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The contribution of three-body correlations to the energy of nuclear matter is formally calculated. This
is necessary to get numerical results from the three-body wave function of Day and Kirson. The potential
energy for “particle” states is redefined. This definition, as well as other results, differ from previous ones.

1. INTRODUCTION

OR the correct treatment of nuclear matter, it is

essential that an expansion be made in the number

of interacting particles, not in the number of successive

interactions. Bethe! has given a treatment of the simul-

taneous interaction of three particles; this was subse-
quently improved by Day? and Kirson.?

The significant quantity in the theory is the three-
body wave-function defect, i.e., the amount by which
the actual wave function of three interacting bodies
differs from the wave function without three-body cor-
relations. Kirson® has shown that this defect function
depends essentially only on the mutual distances of the
three particles 712, 723, and 731, not on the orientation of
the triangle rys, 23, and rs; in space. This is due to the
fact that kpc<1, where kr is the Fermi momentum and
¢ the radius of the repulsive core. Day? has given explicit
expressions for the defect function Z®,

Less attention has been paid to the problem of evalu-
ating the energy of the nucleus due to three-body corre-
lations. The contribution of a given set of three nucleons
is described by a diagram like Fig. 1 in which K, K3,
and K denote simply the momenta of all three particles
at the levels indicated. For reasons explained in B3, the
interaction 4 and the preceding propagator are de-
scribed by 712, the two-body wave function defect for
two particles in the Fermi sea, while B is described by
ges, the interaction function for two particles off the
energy shell. The wave function arriving at B from
below is B—70

with ® the unperturbed wave function of the three par-
ticles, and Z® the three-body wave-function defect dis-
cussed above. Our task is now to calculate the contribu-
tion of Fig. 1 to the energy.

2. THREE-BODY ENERGY

Figure 1 shows directly that the energy of a group of
three nucleons, interacting by three-body correlations,
is

Wa(Ko)=/dK1dK2<K0lﬁ121K1>

X{(K1|gas| Ko)(Ka| ZWV| Koy, (2.1)

* Supported in part by the National Science Foundation.

IB%' A. Bethe, Phys. Rev. 138, B804 (1965); quoted hereafter
as B3.

2B. Day, Phys. Rev. 151, 826 (1966).

3 M. W. Kirson, Nucl. Phys. (to be published).
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Here each K; stands for the momenta of all three par-
ticles; specifically Ko refers to the initial and the others
to the two intermediate states. The final state is of
course identical with the initial. The 5, g, and Z are
operators and have therefore been denoted by a caret.
The first operator represents

fi1e=2g1:0/e, (2.2)

i.e., the last interaction and the preceding propagator.
The last interaction is separated from the rest in this
manner because it ends with particles i the Fermi sea,
and is therefore different from the preceding interac-
tions ges in which the particles are outside the sea, and
hence off the energy shell. The most important factor is
of course the three-body wave-function operator Z®;
we assume this has been calculated using the methods of
Day? and Kirson.? Following Kirson,? we shall assume
that Z has the form

ZO|Ko)y=ZD(r19,723,751)B(Ko0) (2.3)

where ® is the unperturbed wave function (product of
three plane waves) and Z depends only on the distances
between the three particles, not on the directions of the
vectors I, etc.

This leaves the problem of the matrix element of gs.
Particle 1 is just a spectator in this element, and we may
consider the operator ges as acting on the plane wave
representing particles 2 and 3 in state K;. Denoting the
momenta of these particles by b and p;, respectively,
we may write

225 expi(b-r2t+ps-1s) =P CrFDy(ra3) pi(r2s)

where

(2.4)

P=4(b+ps), k=3(b—py) 2.5)

Fic. 1. Ladder dia- -State K

gram for three-body in- A
teraction. The initial
state of the system is
denoted by Ko, the state a b P3
before the last interac- 8
tion (4) by K, that be-
fore the preceding inter-
action (B) by K.. There c
may be any number of
interactions between B

and the initial state.
Momenta of particles at
various stages are at-
tached to the respective p
propagator lines. |
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are the average and the relative momentum of the two
nucleons, and ¥ py is their wave function including inter-
action. It is convenient? to write

v(ros)¥ pr(tes) = gpi(tas)d(r2s)

) 2.6)
o=expik- (rs—13).

