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Collective Effects and the Hydrodynamic Approximation in
Neutron Scattering from Fluids~

JQEL H. FXRzIGER AND DAvID L. FEINsTEIN

(Received 16 November 1966; revised manuscript received 6 February 1967)

The scattering law is investigated for gases and liquids. It is shown that the convolution approximation
ignores perturbations caused by the test particle for t&0. For a dilute gas, a normal-mode expansion of
the Boltzmann equation is made to estimate the size of the "collective eRects" contribution to the scattering
law. It is found that for small energy and momentum transfers the "collective-eRects" contribution domi-
nates the solution. The hydrodynamic and convolution approximations are compared to experimental
results for liquid sodium.

I. INTRODUCTION

HAT the neutron scattering cross section is a
product of two terms, one dependent on the

properties of the incident neutron and the other on the
properties of the scattering system, has been shown

by Van Hove. ' The latter factor will be denoted by
$(a,co), where kit is the momentum transfer and t'tto the
energy transfer. It is related to classical space-time
correlation functions by"

AM II K

$(g,o&) = exp — a 'fa, ,'S,a~(x, to)
2kT SnskT

+a,.h'Sa (st, oi) j+0(h'), (1.1)

where Sa~(x,o~) is the space-time Fourier transform of
G(r, t):

Sa~(x,td) = dsr dt exp/i(x r—&ut)]G(r, t), (1.2)
(27r)'

and S,a~(v. ,oi) is the similarly defined Fourier transform
of the self (or "test" particle) portion of the correlation
function G, . One writes

G(r, t) =G, (r, t)+Gs(r, t),

where G&(r, t) represents the probability that there be a
particle at (r, t) different from the one that was at the
origin at t=0. Relation (1.1) has been derived for the
self-correlation function by Aamodt et a/. ,

4 but a deriva-
tion of the complete relation is still lacking.

In general, it is quite simple to formulate models for
calculating G, (r, t), and many such models have been

*This work was supported in part by National Science
Foundation Grant Nos. GP-1522 and GK-737. In addition, one of
us (D.L.F.) was an Atomic Energy Commission Predoctoral Fellow
during the course of this work.'I. Van Hove, Phys. Rev. 95, 249 (1954).' P. Schofield, Phys. Rev. Letters 4, 239 (1960).

P. A. EgelstaR, in Inelastic Scattering of Neutrons in Solids
and Ii

fluids

(International Atomic Energy Agency, Vienna,
1961).' R. Aamodt K. M. Case, M. Rosenbaum, and P. F. Zweifei,
Phys. Rev. 12, 1165 (1962).

proposed. ' ' Calculation of Gq(r, t) is more difficult and
considerably less progress has been made in developing
a theory for obtaining this quantity. This paper is
mainly devoted to a discussion of this problem.

Vineyard' wrote

Gq(r, t) = g(r')H(r, r', t)d'r',

where g(r) is the ordinary static pair correlation func-
tion and H(r, r, t) is the conditional probability that,
given a particle at the origin and a second particle at r'
at time 1=0, the second particle will be found at r at
time t Vineya. rd (and most other authors) took
H(r, r', t) to be G, (~ r—r'~, t) This is th. e well-known and
widely used convolution approximation. That H(r, r', t),
the function describing the motion of the "field"
particles, cannot be the same as 6, has been well ap-
preciated, but it has not been stressed. that the convolu-
tion approximation ignores perturbations caused by the
test particle for t&0.

The plan of this paper is as follows: For a dilute gas
the equations for G(r, t) and G, (r, t) can. be found""
and the properties of the functions discussed. For such
gases, g(r) = tt, where n is the number density. Equation
(1.4) would give Gs ——is and hence G=G,+I Adirec. t
calculation of 6 shows that this is incorrect, and a simple
physical reason for the discrepancy can be arrived at.
This is done in Sec. II.

Since there has been considerable interest in the eA'ect

of collective phenomena on neutron scattering from
fluids, ""this subject is discussed for the case of dilute
gases in Sec. III. The analysis is based on the normal-
mode expansion of the Boltzmann equation. "

' A. Rahman, K. S. Singwi, and A. Sjolander, Phys. Rev. 126,
986 (1962).' K. S. Singwi and A. Sjolander, Phys. Rev. 120, 1093 (1961).

