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may also be traced from the relative motion of local
frames. Thus, instead of working backwards as we have
done here for a charged particle with spin, we directly
considered the relative motion of local frames, as a test
particle (for simplicity without spin) carried out its
world-line motion, as a means of describing gravita-
tional effects. One of the essential ingredients in this
development is just the point we have been trying to
make here, that the tangent dynamics is not a complete
probe of the relative motion of local particle frames and
that the latter takes primacy, since it also enters into
spin dynamical considerations.
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As a general comment on gravitational theories, we
may say the following. The fact that gravitation is
omnipresent does not necessarily indicate that its
effects should be placed in the metric of the space, as
it may be that gravitational effects are more accurately
described in terms of the relative motions of local
particle frames which are only incompletely revealed
in the tangent dynamics. Indeed, from our viewpoint,
the possibility for the unified description of the effects
of electromagnetic and gravitational effects via relative
local frame motion is too attractive to be set aside
without the most serious consideration.
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Recently it has been shown by several authors that both an O(4) and an SU(3) symmetry, heretofore
associated with the nonrelativistic Kepler and three-dimensional isotropic harmonic-oscillator problems,
respectively, are automatically possessed by all classical central potentials to the extent that the Poisson
bracket forms of the Lie alegbras of these groups can be explicitly constructed. This result has been extended
by Mukunda to be a property of all classical dynamical problems involving three degrees of freedom in-
dependent of the functional form of the Hamiltonian. We investigate the interrelations among the classical
mechanical degeneracy, the simply periodic nature of motions, and the separability of Hamilton-Jacobi
equations, and the question to what extent the invariance of the Hamiltonian of a classical system under
the Poisson bracket forms of the Lie algebras constitutes a higher symmetry in the global and dynamical
sense. We show that for alarge class of classical systems the occurrence of degeneracies is a direct consequence
of the separability of the Hamilton-Jacobi equations in a continuous family of coordinate systems and that,
as such, Lie algebras do not by themselves automatically constitute higher symmetries unless a finitely
multivalued realization of the corresponding group in the phase space of the system exists.

I. INTRODUCTION

HE recent success of higher-symmetry groups

such as SU@3) and SU(6) in classifying the
spectrum of elementary particles and the notion of
noninvariance dynamical groups that characterize the
entire spectrum have led to renewed investigations,
from similar group-theoretic viewpoints, of some of
exactly solvable dynamical systems which afford
higher-symmetry groups and corresponding noninvari-
ance dynamical groups in classifying energy levels.!
Two outstanding examples of these systems are the
nonrelativistic Kepler problem, whose higher symmetry

group is O(4) 2 and whose corresponding noninvariance
dynamical group is the deSitter group 0(4,1)3, and
the three-dimensional isotropic oscillator which has
SU(3) * and SU(3,1) 5 as its respective groups.

These two systems, which exhibit higher symmetries
both in classical and quantum mechanics, occupy
special places among central-potential problems in the
sense that they possess symmetries higher than the
apparent spherical symmetry under O(3). Quantum-
mechanically higher symmetry of these systems mani-
fests itself through the occurrences of an “accidental”
degeneracy such as n?fold degeneracy of the Kepler
problem, each set of #? levels forming a basis for an

—_ . irreducible representation of the group O(4). In
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classical mechanics corresponding degeneracies mani-
fest themselves through the functional dependence of
the Hamiltonian on the action variables. The occur-
rences of these classical “accidental” degeneracies are
connected on the one hand with the properties of
motions being simply periodic (i.e., all orbits are closed),
and on the other hand with the separability of the
Hamilton-Jacobi equations in more than one set of
coordinate systems which are the two characteristics
possessed only by the Kepler and oscillator problems
amongst all central potentials.

Recently, however, it has been shown by several
authors® that botk an O(4) and an SU(3) symmetry
are automatically possessed by all classical spherically
symmetric potentials fo the extent that the Poisson
bracket form of the Lie algebras of these two groups
can be explicitly constructed in terms of the primitive
canonical variables ¢; and p; for all such potentials,
every generator having zero Poisson bracket with the
Hamiltonian. This result has been recently extended
by Mukunda,” who showed that all classical dynamical
problems involving # degrees of freedom automatically
possess invariance under O(n-+1) and SU(n) Lie
algebras, independent of the functional form of the
Hamiltonian, indicating that the automatic existence
of such higher-symmetry algebras is purely a con-
sequence of detailed properties of local canonical
transformations and is totally independent of the dy-
namical contents of the system.