Now Kirson® has shown that the distribution of the
momenta P, k is rather sharply peaked; therefore it is
tempting to ignore the dependence of g on P and %.
Then, including the spectator particle, we may put

223| K1)=g(r25)®(K1), (2.7

where ®(K%) is the product of the three plane waves cor-
responding to state Ki, and g(rss) is assumed to be in-
dependent of the momenta in K. If (2.7) is assumed,
the integrations over K; and K, in (2.1) can be done
immediately and give

Ws(Ko)= <Ko‘ H10823(723) Z D (719,723,731) l Ko. (2.8)
However, (2.7) is not correct. To see this, we write
o3| K1)=ef3] K1), (2.9)

where {3 is the two-body defect function,® and the
operator ¢ may be written in the reference spectrum
approximation®

(2.10)

As is shown in BBP, v increases with increasing excita-
tion of the state K;. Therefore, just because ¢ is very
insensitive to K (see B3, p. 809), g is very sensitive: It
increases rapidly with increasing energy. This is par-
ticularly true for the contribution from inside the core;
we have

e=v2—Vy3?.

$as| K'Y= | K1), (2.11)
S| Ky= (ko +y?) | K1), 72s<c  (2.12)

where kg3 is the relative momentum of particles 2 and
3 in state Kj. The contribution from the core surface®
is less sensitive to the energy of state K, and that from
the long-range, attractive forces is insensitive, viz.,

2| Ki)=~o(re) | K1), res>e. (2.13)

Because g is sensitive to K, Kirson has evaluated it
for an average momentum ky3. Since (2.12) is the most
sensitive contribution, Kirson used the mean square of
P2/, the momentum of nucleon 2 between the last two
interactions (both v and ks depend chiefly on p5’). Thus
Kirson puts

Z23| K1)= gos(pa av’,r28)B(K1) . (2.14)
Then the integration still leads to (2.8). This is a reason-

able procedure, but clearly an approximation. We shall
develop a more systematic approach.

723<C

4 This is actually convenient only for an ordinary, central force.
For other types of forces, see Sec. 3.

S H. A. Bethe, B. H. Brandow, and A. G. Petschek, Phys. Rev.
129, 225 (1963); quoted hereafter as BBP.

¢ BBP, Eq. (5.28).
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First, we specify the momenta of the three particles
involved in the states Ko, K1, Ko. We denote them as
follows:

State Ko:  p1,ps,ps;
State K;: a=pi+p.—ps—2k, b=ps+2k, ps; (2.15)
State K,: a,c=ps+k+k, d=ps+k—Kk.

Then the » matrix element is
(p1,p2| 12| 2,b)= / d*r1e’ exp[—i(p1 11+ p2-12) ]
Xn*(p1,pa,712)expi(a-1'+b-ro)

=/d37’12' 7)*(712/)6Xp1:(p3+2k—p2)'1'21,, (216)

and the g matrix element

B lgal PK)= [

Xexp[—i(b-ra"+ps-15”) Jgpr*(res”)
Xexpilk'- (r2” —r5")+ (ps+k) - (r2"+15")], (2.17)

with

P=ps+k. (2.17%)

gpi depends on the parameters P and k. Finally, the Z
matrix element

(a,,d|Z V[pyp ,ps)
= / exp[—i(a-ritc rat-d-15) 12D (r1z,725,731)
X expi(py- r1+pe- reps- 1s)d%2d%3
= / Z® expil (ps—pzt2K) 11t (p2—ps—k—k') 12

+ (&' —K) 13 ]d%d%s. (2.18)

The integrals in (2.1) are 7~%d%(2r)~3d%k’. The integral
in (2.18) is over the spaces of 75 and 75 only, with r; kept
fixed; integration over r; would merely give a factor @
(normalization volume) which cancels against normali-
zation factors.

Now K’ occurs only in (2.17) in the form ¢®' ", and
in (2.18) as e~i 3, Integration over (2r)~*@%’ therefore
gives 8(rss” —135), with corresponding simplification of
the integrals:

Wa(Ko)=7"3 / d% (p1,p2|m2|a,b)

X(K1|g*Z®|Ko). (2.19)
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Here, after simplification of the exponentials,

<Kllg*Z(l)|K0>=/d37’12d3723 gpk*(l‘zs)

XZ D (r12,725,731)expi(ps—pa+-2k) 112 (2.20)

It may be noted that the exponential no longer contains
13, and is the complex conjugate of that in (2.16), as it
should be. Of the initial momenta, only ps—p; enters
here, and p; in the (relatively unimportant) parameter
P, (217").