M. Nelkin and A. Ghatak, Phys. Rev. 135, A4 (1964).' A. G. Gibbs and J. H. Ferziger, Phys. Rev. 138, A701 (1965).' G. H. Vineyard, Phys. Rev. 110, 999 (1958).' J, M. J. VanLeeuwen and S. Yip, Phys. Rev. 139, A1138
(1965).

» M. Nelkin, j. M. J. VanLeeuwen, and S. Yip, in Inelastic
Scattering of Neutrons (International Atomic Energy Agency,
Vienna, 1965), Vol. II."R. C. Desai and M. Nelkin, Phys. Rev. Letters 16, 839 (1966)."S. H. Chen et al. , Phys. Letters 19, 269 (1965)."J. K. Buckner and J, H. Ferziger, Phys. Fluids (to be
published).
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Fxo. 1.. Comparison of exact solution vrith Nelkin convolution, di&usion convolution, and hydrodynamic approximation for various

y=~/geo, g = —eu/geo, E.= (geo/~)S(x, y}.Here, a is the collision frequency and e0 is the thermal speed (2kT/ns)'~'.
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Fro. 2. Comparison of total solution with collective etfects contribution for various y =a/vvo, o:= —oo/ovo, R = (ovo/or) (So:,y).

Unfortunately, the results for dilute gases cannot be
easily extended to dense gases or liquids. In order to
apply some of the results of Secs. II and III to liquids
(for which the bulk of experimental data is available)
we study the small-~ —small-co regime in which the hydro-
dynamic approximation is valid. The use of hydrody-
namics is not new" ";however, we shall compare the
calculations with existing experimental data. We also
compare with the convolution approximation using
several models for G, .

II. DILUTE GASES

For a dilute gas, it is convenient to work with the
velocity-dependent correlation function F(r,v, t), which
is de6ned as the probability that there will be a particle
with velocity v at (r,t), given that there was a particle
with an equilibrium velocity distribution at the origin
at /= 0.Yip and Van Leeuwen" "have shown thai, for a
dilute gas this function obeys the linearized Boltzmann
equation

(2.1)

with the initial condition

F(r,v,0) =P(r)+g(r)gM(v), (2.2)
» L. P. Kadanotf and P. C. Martin, Ann. Phys. (N. Y.) 24, 419

(1963).
~ R. D. Mountain, Rev. Mod. Phys. 39, 205 (1966).

where M(v) is the Maxwell distribution function. For a
dilute gas, g(r) becomes simply the number density n.
In Eq. (2.1), D is the drift operator,

D= (f)/r)t)+v V, (2 3)

(2 4)DF, =L,F, ,

with the initial condition

F„(r,v,0) = h(r)M(v), (2.5)

where L, is a linear collision operator which possesses
only a single zero eigenvalue. "This is the starting point
of the analyses of several authors. ~'

One can readily solve these equations for the Fourier

"S.Chapman and T. G. Cowling, The Mathematical Theory of
Non-Uniform Gases (Cambridge University Press, New York,
1961).' S. Yip and M. welkin, Phys. Rev. 135, A1241 (1964).' R. C. Desai, $. Chem. Phys. 44, 77 (1966). R. C. Desai,
Ph.D. thesis, Cornell University, 1966 (unpublished).

and L is the linearized collision operator of kinetic
theory. "For our purposes, the only important property
of L is that it possesses a fivefold degenerate zero eigen-
value with the eigenfunctions corresponding to the five
collisional invariants.

Vip and Van Leeuwen" have also shown that the self
part of F(r,v, t) satisfies the linearized Boltzmann
equation
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transforms of F and F, if simple forms are taken for the
collision operators. Then S~~ and S,~~ are easily ob-
tained by integration over velocity. ~' "

For a dilute gas the convolution approximation gives
G(r, t)=G, (r, t)+m, which is clearly incorrect. To see
why this is so, we first subtract Eq. (2.4) from Eq. (2.1)
to obtain

DFD =LFn+ (L L,)F—,=LFz.+f, , (2.6)

where FD =F—F,. Subtracting initial conditions, Eqs.
(2.2) and (2.5), gives

Fn(r, v, O) =g(r)3E(v).