In this paper we investigate the question to what
extent the invariance of the Hamiltonian of a classical
system under the Poisson-bracket form of the Lie
algebras of these groups constitutes a higher symmetry
in the global and dynamical sense in relation to the
existence of degeneracy. We have previously investi-
gated?® a closely related question in somewhat narrower
scope, namely, the two-dimensional central-potential
problems. For the two-dimensional Kepler and isotropic
oscillator problems whose Hamiltonians are invariant
under the identical Lie algebras, O(3) and SU(2),
respectively, we have shown that the distinction
between the two groups can be made only by con-
sidering the explicit realizations of corresponding
groups in terms of finite canonical transformations.

In Sec. IT we give the classical-mechanical definition
of degeneracy in terms of the action-angle-variables
formalism,? which shows how the ‘“accidental” de-
generacies of the Kepler and isotropic oscillator
problems are related to their simply periodic properties.

In Sec. III we show that for separable multiply
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Phys. 3, 323 (1966).
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periodic classical systems that include all central-
potential bound systems the occurrence of degeneracies
is a direct consequence of the separability of the
Hamilton-Jacobi (HJ) equation of the system in a
continuous family of coordinate systems., Having first
elucidated the method of proof for the well-known case
of spherical symmetry, we prove that the “accidental”’
degeneracies of the Kepler and isotropic-oscillator
systems are the consequences of the separability of the
HJ equation in a continuous family of prolate spheroidal
coordinate systems related to one another by single-
valued transformations with arbitrary orientation of
the unique axis and arbitrary interfocal distance, a
coordinate system often used in its two-dimensional
form, the elliptic coordinates, in connection with the
problems of two centers of gravitation.1

In Sec. IV we show that the existence of a Poisson
bracket form of a Lie algebra under which the Hamil-
tonian is invariant does not by itself automatically
constitute a higher symmetry of the system unless a
single-valued, or at most a finitely many-valued
realization of the corresponding group in the phase
space exists.

II. CLASSICAL DEFINITION OF DEGENERACY

The quantum states of bound systems are discrete,
labeled by the energy of the state together with the
eigenvalues of other observables constituting a com-
plete set of commuting observables. A system possesses
a degeneracy if more than one state has a given energy
eigenvalue. In the classical description of a bound
system there are no discrete states, so that the quantum
definition of degeneracy is inadequate in classical
mechanics. A classical bound system is usually multiply
periodic, which means that any variable of the system
can be expanded in a multiple Fourier series with
fundamental frequencies »;, s, ---»; when there are
f degrees of freedom. If these f frequencies are all in-
commensurable, the system is nondegenerate. If there
exist 7 relations among the frequencies of the form

7
2 n®y;=0, 1)

i=1
k=1, --em (1<m<f—-1),

with integer ; the system is said to be m-fold de-
generate.! When m is equal to f—1 (complete de-
generacy), all frequencies are rational fractions of each
other so that the motion is simply periodic. For the
multiply periodic systems which are separable, these
frequencies are given by

V= GH/(:)],;, (2)
10 Reference 9, p. 207.

U M. Born, The Mechanics of the Atom (Frederick Ungar
Publishing Company, New York, 1960).
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where H is the Hamiltonian and the J; are the action

variables given by
Ji=f?¢d91, 3)

the integration being over one complete cycle of g;.

A separable multiply periodic system is therefore
degenerate if the Hamiltonian, expressed as a function
of action variables, depends on certain of these variables
only through a linear combination with integer co-
efficients. For example, the effect of the spherical
symmetry is to ensure that the action variables Jg and
Js enter the Hamiltonian only in the combination
Jo+J4 so that vg=v,. The effect of the higher sym-
metries is to make the Hamiltonian a function of
nJ+Jo+Js with rational » (=1 for the Kepler
problem and #=2 for the oscillator problem), and not
of J, and J¢+J 4 separately.