Equations (2.20), (2.19), (2.16) are the greatest
simplification we have been able to achieve without
making assumptions about the dependence of g(r) on
k. Now (2.12) suggests that g has a component which is
roughly proportional to k2, and (2.13) suggests another
component independent of £ The term from the core
surface can probably be represented as a sum a--bk2
Thus we believe it is a good approximation to set

gpri(res) = gi(res)+kga(ras) . (2.21)

The dependence of g on P can adequately be described
as a dependence on k because, from (2.17)

Pixp? (2.21))

since p3<kp<k, in general. The functions g; and g in
(2.21) are supposed to be independent of &; clearly, g
dominates at large 7, g, at small 7.

When (2.21) is inserted in (2.20), (2.19), the integral
over d% can be carried out by closure. This is obvious
for g1. To do it for g», we note that according to (2.16),

(Ps—pe+2K)%- -+ 9]+ )= —/d3712’

X V2n*(r19)expi(ps—pet-2k) 112’ . (2.22)

Assuming again
| ps—p2| <K2F, (2.22")

the left-hand side is 4k2%(- - - || - - -) which is the quan-
tity we wish to calculate. Using the right-hand side of
(2.22), the integration over k reduces to

W_afdsk eXpsz (1’12—1'12,)= 5(1'12—1'12/) , (2.22”)
and we obtain

Wi(Ko)= /d3r12d3723 Z D (r12,723,731)

X{n*(r12) gr* (r2s) — ;[ Vin* (r12) Jgo*(res)} . (2.23)

Since both 7 and Z® are essentially independent of the
momenta pi, Pz, P3, this result may simply be multiplied
by p? to give the energy per particle. The effect of the
nonvanishing momenta pj, ps, ps can be treated approxi-
mately, using the method of Kirson.?
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Equation (2.23) can be further simplified. Since g de-
pends only on 7.3, we can integrate over the position of
particle 1, i.e., over rys ,keeping rs; fixed. This yields

F1(1’23)= /d%z 77*(7’12)Z(1)(7’12,723,731) 5 (224)

1
Fo(res)= Ty [ dria [V2n*(r12) 12V (r1z,r28,r51) ,  (2.25)

Wi(Ko)= /d37’23 Lg1*(r25) F1(7as)
+8*(ras) Fa(res)].

The function F; is identical with the F introduced in
B3, Eq. (5.1), which was there shown to be small if 753
is inside the core and to increase rapidly (by about a
factor of 1.5) outside. The other correlation function Fg
is new.

(2.26)

Kirson’s Approximation

As was mentioned above, Kirson replaces g(k,r23) by
g(kav,r23). If g has the form (2.21), this amounts to the
replacement

Fy(res) = kav?Fi(ras). (2.27)

No matter how ka,? is chosen, this replacement can-
not hold for all values of 5. Kirson’s procedure, even
for the simple form (2.21) of g, can therefore at best be
approximate.

However, from (2.12) and (2.21) it follows that g is
mostly important for small 73, viz., 725<¢. In this case,
F; and F, are nearly independent of 7.3 because the
explicit dependence of Z on 7.3 is small, and 713~ 712 s0
that also the implicit dependence is small. Sample cal-
culations, such as B3, Fig. 11, bear this out. Then the
replacement (2.26), and thereby the Kirson approxima-
tion, are justified.

The situation is not quite this simple, because of the
tensor force. As is well-known, the tensor force between
nucleons 2 and 3 gives rise, in second order, to an effec-
tive, attractive central force g(r23). This effective force
becomes weaker with increasing %, the effect being
roughly proportional to k2. This gives an additional con-
tribution to ge(re3) which has relatively longer range.
Nemeth and Bethe” have found that this is about as
important as the core contribution. For the tensor con-
tribution, the Kirson substitution (2.27) is not accurate.

3. THE INTERACTION g(rs3)

We shall now investigate the form of g(rs3) for a more
realistic potential, and its relation to the approixmation
(2.21). We proceed in stages.

Let us first assume that the potential is central and
has Serber form, then

go(r) =p(r) =v(r) Y () +¥(—1)].
7J. Nemeth and H. A. Bethe (to be published).

