachyon processes, there are restrictions following
from the conservation of statistics. I shall silnply as-
sume here that if we assign a number +1 to bosons and
—1 to fermions and multiply these numbers for a multi-
particle system that these products are conserved in any
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transition. ' Since the tachyons are fermions of zero
spin while 811 other fermlons have half lQtcgral spin
it immediately follows that the number of tachyons is
conserved modulo 2, that is, the following selection
rule holds:

r (initial) —Xr (final) =even integer, (6.8)

where Xp means the number of tachyons present in the
state.

As a result of this selection rule, it is impossible to
produce a single tachyon in a collision between ordinary
particles.

In order to describe quantitatively the interactions of
tachyons, either among themselves or with ordinary
particles, it is necessary to introduce interactions into
the equations satis6ed. by the tachyon 6elds. This is
often done via a Lagrangian formalism, which does not
seem to be available here. It is of course possible to
introduce the interactions directly into the field

equations, for example by introducing a source term
into Eq. (3.1)

(CI'+m')p= Jp, (6.9)

where Jp depends on the tachyon field and other particle
fields. Because of the "conservation of statistics, " the
source J~ should contain an odd number of factors of P
and its derivatives.

If the field equation (6.9) is still second order in time
derivatives of P, we could still assume that the equal-
time anticommutation relations (4.14)—(4.17) are satis-
fied. There are then two problems to be faced. One is
the demonstration that the resulting geld theory is still
Lorentz invariant, a matter for which no really com-

plete proof exists even in conventional fieM theories.
The problem is accentuated in the present case by the
breakdown of the usual "causality" condition on the
commutator of the fields at spacelike separations. Under

these circumstances, I have not been able to settle the
question of whether the theory defined, by (4.14)—(4.17)
and (6.9) is a Lorentz-invariant field theory.

The other problem is to extract from the Geld equa-
tions an expression for the 5 matrix describing tachyon
transitions. Here also the differences between the free-

tachyon theory and the conventional theory are such
as to make the standard formalisms, such as the Dyson
interaction picture, or the LSZ (Lehmann-Symanzik-
Zimmermann) formulation, difficult to apply. The
Yang-Feldman method, based on the Heisenberg
equations of motion, seems a more promising approach
to this problem. However, no conclusive results are
available yet here either.

Note that in order to obtain a Lorentz invariant 5
matrix, it is as far as we know sufhcient to have a
Lorcntz-invariant 6eld theory. Whether this is also

necessary is Qot known, even in conventional theories.

"See for example, Greenberg and Messiah (Ref. 10) where this
is proven, how&ever, under assumptions that lnay be invalid for
tachyon theories,

If the 5 matrix as an operator is Lorentz invariant,
then because of the peculiar transformation property
of the particle states described in Sec. V, the 5-matrix
elements for transitions between diferent numbers of
particles will be related by Lorentz transformations.
It does not seem possible to avoid this property in any
Lorentz-invariant theory of faster-than-light particles.

VII. CONCLUSION

We have investigated the possibility of describing
particles that travel faster than light within the special
theory of relativity. We find that the objections gener-
ally raised to the existence of such particles are not
valid in a relativistic quantum theory. A description of
such particles, called tachyons, by the formalism of
relativistic quantum 6eM theory is possible, at least
for the case of spinless, noninteracting particles. The
field theory constructed is explicitly Lorentz invariant.
The particles described by this formalism have several
peculiar properties. Among these are the following:

1. The spinless particle cannot be quantized by Bose
statistics but can be quantized. by Fermi statistics.

2. The vacuum state is not invariant under Lorentz
transformations but rather changes into a state con-

taining many tachyons.

These properties, although quite diGerent from those
of ordinary particles, would not appear to involve any
fundamental contradictions with accepted physical
principles.