The connection between this definition of degeneracy
and the quantum definition is made clear by the appli-
cation of the semiclassical quantization rule, that
stationary states of separable multiply periodic systems
are obtained by equating the action variables to integer
multiples of Planck’s constant. The relation between
the accidental degeneracies of the Kepler and the
isotropic-oscillator problems and the simply periodic
nature of their motions also becomes clear by this
definition of degeneracy. Confining consideration to
three degrees of freedom, all central-potential problems
are at least singly degenerate (vo=v,), because of the
spherical symmetry, and at most can be doubly de-
generate, since the dimension is three (m=jf—1=2).
If for some central potentials the system is doubly
degenerate, i.e., there exists accidental degeneracy,
then the system is completely degenerate and is neces-
sarily simply periodic. But it has been shown'? that the
only central potentials for which all motions are simply
periodic are the Kepler and oscillator potentials.

III. RELATION OF SEPARABILITY
TO DEGENERACY

For separable multiply periodic system we now show
that if the Hamilton-Jacobi equation of a system is
separable in a continuous family of coordinate systems,
then the system has some degeneracy in the sense
defined above by (1). We do this first in the familiar
case of rotational invariance which is known to lead to
the equality of frequency of the ¢ and 6 motions in
classical-central systems, and to the (2/4-1) degeneracy
of quantum systems.

2 J, Bertrand, Compt. Rend. 77, 849 (1875). A theorem of
Bertrand and Koenig shows this for potentials which vanish at
infinity. In general one requires a motion near a circular motion to
have a “betatron frequency” about that circular orbit which
is an integer ». Then V «#v22, For »>3 there exist straight-line
orbits through the force center which have a betatron frequency
of 2, so in general the orbits between these two extremes have
non-integer betatron frequencies and are therefore not closed.
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The Hamilton-Jacobi equation for a system com-
posed of a particle in a central potential is separable
in spherical coordinates. The Hamiltonian for a central
system is, taking unit mass,

1 P P
H=—I: 24—+ :|+V 7). 4
2 ? 72 72sin?f ) @
The variable ¢ is cyclic, so
po=m, Jo=2mm, 6)
and we have
P
Prt—=2[E-V()—-3pT=F, ()
sin%f

where 220 is the separation constant which, in the
standard manner, is given by?®

2rl=Jo+T,, @)

demonstrating the existence of the degeneracy men-
tioned above. The connection between spherical sym-
metry and this degeneracy is revealed by the argument
given below.

Let the system be described in a Cartesian coordinate
system C. From this system we transform to a spherical
coordinate system P, with its origin at the force center.
In this new system the Hamilton-Jacobi equation
separates, and we may consider an orbit for which
JPy=0. The time dependence of any variable of the
system, such as one of the Cartesian coordinates of C,
can be expressed as a multiple Fourier series which
contains only the frequencies of the radial and azimuthal
motions, v, and vg:

s= 3 Agexpl—i(rtordil, (8

p,o=—00
since 6 is a constant for this orbit.

This same orbit may be described in another spherical
coordinate system P’ related to P by a rotation R. In
this new system, the Hamilton-Jacobi equation is
separable just as in P because the form of the Hamil-
tonian is invariant under R, but the orbit considered
above with JFPp=0 corresponds to J¥0. The
Cartesian coordinate x is now to be expressed as a
multiple Fourier series involving three frequencies:

x= ‘2 A por exp[—i(ovrtovstTre)t].  (9)

p,o, T=—00

The dependence of x upon 7 is not changed, so the terms
of the series (9) describing the dependence of x on ¢
through the dependence of 7 on ¢ are unaltered. The
over-all time dependence of « is also unaltered, so that
the new angular dependence must involve the same
frequencies as the old, which implies that »s=nv4 with
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integer ». This is a consequence of the fact that one
complete cycle of ¢ in P corresponds to one complete
cycle of ¢’ and ¢’ in P’, the transformation from P to
P’ being single valued. A similar argument starting
from an orbit with J,=0 leads to v4=nvs, so that both
n and 7' are unity and ve= .