(3.1)
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The right-hand side contains only even angular-momen-
tum components. However,

d(r)=e’ 3.2)

contains all angular momenta and so, therefore, does
g(r).

Great simplification of (3.1) is possible for the long-
range interaction in the sense of Moszkowski and Scott
(MS). Here, y may be replaced by ¢ and (3.1) and (3.2)
give

g(x2s) = v(ras) (1€ 20k 123) (3.3)

This is not of the form (2.21). However, insertion into
(2.20) gives, apart from unimportant factors, the simple
result

g*(r%)eZik T12— 1,(,,23) (62ik "r12 g2k -ns) . (3 _4)

Closure with (2.16) can still be achieved; integration
over k gives, again apart from unimportant factors,

5(r12/—r12)+5(1‘12'—1‘13); (3-41)
(2.23) is replaced by
Ws(Ko)= /d37’12d37’23
X[ (r1e) 0% (r1s) Jo(res) Z O (r10,715,723) . (3.5)

ZM is clearly symmetric? in 712 and 713; therefore the
two terms in (3.5) are equal, and the exchange term in
(3.1) has simply the effect of doubling the result. (This
is due to the neglect of the momenta pi, ps, ps in the
initial state.) Thus (2.26) is replaced by

Wa(Ko)= /d37’23 gl*(f’zs)F1(7’23) ’ (3-6)

with F; given by (2.24).

The Serber force, however, is not a sufficiently good
representation of the realistic potential between nu-
cleons, even apart from tensor forces. Considering just
singlet even states, it has been shown?? that the attrac-
tion in the 1S state is greater than in the D and G
states. The triplet even states behave similarly. A
reasonable approximation is achieved if we choose ()
in (3.1) to represent the interaction in the D state (the
G state does not matter), and then add a term for the
difference between the S and D states, viz.,

g8¢(r) = ‘Z)s(l')ll/o(f) ) (37)

where y is the L=0 component of ¢, and v, is the extra
S-state potential. If desired, this v, may be chosen to
include the effect of the repulsive core, or the entire
“short-range potential” of Moszkowski and Scott, be-

8 H. P. Noyes, in Proceedings of Conference on Nuclear Forces
and the Few-Nucleon Problem, London, 1959 (unpublished); H. P.
Noyes and T. Osborn (private communication).

i ;II({D V. Reid, Jr., Cornell University thesis, 1967 (to be pub-
ished).
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cause these affect primarily the S-state wave function.
It is obviously not convenient to calculate g, from (3.7)
because g, will contain all angular-momentum compo-
nents, due to ¢(r). It is better to go back to (2.1) and
evaluate this directly.

With the interaction (3.7), we have (omitting the
spectator particle 1)

B3| K1) =0,(r2s" )o(ras')ei @oti) - a4’ | (3.8)
(K1|gas| Ka)= [d%rs5" vy(ras” Wo(rag”)e? - 2"—1'") | (3.9)

In this matrix element, the expi(ps+k)(r.”’+rs"’) has
been canceled between initial and final state. We com-
bine (3.8) and (2.18) and integrate over k’; this gives
r25’' =193 and

(K1|2Z®|Ko)= f d3rad3r3 v5(r28)Yo(r2)Z P

X expi[ (ps—pet2Kk) - (t1—12)+ k- r55].

We now write!?

(3.10)

vu(r)o(r)=g.(k,)o(r) (3.11)

where ¢ is the unperturbed S-state wave function,
o(r) = Fo(kr)=(4r)? / dQexpik-v’.  (3.12)

Here 1’ is a vector of magnitude 7.3, pointing in an arbi-
trary direction, and fdQ is an integral over all direc-
tions of t’. In (3.11), g, is close to v, for r>d, with d the
Moszkowski-Scott separation distance; this means that
the zeros of ¢, will not cause any singularities in g, in
this region; for r<d, g, is more complicated, but ¢, will
in general have no zeros because kd is not large. It is
likely that g, (in contrast to the original g) can be
represented, with good accuracy, by an expression like
(2.21),

go(k,r) = gor(r)+k2gua(r). (3.13)

Inserting (3.11 and 3.12) into (3.10), the exponential
will have a k-dependent term

k- (2r104-ro5+1'). (3.14)

