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Material Sources for the Kerr Metric
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The Kerr metric is a vacuum solution of the Einstein Geld equations which appears to be the field exterior
to some axially symmetric, rotating body. A method based on Synge's g method (guess g„„and calculate
T„„)is given for constructing interior solutions of the field equations which describe rotating, nomperfect-

Puid bodies which might serve as sources of the Kerr metric. Finally, an argument is given which indicates
that reasonable perfect-fluid —type solutions which might serve as sources of the Kerr metric may not exist.

I. INTRODUCTIO5'

' "N 1963 Kerr' exhibited a vacuum solution of the
~ ~ Einstein field equations which appears to be the
field exterior to some axially symmetric, rotating body.
This is the only known exact solution of the field
equations of its kind. In order to obtain more insight
into the Kerr metric and also the more general problem
of rotation in general relativity we have indicated here
a simple method for constructing interior solutions
which might serve as sources for the Kerr metric. These
solutions are not obtained in the conventional manner
of first choosing an equation of state and then solving
the field equations. Instead the interior metrics are
obtained by a method of guessing' (g method) which
can be used for finding sources of any metric, which
indicates that it possesses a positive mass source. ' The
essential idea of the g method is that one guesses an
"interior" metric g„„and then calculates the resulting
stI'css-cnclgy tcnsol Tp) uslIig thc Elnstcln field equa-

tions. Of course there are certain requirements imposed

on this interior solution. They are that the energy
density be non-negative, that the stresses be not too
large compared to thc clicI'gy density) aIld that gp)

satisfy the Lichnerowicz boundary conditions4 (that
g„„be C' in some coordinate system) at the hyper-
surface separating the interior and exterior space times.
One might also require that the nonshearing-type
stresses be positive so that the body experiences
essentially prcssulc-type forces. Thc kcy ldca involved
in obtaining solutions which satisfy the above condi-
tions is the use of the similarity between the Schwarzs-
child spherically symmetric metric and the Kerr metric.
We obtain Kerr source solutions by perturbing strongly
the familiar Schwarzschild constant-density interior
solution. Objections may be raised against this pro-
procedurc since it will probably lead to nonperfect-
Quid —type solutions. In partial answer to this we present
arguments in Sec. III which indicate that it may be
impossible to obtain an exact solution of the 6eM
equations which represents a perfect Quid and which

could also serve as a source of the KerI metric.
Throughout this paper we shall use units such that

c=6= i.
II. SOURCE CO5STRUCTION

The terms in the Kerr metric can be rearranged so
that it has the form
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The constant r~ has been introduced in an obvious

way and the reasons for its use will become apparent
shortly. Next we notice that if a=0 we simply get the
Schwarzschild exterior solution in Vaidya coordinates. '
Thus the Kerr metric can be written as

g"=Su.+ (a/rr)~"

where g„„is the Schwarzschild solution and 3„„is that

' R. P. Kerr, Phys. Rev. Letters 11, 237 ('1963).
' J. L. Synge, Belatedly, The Gemeral Theory (North-Holland

Publishing Company, Amsterdam, 1960), pp. 309—317.
s W. C. Hernandez, Jr., Phys. Rev. 153, 1339 (1967).
4 A. Lichnerowicz, Theories Relativistes de la Gravitation et de

l'Zlectromagrjetisrrje (Masson et Cie. , Paris, 1955).
~ P. C. Vaidya, Nature 171, 260 (1953).

part of the Kerr metric which contains the angular
momentum parameter a. (Note that the factor a/rt is
dimensionless. )

FoI' slnlpllclty wc clioosc r=rj as the boundaI'y

separating the interior and exterior solutions. In order

to guarantee that the Lichnerowicz boundary condition

will hold in some coordinate system it is sufTicient to

require that the first fundamental form

I= (g„,dx"dx"),=...
and the second fundamental form

II= (—rs„,.„dx&dx")
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be continuous across the boundary. ' ' Here e„is the unit
vector normal to the boundary Rnd the notation r=r~
means that the r coordinate differential is to be ehmi-

nated using this equation of the surface. If we choose
RQ the metric components so that they are continuous
across the boundary, then the requirement on the hrst
fundamental form is of course satis6ed. It is easy to
verify that the condition on the second fundamental
form will also bc satis6ed if we then choose interior
InctI'lc coIQPoncnts such thRt gyp) gyp) glitz) Rnd gtz~, hRvc
continuous 6rst partial derivatives with respect to r
at the boundary and al/ the metric components have
continuous 6rst partial derivatives with respect to 0
at the boundary. These requirements are actually more
stringent than ls necessary.