Because the rotation R can be a finite rotation, the
relation »g= 1y is established for all orbits and not just
those in the neighborhood of Jo=0. The Hamiltonian
can thus depend on J4 and J4 only through the linear
combination

Jo=Jot+J s, (10)

which demonstrates the presence of the degeneracy as
a consequence of the invariance of the Hamiltonian
under rotations. The ¢-6 degeneracy is common to all
central systems. It is known that there are only two
central systems with higher degeneracy, as degeneracy
of the r motion with the angular motion implies the
closing of all orbits. Only the Kepler system with
negative energies and the harmonic oscillator have
closed orbits exclusively.'? ’

It is well known that each of these systems has a
Hamilton-Jacobi equation which is separable in two
coordinate systems; the Kepler system is separable in
spherical and parabolic coordinates, the oscillator in
spherical and Cartesian coordinates. These two dy-
namical systems are also both separable in prolate-
spheroidal coordinates, with arbitrary orientation of
the unique axis and arbitrary interfocal distance. This
separability in a continuous family of coordinate
systems larger than the family of spherical coordinate
systems gives rise to a further degeneracy, that of the
radial motion with the angular motion.

Consider, for example, the three-dimensional iso-
tropic harmonic oscillator

H=3 (Pt "+ %)+ (@ +2). (11)
Prolate-spheroidal coordinates are introduced by
x=c¢ sinh{ cosy cos¢,
y=c sinh{ cosy sing, (12)

z=¢ coshé siny.

The surface ¢=const are planes through the z axis.
The surfaces £=const are prolate spheroids with foci
on the z axis at ==¢. The surfaces n=const are hyper-
boloids of two sheets with foci on the z axis at =tc.
This coordinate system reduces to the spherical and
cylindrical coordinates in the limit ¢— 0 and ¢— o,
respectively.’® The conjugate momenta are

P:= c cosh{ cosy(cospp,+singp,)
' +¢ sinh¢ singp,,
P»= —c sinh{ siny(cosp,+singp,)
-+c coshé cosnp.,
ps=c sinh{ cosy(—singp,+cospp,) .

1 For finite values of x, y,  we consider the limit ¢ — 0. The
circular functions being bounded, the value of |£] — «. We take

(13)
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The Hamiltonian takes the form
P2E+ P2ﬂ
2¢2(sinh2£4- cos?p)

)

. - +1c2(sinh2t— cos?p+1).
2¢? sinh?¢ cos?y

H(E;’);¢;P£;Pn;?¢) =

(14)
The Hamilton-Jacobi equation is separable for arbi-
trary c.

(). ¢ is cyclic, ps a constant, ps=m.

(iD). PPt p*=2¢"E(sinh’+-cos™)

1 1
()
cos?p sinh2¢

— ¢*(sinh*&+sinh?¢— cos*y+cos?y) ,

(15)

in which there are no terms containing both ¢ and 7.
For m>£0 there are turning points in both the £ and g
motions determined by

0= p2=—c* sinh*+ (2c2E—¢*) sinh2t—

0=p2=c* cos"p+ (2e2E—c*) cosp—

cos’y

a being the separation constant.

For m=0 the problem reduces to that of the two-
dimensional oscillator in a plane containing the z axis.
The character of the turning points depends on whether
the orbit cuts the interfocal line or not. We shall return
to this point later.

Now consider an oscillator described in a Cartesian
coordinate system C. A set of prolate spheroidal co-
ordinates (PS) is introduced, and an orbit with J;=J,
=0 selected, with J,=27m>£0. Any single-valued
variable of the system, the Cartesian coordinate , for
example, may be expressed as a simple Fourier series
in the time with the frequency v4:

x= i a, exp[—ipvgt]. an

p=—00

Instead of using the system PS we can use another
system PS’ with a different orientation of the axis.
(Changing the interfocal distance without a rotation