Again, g(r) =rt, so the initial condition gives only the
contribution nM(e) to Fn. This, in turn, gives no con-
tribution to the cross section, and we sha11 ignore it
from here on. Now, assuming that we have solved for
F„we can formally solve Eq. (2.6) by

Fn(r, v, t) = K(~ r—r'~; v,v'; t—t') f, (r', v', t')

Xd'r'd'r 'dt', (2.8)

where BC is the Green's function of the operator D—I-.
The convolution approximation completely ignores the
contribution represented by Eq. (2.8). Clearly, Eq. (2.8)
represents the perturbation in the field particle distribu-
tion caused by the test particle for t&0. The additional
perturbation is given by f, (r', v', t') and this propagates
according to the Green's function R(

~

r—r' ~; e,u'; t—t').
These results give some physical insight into the

reasons for the inadequacy of the convolution approxi-
mation. Nossal, " among others, has put forth more
formal arguments for this inadequacy.

III. COLLECTIVE EFFECTS

Another approach to looking at the problem discussed
in the previous section is to write G(r, t) in terms of the
normal modes of the system. In this way it is possible
to separate collective effects from purely single-particle
effects. There has been much discussion of the role of
collective effects in neutron scattering from Ruids
(e.g., see Refs. 12 and 13) and one can obtain some
insight into the problem in this way. Also, as we shall
see, hydrodynamics essentially gives the collective
effects (although not exactly) and thus this procedure
gives further information as to the usefulness of the
hydrodynamic calculations.

A discussion of Kq. (2.1) with an arbitrary initial
condition has been given by Buckner and, Ferziger. "
If the collision operator is modeled, "Kq. (2.1) has the
form

gF BF
— -+c. +F=P (II„+1)It; e "'It;(c)F(c)d'c, (3.1)
Bl Bs
'0 R. J. Nossal, Phys. Rev. 143, 74 (1966).
2' L. Sirovich and J. K. Thurber, Brown University, Providence,

Rhode Island, Division of Applied Mathematics, Technical
Report No. 58, 1964 (unpublished).

where the X; and It; are the eigenvalues and eigenfunc-
tions of the linearized collision operator.

By considering solutions to Eq. (3.1) of the form

F(e s t) F (c)e(i~—1) l ix—z (3 2)

Buckner and Ferziger show that the spatial courier
transform of G(r, t), denoted by X(e,t), has the form

X(e,t) =g c~(~)e'"«"&'+ 2 (X,a)e "~ '&'dlb, (3 3)

where the co~ (/=1, 2 iV) are the (complex) discrete
eigenvalues of Eq. (3.1) and a&(e) and A P,e) are
functions which are readily calculated from the initial
condition (2.2). A similar approach applied to Kq. (2.4)
with initial condition (2.5) gives a similar representa-
tion for X,(e,t), the self part of X(e,t). The functions
ug(~) and A(X,z) are, of course, different in this case
and, more importantly, the number of discrete eigen-
functions is different. In particular, the "sound" modes
which arise from the degeneracy of the zero eigenvalue
of the scattering operator are absent.

The discrete term in Eq. (3.3) may be interpreted as
the "collective" effects while the integral term represents
"single-particle" effects."Thus the representation (3.3)
(which resembles the Lehmann representation for the
many-fermion problem" ) makes it particularly simple
to discuss collective effects. It is also interesting to
note that when Kq. (3.3) is Fourier transformed, the
discrete terms give rise to "phonon" peaks, while the
integral gives a continuous background; i.e.,

a((e)
S (e,(o) =P +

@72 Q) L2 g
(3.4)

Note that because of the degenerate zero eigenvalue
there are always at least three discrete terms at low ~

(the spherical symmetry of the problem prevents the
other two from contributing). One of these eigenvalues
is pure imaginary and corresponds to a heat-diffusion
mode and gives rise to a peak at co=0. The other two
are incoming and outgoing damped sound waves and
give rise to peaks at co=&Re(co&).