In my opinion, there are several major problems
remaining to be solved before the theory is complete.
These include the following:

1. What is the propagation in space-time of the
particles described here like 2 In particular, how does one

define propagation for the unlocalizable states)
2. How can one extend the theory described here to

the case of interacting particles'
As these two problems are solved, we can look forward

to the solution of the more fundamental question, i.e.,
3. Do faster-than-light particles exist in nature, and

can they be detected'

It is the hope of the author that he has convinced the
reader that an afhrmative answer to this question
would not necessarily be in contradiction to Einstein s

theory of relativity.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the positive inQuence

of conversations with a number of physicists on the
considerations given here. In particular, discussions

with E. C. G. SudarshaQ oQ tlie interpretation of the

change in sign of the energy under Lorentz transforma-

tions have been of great value to me. I would also like

to thank Dr. P. Kantor, Dr. M. Tausner, Dr. D. Boul-

ware, Dr. N. Christ, Dr. I. Goldstone, Dr. F. Gursey,



POSSIBILITY OF FASTER- THAN —LI GHT PARTI CLES

Dr. E. Lubkin, Dr. M. Kugler, and Dr. A. Pais for
comments on various aspects of the work. In addition,
I would, like to express my appreciation to the Uni-
versity of Washington and to the Rockefeller University
for their hospitality while much of this work was being
done.

APPENDIX A. EMISSION AND ABSORPTION OF
TACHYONS AS VIEWED IN DIFFERENT

LORENTZ FRAMES

In this Appendix I shall illustrate the interpretation
of the change of sign of energy under Lorentz transfor-
mation as an exchange of the role of emission and absorp-
tion. The main point to be made is that this interpreta-
tion is consistent with at least one form of the principle
of relativity, which requires that any event that can
occur for one observer be a possible event for any other,
Lorentz-transformed, observer. The most striking new
kinematical feature of this interpretation is that the
stability of a system against emission of tachyons is a
function of its velocity relative to the observer.

As our first illustration, imagine a situation in which
an observer sees two atoms both originally at rest at
points x~, x~. Atom 1 is assumed to be in its ground state
at time )0, while atom 2 is in an excited state at )0, with
an energy 5E above its ground state. We suppose that
at a time 3&) 30 for this observer, atom 2 emits a tachyon
in the direction of atom 1, dropping to its ground state,
and recoiling. I disregard here the fact that tachyons
cannot be emitted or absorbed singly, which is irrelevant
for the purpose of this discussion. This tachyon is
absorbed by atom 1 at a later time t& (i.e. t2) 3&), and
atom 1 makes a transition to one of its excited states,
and moves in the direction of the tachyon.

Since the spacetime points (x~, t~) and (x2,t~) are
connected by the trajectory of a tachyon, they are
separated by a spacelike interval. It is therefore possible
to make a Lorentz transformation to an observer for
which t2'(t~'. We are then entitled to ask how this
observer will describe the above process. For this
second observer, atom 1 will be moving along the line
joining the atoms at time ]0 and will be in its ground
state at that time. Atom 2 will also be moving in this
direction and will be in an excited state.

As described in Sec. II. 3, the change in energy AEj
of atom 1 during the interaction with the tachyon will
have opposite sign for the two observers, as will the
change in energy hE~ of atom 2, which for each observer
is equal to the negative of the energy change of atom 1.
Therefore, the second observer will interpret the event
at t&' as absorbtion by atom 2 of a particle of positive
energy which was emitted by atom 1 at t&'. However,
since atom 1 was in its ground state before this occurred,
it is necessary to conclude that a moving atom in its
ground state can emit particles, simultaneously changing
part of its kinetic energy of motion into the internal
energy difference bE. This is of course kinematically

impossible when the emitted particle has timelike four-
momentum, since it cannot happen for an atom of rest.
However, it is indeed kinematically possible when the
emitted particle has spacelike four-momentum, because
in this case the process will be seen as absorption in the
frame in which the atom is at rest. The different in-
terpretations of the event by the two observers are
indicated schematically in Fig. 1.

Consider next a free tachyon moving through space.
From the results of Table I, we see that it is energetically
possible for this to emit photons, no matter how small
the energy of the tachyon. Suppose that such emission
occurs in one coordinate system, the energy of the final
tachyon being positive in that system. There are other
coordinate systems in which the energy of the final
tachyon, as computed by Lorentz transformation, is
negative, while that of the initial tachyon is still
positive. According to our interpretation, the process
will be viewed in this frame as the annihilation of a
particle and antiparticle into a single photon, which is
energetically possible for these objects.