£>0 and write £=¢1n(2/c) so that £ remain finite in the limit.
Then »=exp[¢'], 0=3%w—n, ¢ are spherical coordinates. Similarly
the limit ¢ — « may be taken for finite , y, z. In this case only
infinitesimal values of £ and » occur, so we introduce #=%/c,
n’=n/c and keep only leading terms in (12). Then #’ , ¢, 1’ are the
coordinates p, ¢, 5 of a cylindrical system. The polar coordinates
&, ¢ may then be considered as the polar limit ¢/=0 of a set of
elliptical coordinates in the xy plane. On letting the interfocal
distinfie ¢’ of this system approach «, Cartesian coordinates are
reached.
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makes no difference here because the orbit is in the
equatorial plane of PS.) This introduces ¢ and 7
motions, but cannot change the time dependence of x,
so can introduce no new fundamental frequency. This
does not establish complete degeneracy because only
circular orbits were allowed when Jg=J,=0, estab-
lishing only the spherical degeneracy which here con-
nects the ¢ motion with a certain combination of £
motions. The degeneracy of the £ and 7 motions is
established by considering an orbit given by PS by
J=J4=0, J,#£0. This is an ellipse with the z axis as
major axis described by £=const, ¢=const. On
changing the interfocal distance the Hamilton-Jacobi
equation remains separable, but this orbit now has
J:#%0. This introduces the frequency »; into the
Fourier series for  which previously contained only »,.
Thus »¢ and », are degenerate. Together with the
spherical degeneracy shown above, this establishes the
complete degeneracy of the isotropic harmonic
oscillator.

The Kepler system can be discussed in the same way.
It is more convenient to define the prolate spheroidal
coordinates by®

x=c sinh§ siny cos¢,

y=¢ sinh¢ siny sing, (18)

2=¢ coshé cosn,

as this puts the origin of the spheroidal system at point
x=y=0, z=c, which is a focus of the conics of the
coordinate system. This reduces, in the limit ¢— 0, to
spherical coordinates. In the limit ¢— © we get
paraboloidal coordinates.

One point remains to be commented on. In Cartesian
coordinates the oscillator Hamiltonian is

HC=V(]m+Jy+]z) ) (19)
while in spherical coordinates it is
HP=y(2J,+JetTs), (20)

even though we have shown that there is a continuous
family of coordinate systems interpolating between
these two limits. The factor 2 multiplying J, arises in
the transition from ¢/=0 to ¢’=c« in going from the
cylindrical coordinates (c=c, ¢’=0) to Cartesian
coordinates (¢c= 0, ¢'= ). In the cylindrical coordi-
nates any orbit with m5%0 has a trace on the xy plane
enclosing the origin, or enclosing the foci of the elliptic-
coordinate system with sufficiently small ¢/. As ¢’ tends
to o, the foci cross the orbit and are no longer enclosed
by it. At this point the ranges of the coordinates change,
causing a change in the definition of the action variables.
In the xy plane elliptic coordinates can be defined by

x=¢ cosh sin7,
(21)

The coordinate curve £=0 is the line segment between
the two foci, points on this segment being distinguished

y=¢ sinh{ cosfj.
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by values of 7, which has the range —m/2<7< /2.
Points just below this segment then have values of
£<0. Thus in describing an orbit which cuts this line
segment between the foci, the coordinates vary con-
tinuously with the time when —ow<f<w, —7/2
<#%#<w/2. When the orbit encloses the foci, £ is never
zero along the orbit, so that to have a continuous
variation of coordinates along the orbit £ must remain
of one sign, say positive, and the range of 7 must be
increased to —wr<#< to provide positive and negative
values of y as well as of . It is this change of range which
brings in the factor 2.

The argument used in the special case of the harmonic
oscillator can be applied to any system whose Hamilton-
Jacobi equation is separable in a continuous family of
coordinate systems connected to each other by single-
valued transformations. In one member of the family,
an orbit is selected for which only one J; is finite. In
another member of the family this same orbit corre-
sponds to nonzero values of more than one J, and the
frequencies admixed in this way must be integer
multiples of frequencies already present, namely »;
so that a degeneracy is present. The transformations
involved need not be only extended-point transfor-
mations but may be more general canonical trans-
formations.