At low wave numbers ~ the discrete terms in Eq.
(3.4) completely dominate the integral term and the
neutron scattering is thus due almost entirely to col-
lective effects. Furthermore, the hydrodynamic ap-
proximation gives only the 6rst three discrete terms and
at small a gives an excellent approximation to them.
These points are illustrated in Figs. 1 and 2. In Fig. 1
the exact solution is taken from Yip and welkin's"
Eq. (6) and Fs for the convolution from Nelkin and
Ghatak's' Eq. (28).

~ G. E. Uhlenbeck and G. Ford, Lecturesin Statistical Mechanics
(American Mathematical Society, Providence, Rhode Island,
1963).

~ P. Nozieres, Theory of Interacting Fermi Systems (W. A.
Benjamin, Inc. , New York, 1964).
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FIG. 3. Comparison of scattering-
law hydrodynamic approximation with
Randolf's experimental results for
sodium at 100'C.
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As I~: increases, the number of discrete modes decreases.
In fact, there is a point Dor the model of Bhatnager,
Gross, and Krook (BGK), y=n/Kv&~0. 53j at which all
discrete modes cease to exist. As this cutoff is approached,
the continuum contribution becomes increasingly more
important, as is sho~n in Fig. 2. Finally, beyond the
cutoff, all of the contribution to G(r, t) comes from the
continuum modes; collective effects no longer exist.
Also, in this regime, the hydrodynamic approximation
is completely invalid, ; again this is due to the diver-
gence of the asymptotic approximation that the hy-
drodynamic equations represent. This is illustrated by
Flg. 1.

It should also be remarked that, in this formal. ism,
the central peak in the scattering function is due to a
collective phenomenon: the heat-diffusion mode.

IV. LIQUIDS

Since a kinetic equation corresponding to the Boltz-
mann equation cannot be written for a liquid, the above
discussion is not directly applicable to liquids. However,
some of the qualitative features of the results for gases
have implications for liquids. Thus we may expect that
hydrodynamics will give a good approximation for
small x and/or ~ and that when these parameters are
small the neutron scattering may be attributed to col-
lective effects. A complete theory for scattering from
liquids encompassing large values of ~ and co will un-

doubtedly require the development of a more complete
theory of liquids. %e may surmise, however, that the
complete expression for S(~,co) will contain a sum of
discrete terms representing collective effects and,



i04 J. H.. FERZIGER AND D. L. FEINSTEIN

102

s ~ ~ ~ a Thermal Diffusion

Self Diffusion

Experimental

10

g = 0. 02

~ ~

'Joy ~ ~

~ ~ 0 ~ ~
~ ~ 0 ~ ~

~ + + ~ e
0 ~

~ ~

~ ~ s ~
~ ~

0. OZ

'~

-1
10

T

61
~I

re

-2
10

O, Zs

0. 2
e

0
~ ~

~ ~

~ o
P r

~ ~ ~
FIG. 4. Comparison of scattering-

law convolution approximation using
self diffusion and thermal diffusivity
with Randolf's experimental results
for sodium at 100'C.

10 Z. O ~

0. OZ

10

Z. Q

10

I

10

0.02

10

most likely, an integral term that accounts for short-
time behavior.

The application of hydrodynamics to the calculation
of correlation functions is not new and has been dis-
cussed by KadanoG and Martin, "Mountain, '6 and Yip
and Nelkin. "To obtain G(r, t) one solves the linearized
Xavier-Stokes equations with the initial conditions

be(r, O) =b(r)+fg(r) e], —

b~(r, O) = br(r, O) =O.