If we look at this in more detail, we can describe the

Atom I Atom 2—8---
tachyon
emitted

t= t2

'

tachyon has
been absorbed

Atom I Atom 2

emitted

If=t2

tachyon has
been absorbed

Fxo. 1. (a) Emission and absorption of a tachyon as viewed
by one observer. Atom 1 is at rest in its ground state at to. Atom 2
is at rest in excited state. At t& atom 2 emits a tachyon, dropping to
its ground state and recoiling. At t2, this tachyon is absorbed by
atom 1, which jumps to an excited state and also recoils. In this
situation we have to&t&&t2, (b) the same process viewed by
another observer, for whom emission and absorption have been
exchanged. Atom 1 is now moving at t =to', but still in its ground
state. This atom emits a tachyon at t2' and jumps to an excited
state, losing some of its translational energy. Atom 2, which for
this observer is moving, and in an excited state at to, absorbs the
tachyon at tj', dropping to the ground state and gaining transla-
tional energy. For this observer, we have to'&ts'&t~'.
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photon
emitted

=X(
=t)

detector

X*Xe
t=t2

arises when emission and, absorption by sources in
relative motion are considered. An example of this
situation will be described in Appendix B.

I
I
I
I
I

photon
emitted

detector

X=X2
r

FIG. 2. (a) Spacetime diagram of Cerenkov radiation by a
tachyon. A photon is emitted at time t1 by a tachyon, whose
energy remains positive to this observer. The tachyon is detected
at a later time t2. There is always l tachyon present for this ob-
server, as well as a photon after t1. Time is taken to run upward
in the diagram; (b) spacetime diagram of the same process as
viewed by an observer for whom the energy of the anal tachyon
would be negative if geometrically Lorentz transformed. Ac-
cording to, this observer, a tachyon and antitachyon are present
until $= t1', after which only a photon is present. Time is taken to
run upward in the diagram.

situation as follows. Suppose that for observer 1, the
emission of the photon occurs at the spacetime point
(x~,t~). We must then imagine that this observer has a
detector, which registers the existence of the recoil
tachyon at another point (xp, tp), with tp&t&, and
~xp

—
x&~ &c(fp—t~). For simplicity, I assume that the

detection of the initial tachyon will be similar for the
two observers, and also assume that the recoil tachyon
escapes to infinity after passing through the detector.

In the transformed system, the photon is emitted at
a point (x&', tz'), and an antitachyon is detected at the
point (x~', fp'), with tp'(t~'. Therefore according to this
observer, there are two particles present up until tq', and
none thereafter. The "extra" particle is one of those ap-
pearing under the Lorentz transform of the vacuum,
described in Sec. V. If the situation occurs as I have
described it, the relativistic invariance of the theory
then implies a relationship between the rates of two
processes that we are not used to thinking of as the
same, i.e., Cerenkov radiation in one case, and pair
annihilation in the other. However, if we extend the
usual notion that two processes that are related by
Lorentz transformation are really the same, then we
may say that for tachyons, Cerenkov radiation and
pair annihilation are the same process. The only really
novel aspect of the situation is the fact that Lorentz
transformations can, in this case, alter the number of
particles that are present in a state at a given time. I
have again indicated the di6erent interpretations of the
event by two observers in Fig. 2.

The above examples are meant to illustrate the as-
sertion that the change in the sign of energy- and. time-
ordering under some Lorentz transformations can be
systematically reinterpreted as an exchange between
emission and absorption. A further logical problem

APPENDIX B.ANALYSIS OF CAUSAL ANOMALIES
PRODUCED WITH TACHYONS

In order to examine some of the causal anomalies
that may arise if tachyons are exchanged between ob-
servers in relative motion, we consider a situation with
two such observers. We take observer 1 with unprimed
coordinates at rest at the origin, and observer 2 with
primed coordinates at the point (xp, 0,0) at time t=0,
and moving with velocity I in the x direction. I suppose
that each observer can emit and absorb tachyons and,

disregard the selection rule from the statistics.
The Lorentz transformation relating the two ob-

servers is (suppressing y and s) given by

x'= y (x—xp —ut), x=xp+y (x'+ut),
t'=y(t ux+uxp), —t=y(t'+ux'),

(c=1 here).