IV. RELATION OF SYMMETRY
TO DEGENERACY

If the Hamiltonian of a system is such that it is
invariant under a group G with generators X;, and if
there exists one coordinate system in which the Hamil-
ton-Jacobi equation is separable, then there exists a
continuous family of coordinate systems in which the
Hamilton-Jacobi equation is separable. The invariance
condition

(H,X:)ps=0

means that the form of the Hamiltonian is the same in
coordinates g, p and ¢/, ' related to each other through
X, namely by

(22)

¢'=g+e(0X:/ap),
p'=p—e(3X:/9q), (23)

so that if it leads to a separable Hamilton-Jacobi
equation in the variables g, p, it leads to an equation
separable in exactly the same way in the variables q,
#'. These are not necessarily related by an extended-
point transformation. It remains to investigate the
implications of this for the existence of degeneracies.
Equation (23) characterizes the coordinate trans-
formation locally. The argument establishing degen-
eracy as a consequence of separability in a continuous
family of coordinate systems was based on global
properties of the transformation, namely, the fact that
a complete cycle of motion described in one coordinate
system corresponded to a complete cycle in any other
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coordinate system of the family. Therefore, if the global
transformations corresponding to (23) are single
valued, the existence of the X; establishes degeneracy.
If these transformations are infinitely many valued,
then the argument establishing degeneracy from sepa-
rability is inapplicable, and no degeneracy results from
the existence of this particular group. If these trans-
formations are finitely many valued, a slightly modified
argument shows that degeneracy again results with the
frequencies involved being rationally related rather
than equal.

The theory is illustrated by the two dimensional
oscillator. Consider the anisotropic oscillator whose
Hamiltonian is

H=3(0 )3 (@ +85).

The transformation to action-angle variables J and w
is carried out for motion in the y direction, the gen-
erating function being?

24)

S (y,w)=38y* cot2rw,
by= (35/33’) ) J=- (35/320) 3
from which follow

T %7_" (Puz'l;ﬂgﬁﬂ)

(25)

(26)

so that

JB 1/2 (27)
py=<—> cos2rw.

™

Now we carry out the canonical transformation
J=>T=B/a)], wow'=(w/Pw  (28)

and then replace J’, w’ by 9', p, according to (26) with
B replaced by a. Thus

VEHN ay
y—( P )sm(ﬁ/a) sin V“(ZHy’),

(29)

pyv=+/(2H,) cos(B/a) sin“lz/—:;ygj)— R

with 2H, = p,”*+a?y”. These may be solved for ¥/,
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#, to yield

2H,
y =\/( ) sin(a/B) sin‘1<

(¢

\/(ziz,») ’

P =+/(21,) cos(a/) sin~1<\/(22 )) .

Equation (30) specifies a time-independent canonical
transformation which, therefore, leaves the value of
the Hamiltonian invariant. In terms of &' (=x), p.,
(=9s), ¥, and p,’ the Hamiltonian has the form

o?
H= —% (?m,2+py,2)+"2—(x,2+yl2) b} (31)

which is that of an isotropic oscillator in the space «’, ¥'.
The Hamiltonian (31) is invariant under SU(2) 814
applied in the space &', p./, ¥/, p,/, and in this space
the realization of SU(2) is single valued so that the
isotropic oscillator is degenerate. It follows that the
Hamiltonian (24) is also invariant under SU(2), the
generators of SU(2) in the space #, ., 9, p, being the
transforms of those for the isotropic oscillator according
to (30). For irrational o/, however, the transformation
(30) is infinitely many valued, so no identification of
frequencies can be made before and after this trans-
formation, and hence no degeneracy results. When o/8
is rational, the transformation (30) is finitely many
valued, and this does lead to a degeneracy. To see this
in detail the transformation from one coordinate system
in which the Hamilton-Jacobi equation separates to
another such system is carried out in three steps.

(1). The anisotropic oscillator is made “isotropic”
by the transformation #, p., y, p, — &/, p., ¥/, p,/.

(ii). An element of the symmetry group, SU(2), is
used to effect the transformation «/, p./, ¥/, p,/ — &',
P, ¥, #,/, which leaves the Hamilton-Jacobi
equation separated as before.

(iii). The inverse of the transformation (i), i.e., Eq.
(29) is applied to the variables &', etc., leading back
to the anisotropic oscillator described in new variables
", p2"", 3", p,/’. The entire transformation #, p., y, p, —
x”, pa"y 9", p,”, is a realization of an element of SU(2)
for the anisotropic oscillator.