Thc gucsslng of Rn lnte110I' solution Is now cRsy. To
the 5„, part of the metric we can simply match the
Schwarzschild interior solution which is Vaidya co-
ordinates is given by

d$2=t'2(d8 +sill 8' )
2 1/2 r2 )-1/2

+ 3 1—— 1——
i

—1 drdtt
z z&

& 2~1/2 1 /
&2 1/2-2

—-j 1——
i

—-i 1—— dtts, (5)
2& Z& 2( Z

where r12/R2= 2t/2/rl defines Rs. In order for the solution
to be real and analytic and have finite pressure every-
where we must have

This metric alone describes a constant-density in-
compressible Quid. To the A„„part of the metric we
match any symmetric tensor which is analytic, satisfies
the boundary conditions, and gives the interior metric

(g„,); & the proper signature (—+++).
FGI' cxRIQplc, wc might choose thc foI'IQ

(~st)'-2= (o/rt)~(r) cos'8. (7)

The choice for an (A~t,); 2 might appear to be a little
more di6icult since the exterior A@~ has a true singu-
larity at r =0, 8= tr/2. But a generalized form like

//a 1+2tttb(r) sin28)
(A tt);„„=

~

—8(r) ~sin28

krl c(t)+/22 cos'8 )

is all we need. We must simp1y pick the functions 8 (r),
f/(t'), and c(t') sllcll tllRt. tile boundary cond1tlons at
r=rj hold and such that the metric is analytic. Since
thc remainder of thc dlscUsslon docs not dcpcnd on thc
particular choice of (A„„);,we shall not be any more
spccl6c ln its determination.

6 E. CartaB2 L8$0NS $gt' ls 680'//MA'M de E$pGM$ fE8 R$8$88Ã'N

(Gauthier-Villars, Paris, 1951), Sec. 207.' See Ref. 3.

Our interior metric "guess" can be written as

and is analytic everywhere. It is also analytic in the
parameter /J/rt at a/rt 0. So——for very small values of
tl/rl the interior and exterior geometries differ only
slightly from the Schwarzschild interior Rnd exterior
geometries. Thus wc can write for suf6cicntly small
values of ~/I/rl] the expressions for the energy density
Rnd stI"csscs Rs

e= e.+ (u/rt)h, ',
2"=P + (%1)h',
Tj =(a/rt) hj',

where e, and. p, are the Schwarzschiid values of the
energy density (a constant) and pressure, respectively.
The quantities ho„h', and h, ' are analytic functions and
bounded for sufiiciently small values of ~a/rI~. Ob-
vlollsly fol VRhles of

~
/I/$ I ~

sufilciently small, e and T
will each be positive and satisfy all the criteria stipulated
earlier. There may exist a 6nite upper limit M on the
range of values allowed to

~
a/rl / such that the criteria

are satis6ed. Indeed we suspect that such a limit does
exist, but we cannot say what M is until the functions
h', h', and h are calculated explicitly. In any case, if
M does exist then the interior solution corresponding
to t u/rl j

=M shall be very different from the Schwarzs-
child, interior solution.

The problem of matching an interior solutionto the
Kerr solution was investigated by Soyer' who, among
other things, obtained a rather comphcated. equation
for the boundary which must be satis6cd if thc interior
ls to bc R Uniformly rotR'ting perfect fluid. Thus lt tUI'ns
out that our simple r=r& boundary could not possibly
yield a uniformly rotating perfect-Quid solution no
matter how wisely we chose (g„„);2. If we chose some
pRltlclliRI' (App);at alld calculated expllcl'tly 'tile ellel'gy
density and stresses the source described would bc R
somewhat Aattened rotating body with the topology of
a sphere (r= rt describes the surface). Thus, this particu-
lar source proves that a source with the topology of R
ring' is, at least, not necessary a,nd that "spherical"-

e soUrccs RI'c posslblc. It& of course& Rlso sclvcs to
verify the conjecture that the Kerr metric represents R
6eld which could be produced by an axially symmetric,
rotating body. Upon further investigation thc con-
structed source would probably be rotating diGcrcn-
tially, bc Dladc of R stI'Rngc nonperfect-Quid Diatcl-1Rl
and even have some sohd-type properties. For very
small a/rt, however, the material will only differ slightly

8 R. H. Boyer, Proc. Cambridge Phil. Soc. 6j, 527 (1965).
2 K. T. Nettman and A. I. Janis, J.Math. Phys. 6, 915 (1965).
'0 R. H. Boyer and T. G. Price, Proc. Cambridge Phil. Soc„6j.,53i (j.965).
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from the incompressible Quid of the Schwarzschild
interior.