Let observer 1 emit a tachyon with velocity ej towards
observer 2 at time t=0. This will be absorbed by 2 at
t=xp/(p, —u). These events will occur at the times
f=puxp and $ =xp/p(pz —u) respectively for observer
2, for whom the tachyon will have traveled, with velocity
(p~ —u)/(1 —us~). Therefore, if we take up~(1, the
tachyon will have traveled forward in time and have
positive energy for each observer.

Now suppose that by agreement, immediately upon
absorbing the first tachyon, observer 2 emits a tachyon
towards 1, travelling in his system with velocity —~2.

This will reach 1 at the time

+
y(vg —u) y(pg u)(vp —u)—

and when 1 is at the point

—SOP y'Vg

y(pg —u) (pp —u)

Hence it will be absorbed at the time

xp('vy+'vp —u —upypp)
fp=

(p&—u) (p p
—u)

having traveled. with velocity —(pp —u)/(1 —upp) for
observer 1. By rewriting tp as

tl Lpg
—u+ pp(——1—upg) j, (82)

('Uy —u) (vp —u)

we see that a condition that t& be &0 is just that
1—N~~&0, which we have assumed to be satisfied. In
other words, there can be no causal anomaly if the
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outgoing tachyon propagates normally for both ob-
servers, i.e., if the things we have called emission and
absorption really are such. Since $p is symmetric in
si and e~, it also follows that a causal anomaly (t~(0)
cannot occur if the 6nal tachyon propagates normally
for both observers.

Hence to obtain such an anomaly we consider a case
where the observers disagree on the order of emission
and absorption for each of the two tachyons. For sim-

plicity, imagine that each tachyon is emitted, in the
rest system of the emitter, with in6nite velocity, i.e.,
e~=v2= ~ in the previous formulas. It follows from
(B2) that

That is, the tachyon (2) emitted by observer 2 will
reach observer 1 before the 6rst one (1) is emitted. One
could then imagine that observer 1 after absorbing
this tachyon would be free to refuse to generate the
tachyon (1) that stimulated observer 2 to emit (2),
thus producing a causal anomaly.

In order to see how this anomaly appears to each
observer, we must use the reinterpretation of the absorp-
tion of a negative energy tachyon as an emission. In the
previous discussion, we have seen that tachyon (1)
will appear to have negative energy to observer {2).
Therefore, he will not regard it as having been emitted
by observer j. to him, but rather emitted by himself
toward observer 1. Similarly, tachyon (2) will appear
to have negative energy to observer 1, and he therefore
will regard his apparatus as having emitted it, rather
than as receiving it as a signal from observer 2. It
follows that if the two observers have entered into an
agreement depending on the receipt of a signal emitted
by the other, that the sequence of events we have
described will not be regarded as having triggered the
agreement.

Let us look at this situation more closely by seeing
how each observer does the detection of the signal from
the other. Suppose the detector is taken to be an atom
at rest in its ground state, and we assume that upon
absorption of a tachyon, the atom will start moving,
and. perhaps make a transition to an excited state. By
choosing the atom at rest in its ground state we rule
out the possibility that it can emit a tachyon, as seen
by the observer that is using it for a detector. It is
easy to see that under these circumstances, the detector
cannot absorb a tachyon emitted with velocity e by the
other observer unless the conditions

(&4)

is satished. That is, this type of detector cannot ab-
sorb a tachyon whose energy will change sign under
the Lorentz transformation relating the two observers,
and hence cannot be used to induce a causal anomaly.