An orbit is picked such that in the original coordinate
system J,5%0, J,=0. An observable O, a single-valued
function of %, ps, ¥, p,, has a time dependence given
by a Fourier series such as (17) with the fundamental
frequency »,=a/2m, since for this orbit the y motion
has zero amplitude. The transformation (i) is the
identity transformation for x, p,, but is generally
multivalued in 9, p,, so that after (i) has been carried
out O is a multivalued function of ¥/, p,’, but its time

" Reference 4; V. A. Dulock and H. V. McIntosh, Am. J. Phys.
33, 109 (1965).
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dependence is unchanged. The transformation (ii)
mixes the " and y' motions but leaves the Hamilton-
Jacobi equation separable, and thus by the argument
given previously establishes the degeneracy of »,”"" and
v/, in the form »,”’=nw,’"” with integer n. It can
easily be shown as in the paragraph following (9) that
»n must be unity. The Fourier series of O (¥, p./”,
", $,/"") has the single fundamental frequency
v.'"'=v, for the orbit considered. The transformation
(i) leaves x'" unchanged, i.e., ’=x"", p.”'=p,””’, but
makes a multivalued transformation of y" to y’’. This
means that the Fourier series for O expressed in the
variables x”, p./, ¥, p,/' involves two distinct funda-
mental frequencies, », from the %/, p,”” dependence,
and a multiple of this from the 3", p,” dependence.
Only when the transformation 3"’ — 4y is finitely
multivalued, which means that a finite number m of
cycles of " corresponds to a number # of cycles of ¥/,
can these two frequencies be combined to yield a single
fundamental frequency for the Fourier series for O.
Thus, when «/8=m/n with integer m, n, the existence
of the symmetry SU(2) establishes the existence of a
degeneracy in the two-dimensional harmonic oscillator,
because this renders the transformation (31) finitely
multivalued.
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The method of argument can be applied to any
system separable in some one-coordinate system. Step
(i) transforms the system into a system having the
symmetry of interest as a single-valued transformation
group, in step (ii) a symmetry operation of the group
is carried out; in (iii) the transformation inverse to
(i) is made. Only when this transformation is finitely
multivalued does the degeneracy of the symmetric
system survive the inverse transformation. Our con-
clusion is, then, that the existence of a semisimple
group G whose generators X; have zero Poisson bracket
with the Hamiltonian of a separable dynamical system
implies the existence of a degeneracy of that system
only when the group G can be realized in the phase
space of the system by finitely multivalued trans-
formations.
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It is shown that the Bargmann-Wigner multispinor field for particles of spin % gives the usual result for
the magnetic moment, provided it is ensured that the auxiliary field appearing in the Lagrangian formulation
remains vanishing in the presence of electromagnetic interaction.

LTHOUGH the Bargmann-Wigner multispinor
field equations for elementary particles are found

to be particularly suitable for the treatment of the
symmetries of strong interactions,! the electromagnetic
interaction of such fields has not yet been fully ex-
plored. Indeed, recently it has been claimed? that the
multispinor formulation leads to particles of spin 3
without any intrinsic magnetic moment, which casts
doubt on the validity of such a formalism for the de-
scription of charged particles. We shall, however, show
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that it is possible to establish complete equivalence
between the multispinor field with spin § and the usual
Dirac field by following a more judicious treatment of
the electromagnetic interaction.

The Lagrangian density for a Bargmann-Wigner field
with spin 4 can be expressed in terms of two third-rank
multispinors Yupy and Qupy as®*

L=—J[ (y0)1+m—0L (v8)s—3m]Q

+3[P () 2+0(va)y], (1)
with
.@aﬁ'y=lp*a'ﬁ"y’(74)a,a(,y4)6,ﬂ(,y4)7,7 ’
[('Ya)l\b]aﬁ‘vz (’Ya)aal‘//a'ﬁ‘h etc., (2)

3 G. S. Guralnik and T. W. B. Kibble, Phys. Rev. 139, B712
(1965).

+We denote the space-time coordinates as x,= (x4i%o), and
take the v, as Hermitian matrices with {r,,y»} =26,