(4.1)

(4.2)

Again, for a gas, this is just the hydrodynamic approxi-
mation to Eq. (2.1) and initial condition (2.2). Using
&he results of Ref. 16, we have

Saz(xpco) = (1/m)L1+1" (x)j Re{e(L,cu)), (4.3)

a= Xp/Ppce &
b —(3'90+$0)/Po y (4.5)

and po is the equilibrium density, Xo the thermal conduc-

tivity, go and &0 the shear and bulk viscosities, re-

spectively, c the sound speed, y the ratio of specific
heats, and c, the speci6c heat at constant volume. For
small ~, Kq. (4.4) can be factored into a sum of three
terms, two of which represent the contribution of sound

modes and the third a heat-diHusion mode. These, of
course, are precisely the modes referred to earlier.

with

~'+i (a+b) ~'co+ ah~4+ c'(1 1/y) ~'—
S X)GO

(a+ b) g—'cu'+i (c'~'+ aha)(a+ ac'x4/y

(4.4)
where



158 NEUTRON SCATTERING F ROM FLUIDS |.05

The contribution of the heat-diftusion mode has an
energy width proportional to the thermal diffusivity
D~, again, this is what one ought to expect. On the
other hand, the hydrodynamic approximation to Eq.
(2.4) yields the well-known result

S,(lr, re) =
(Dss) s+rds

(4.6)

where D is the self-diffusion coeKcient. As is well-known

(see, for example, Ref. 11), for a gas D=Dr, but for
iquids D is several orders of magnitude less than Dy.

The reason is that in a liquid the dominant mechanism
of energy transport is collisional transfer rather than
transport by individual particles and the collisional
mechanism gives a contribution to Dy but not to D.
Thus, Vineyard's' replacement of H in Eq. (1.4) by
the G, obtained from the diffusion equation [i.e. , the
inversion of (4.6)$ cannot be correct. Certainly, a
better result would be obtained if Dy were used instead
of D; this, however, still ignores a contribution to Gd of
the type given by (2.8) and is also equivalent to replac-
ing H of Eqs. (1.4) or (2.8) solely by its heat-diffusion
component. It therefore seems more appropriate to
bypass the convolution approximation entirely and to
calculate G(r, t) from hydrodynamics and G, (r, t) from
hydrodynamics or one of the improved models that have
been suggested. Unfortunately, this means that it is

unlikely that the models put forth for computing G,
can be applied to the calculation of G or Gd and that
improved calculation of G will have to await a more
fundamental approach.

Finally, we include a comparison of hydrodynamic
calculations with experimental data for liquid sodium. '4

~ P. D. Randolph, Phys. Rev. (to be published).

TAsxE I. Sodium parameters' at 100'C used in calculation
of Figs. 3 and 4.

J

Speciic heat c„
Isothermal compressibility k = 1/8
Shear viscosity
Bulk viscosity
Sound speed C

Volume expansivity P
Thermal conductivity
Self diffusion coeKcient D
Density P

1.39X10 erg/g
19.16X10 "cm /dyn
0.705 cP
1.06 cP
2.525X10' cm/sec
2.445X10 4 C
0.8581X10' erg/sec cm
2.5X10 cm'/sec
0.916 g/cm'

These are given in Fig. 3 for a range of parameters for
which hydrodynamics should be valid. The thermo-
dynamic parameters for sodium are found in Table I.
Since sodium contains both a coherent and incoherent
contribution, Eq. (1.1) was used with Szc~ calculated
using Eq. (4.6) and Sc~ calculated using Eq. (4.3).
Except for P=0.2, the comparison is not bad. That the
peaks in the theoretical curves are not reproduced in
the experimental data may be due to the fact that for
the values of parameters shown, the experiment is
dHBcult to perform and the resolution is less than
would be desirable. Figure 4 shows the convolution
approximation using both the self-diffusion coeKcient
and the thermal diffusivity. The latter matches the
experimental data about as well as the full hydrody-
namic calculation. This is because, in the parameter
range shown, the sound-mode contribution is small.
Also this is apparently an indication that in liquids the
perturbations caused by the particle at f&0 are less
important than the initial perturbation.

a International Critical Tables (McGraw-Hill Book Company, Inc. , New
York, 1933); M. Sittig, Sodium, Its Manufacture, Properties and Uses
(Reinhold Publishing Corporation. New York, 1956); Liquid Metals
Handbook, Sodium Supplement (U. S. Government Printing Office, Wash-
ington, D. C., 1955).