Suppose, however, that another type of detector is
used, which can absorb such tachyons. This couM for
example be an atom in an excited state, in which case

the condition (34) need not be satisfied for absorption.
However, in this case, there is the possibility of. spon-
taneous emission of tachyons, and an observer using
this kind of detector cannot, simply by determining
whether the detector has made a transition, decide
whether such spontaneous emission has occurred, or
whether a tachyon from outside has been absorbed.
Indeed, in the case described above, observer 1 would
naturally describe the second stage as such a spontane-
ous emission, independent of any activity by the
second observer.

Therefore, while j.t does appear possible to construct
kinematic closed cycles using tachyons in which signals
are sent back to the past, a careful examine of the
methods of detection, with due regard to the interpreta-
tion of absorption of negative-energy tachyons as
emission of positive-energy tachyons, leads to the
conclusion that such closed cycles will not be interpreted
as reciprocal signaling, but rather as uncorrelated
spontaneous emission. It therefore does not appear that
causal anomalies can be used as an argument against
the existence of tachyons.

(C1)

If 5 contains all possible momenta, then 88(x) =p(x),
the usual delta function. When 5 is the set of momenta
satisfying k') p,', 'then, „:8s(x)= 8(x).:;;.The point of the
lemma is then just that 8s(x) acts like P(x) with respect
to those functions whose Fourier transforms vanish
outside the set S. That is, if

f(x)= Z f(&)~"'*,

f(x') 8s(x—x')d'x'= f(x) .

To see this, we substitute the Fourier decomposition of
f(x) and 58(x—x') into (C3)

d'x' f(x') 8s(x—x')

dalai P P &e7c.x'~ik (x—x')f(P) (C4)
~i (2w)'

= g p e+'"'*f(u)v(u —u')
at-8 a'c;8

= P f(k)e'~'*= f(x), (C6)

APPENDIX C. PROPERTIES OF TRUNCATED
5 FUNCTIONS

We prove here a simple lemma concerning what may
be called truncated 5 functions. We de6ne a truncated
8 function Bs(x) relative to a set 5 of momenta k by
the relation
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ewhere in the setew ere' 5oint k'=k occurs somew ere
'

since the point

d to derivatives'1 r generalizations cSimiar e
'

ns c

note the
of the function b~ x .

a it is useful to note

( ) tis6es (C2), e
f Alo h f

rt . If x sa i
ctlon g xfinite derivative of f(x . s,any fini e of x

(C7)

de6ned. by

g(x) = — —p

can writesatis6es (C2), since we can

g k) = (k' —p')'12f(k).

'1 demonstrate Eq.we can easiysin these results we

H iltonian(4.13) for t e am'

o era
'

de end. ent. creat o p~ bt will be the in p; h e will require oarticles and a" 'P
satisfy

(D4)) t(kl)}={b(k))b (

b kI)}—{a(k),b (k'){.(k), (k') }={'"'
b(k), b(k') }=O

dictated by the require-

the osit ve a uenciewhich can mix t p

d antiparticle termsarticle an an
'

positive-energy p

d'k (o(k)at(k)a(k) (C9) a& k bt(k)b(k)d'k. (D6)B= d'k o&(k)at(k)a(k)+ a) k b

(k) =1~2(2 )

i0(x)
ih x —y(x)+ d se
' mber and charge pe o eratorsWe also de ne6 the total num er(c10)

H=
2(2s)'

3 3&~ei(k x'-k x)d'kP (k) d'xd'x c'

i$(x')-g (x)-
y y(x)— (C11)

at (k)a(k)+b'(k) b(k))d'k,

at (k)a(k) b" (k)b —(k))d'k

(D7)

(DS)

x') 8(x—x')d'~' 'L4(x)(—7' p)4(

2 i/2 (xi)'
b x—x')+~(x)(—V' —p,+~( )~(*')b(—

' —' —V' —p')'"j(x)y(x' 8 x—x'Xb(x—x') —i(—V —p
' ' 8 x—x

t bys of the fields P, P ys these in terms op
th results of Appen ixusing t e r

8$
2 2 1/2 t 2zd'* (-~'-p) 4, —--'

)(
'- ')'"e(x), 4(x)5},+'t (-v -„

— '- ')~(x)+0(*)4(*)'d{xy( x—7'—p
2

which is (4.13).