By consideration of the weak-field (Newtonian) limit
of the Kerr metric we can say more about other possible
sources. In his Eq. (5) Kerr' writes his metric in an
asymptotically Qat coordinate system as

2mr8
s2 dx2+dy2+ds2 dt2+ (P)2

r'+a's'

from spherical symmetry and hence a zero rotation
rate. Values of

~
a~ on the order of Ri would correspond

to large distortions from spherical symmetry caused by
a correspondingly large rotation rate. But now consider
the specific value of the parameter a= R~e. By expand-
ing the metric of Eq. (11) in powers of e and comparing
it to the third-order Einstein-'Infeld-Hoffmann approxi-
mation for a spinning particle, Kerr found that m is the
Schwarzschild mass and ma the angular momentum
about the s axis. Thus we have

(r'+a')rk= r'(xd&+ydy)+«(~dy ydr)—
+ (r2ya') (sds+rdt),

with the function r de6ned by

8$0~PER] M ~

Using the relationship

(16)

d'x' 8 t' mr

dt2 Bx' k r'+ a' s'
(13)

Since the coordinates x' are rectangular Cartesian
coordinates up to order ~' in this approximation, we

conclude that the exterior Newtonian gravitational
potential up to order 0 is given by

—mf8

r4+ a2a2

With the use of Eq. (12) this can be expanded in

multipoles as

t8 Pl 8 ma4

p= ——+ E2(cos8) —— P4(cos8)+ . (15)
E. R3 R'

Letting a=0, the potential becomes the spherically
symmetric one, g= —m/R. Now as the absolute value

of a increases, the potential slowly distorts from spheri-
cal synunetry. As

~
a~ approaches values of the order

~a~ Ri, the distortion becomes very large a,nd thus

quadrupole terms in the potential are of the order e',

the same magnitudes as the monopole term. The
point of this discussion is the following. Suppose that
there exists a, perfect ftlid solu-tion which can be
matched to the exterior Kerr metric. Then a seeminly

desirable characteristic of this solution would be that
it have a reasonable Newtonian limit where (1) the
rotation throughout the body is approximately uniform

and has an average value co and (2) the parameter a
is allowed to vary continuously over the range of values
0& ia[ &R,.

The value a=0 would correspond to zero distortion

r4 (R2 a2)r2 a2a2 —0 R2=g2+y2+s2 (12)

Next let the boundary of the source be given approxi-
mately by R Ri and let m/Ri=e' (where e((1).
Calculating the spatial geodesics and retaining terms
only up to order e' (Newtonian limit), we finally get

(E)„i&L'/2I. (19)

(An equality sign is used when the rotation is uniform. )
If we again estimate I mRi' and again choose a=R~e,
we find

(E)...&m'/Ri. (2O)

This can be interpreted as saying that the kinetic
energy of rotation is approximately the same magnitude
or greater than the gravitational binding energy. It
seems reasonable, though not proved, that one couM
argue that for a perfect Quid this would imply a large
rotational Qattening of the body and again a large
quadrupole moment.
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(a/Ri)'= (m/R, )

to eliminate a in Eq. (16) we get

m/Ri2 R,oP.

This says that near the surface of the source there are
regions where the centrifugal force is of the same order
of magnitude as the gravitational force. This would
imply a large rotational Qattening and hence a mass
quadrupole of the same order of magnitude as the mass
monopole (e'). But substituting the value a=Rie into
Eq. (15) we find that up to order e' the mass quadrupole
is zero. Thus the value a=R~e is not allowed. Ke
conclude that Quid sources hue&sg the Eemfomiae limit
described do not exist. Suppose the Quid rotates in a
strongly nonuniform manner. The author contends that
it appears likely that one could arrive at the same result
through a more general line of reasoning. Letting
(E)„&be the rotational kinetic energy of the body, I.
the angular momentum, and I the moment of inertia,
one can easily show that