CHY,ON FIELDS. COMPLEX TAAPPENDIX D.

i e noninteracting complexhiss
hdhod ana g

W b
'

ith
'(),scalar 6eld tt (x), an i s

' ' x,

—t—1+c number, (D1O)

Bt (—V. '—p,')'" Bt

+c number. D11)

c number, (D9)&& (—~'—p')'"4,

(&'+p')4 (*)=o.

ane waves:and these in planeAgain we expan

$x=)= B.."(k)+~-..,pbt (k)5d'k

iltonian density is nonlocal, as
(D1)

g

n b the fourth componen o(D2) given y

2~u= L&' ~A'5 5~~4'A5— (D12)

re resented by thetransformations are repThe Lorentz trans orm
L4-.~a'(k)+4+.~b(k
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1/2

La(k)L '=
i

— a(k')
kkp

kp
if —&0,

kp

/
kp' '" kp'

La(k)L '=
~

— bt( k'—) if —(0,
4 kp kp

1/2

Lb(k)L '=
i

— b(k')
kkp

kp
if —&0,

kp

( kp' )'/P kp'

Lb(k)L '=
I

—
I

a'(—k')
(kpf kp

following unitary transformations on the a, b.

(D13)

The electromagnetic current g„(x) is therefore given

by an expression whose fourth component is the charge
p(x). This expression can be determined by requiring
that a conservation law

(D16)

be satis6ed. We 6nd that

1 8$ 1 8p
g;(x) = —Qt V;—+V;gt

( qp +2)1/2 8~ ( qp +2)1/2 @

+H.c. , (D17)

We note that while the total number of particles is not
a Lorentz-invariant quantity, the total charge is.
Kvidently, this occurs because an equal number of
particles and antiparticles appear from the vacuum
after a Lorentz transformation, and the charge of these
adds to zero. In particular, a state containing a single
positively charged particle of momentum p in one
Lorentz frame, appears in another frame in which the
sign of the energy of this particle would geometrically
reverse, to contain all the positively charged particles
in the set

~
Qr, ), and all the antiparticles in

~
Qr,) except

for the momentum —p, —pp.
It is possible to define a "charge-conjugation" opera-

tion on the fields P, by

or
Cy(x)C—'=yt(x) and CC =1

Ca(k)C '=b(k),
Cb(k)C-'= a(k) .

(D14)

(D15)

The transformation commutes with H and S, while
it anticommutes with Q. It is interesting that the number
current J„, which has a similar functional form to the
electric current of a normal particle, commutes rather
than anticornmutes with C, because of the fermion
commutation relations of the fields. This mould indicate
that if we wish to preserve C invariance in the electro-
magnetic interaction of tachyons, it is necessary to use
a nonlocal current, rather than the local current J„as
a source for the electromagnetic 6eld.

This current is clearly nonlocal in coordinate space. It
can be shown, however, that the current g„(x) trans-
forms as a four-vector under the transformations de6ned
by Eq. (D13).

Since the complex Geld carries two degrees of freedom,
it is possible to write local bilinear scalar functions of
the field. One might therefore imagine it possible to
write a Lagrangian which generates the field equation
(D1) through a variational principle. This is indeed
possible in contradiction to the case of the real Geld.
We can write

which does not reduce to a c number. The variation of
this Lagrangian considered as a classical operator
clearly generates (D1).

If one now attempts to go over to a quantum-Geld
theory by using a canonical procedure to obtain the
Hamiltonian from the Lagrangian (D18), one finds
that this canonical Hamiltonian will act as the generator
of time displacements in the field P(x) only if the
canonical commutation relations are used to quantize
the field. This possibility is ruled out by the require-
ment that P transform as a Lorentz scalar, and therefore
the Lagrangian formalism does not seem to be of much
value in formulating the theory of the complex tachyon
Geld either. However, the existence of q-number local
scalar functions of the 6eld would make the problem of
writing interactions easier in this case.