In addition there is £ dependence in g,. If we neglect
this, i.e., write g,= g,1, we can effect closure with the ¢
matrix element (2.16). Integration over k gives from

the exponentials
8(r1et3r20+ 31 — 112 )expdi(pe—ps) - (r2s+1'),  (3.14")

so that the g, part of (2.23) is replaced by

Wss(Ko)= (4#)_1[d3712d3723/d9 7T*(R+-31")ga(r23)

X [expi(pa—ps) - (t'+251) JZ D (r10,728,731) ,  (3.15)

10 This g, is of course different from that in (3.7).
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where

R= %(I’12+ 1'13) . (3 15')

As we have pointed out, 3| p:—ps| <kr is small for our
purposes, and will be neglected. Then only 5 depends on
the direction of r'. Let u be the cosine of the angle be-
tween R and r/, then

(3.15")
(3.15")

| R4+-31'| 2= R>+ Rrogu+1rs?,
R*=1|r1ot113] 2= (71024 7132) — 37252,

The integration of 5 over u is then elementary. Denoting
the argument of 5 by ¥, this gives

() / 42 n(R+3r)= / iy Rras)n(s)

= (RrZs)—_l[X(.R'—%T%)—X(R-I—%fzg)] y (316)

X(x) = / n)ydy. (316)

The upper limit « of the integral in (3.16") is arbitrary,
and chosen for convenience only. Equation (3.15) can
then be written

3190323 (Rras) 1ga1(re3)Z O (719,703,731

X[X(R—3728) —X(R+3725)]. (3.17)

The part g, of (3.13) can now be done similarly. We
use (2.22) which introduces V2, then (3.16) is replaced

by

Waal(KO) =

R+t3ras
() / 42 PoRI) = Rr) [ 3y V)
R—}res
= (Rrag)[w(R+3r23) —w(R—3r25)], (3.18)
with
w(x)=n-+2xdn/dx. (3.18")

The contribution of g to W is then

1
Wsaz(Ko)=; / d¥r19d%r93 [wW(R—3725) —w(R+3703) ]
X go2(ras) Z D (r1g,ragrsr) , (3.19)
and Wi,=W3,+Wss. As in (2.24) and (2.25), we can
leave the integration over ry3 to the end, and define

Fsl(”%) = 723—1/(137’12 RZW

X[X(R—3r25) —X(R+1r25)], (3.20)
Fyo(ras)= (47'23)_1/d37’12 RZ®
X [w(R—1re)—w(R+21r2)], (3.21)

THREE-BODY CORRELATIONS IN NUCLEAR MATTER. II
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W3s(Ko)= /d3723

X[ go1(res) Fsi(res)+goo(ras) Feares)]. (3.22)

The nuclear force can be quite adequately represented
by the sum of an ordinary force (treated in Sec. 2), a
a Serber force [treated in this section up to Eq. (3.6)],
and a force acting in S states only [treated from Eq.
(3.7) on]. Each force component may be taken to
depend quadratically on , as in (2.18).

The tensor force acts mainly in second order in which
it is equivalent to a central force.'* It should be con-
sidered, however, that this effective central force de-
creases with increasing k. This can again be done by
assuming a form like (2.21) for the effective central g,
with g attractive and g, repulsive.

The method here outlined will probably give W3 to
about 5%, if the various components of g are judiciously
chosen. If greater accuracy is desired, g must be ex-
panded in spherical harmonics and (2.20) used directly.
However, then it is also necessary to improve the ac-
curacy of Z® and abandon the assumption that it
depends only on the three distances. Likewise, it would
be necessary to take into account the finite momenta
P1, P2, Ps In initial and final state, in 7 and in such equa-
tions as (2.22).

4. ENERGY OF INTERMEDIATE STATES

In B3, T assumed that the three-body interaction can
still be treated by assigning suitable potential energies
U(d) to intermediate (particle) states. In fact, I pro-
posed to write

Up)= /d31’23 gpi(ras)Fi(res)/Fo, (4.1)

where F1 is the quantity defined in (2.24), gpx the effec-
tive potential function appropriate to particle state 3,
and F, the quantity defined in B3, Eq. (5.7),

F0= /d3712 772(7’12) . (42)

It is shown in B3, Eq. (5.8), that Fi(res=x)=F, We
shall see that (4.1) is only a very crude approximation.

It is, of course, desirable to define a particle energy
U (d). It should be defined in such a way that

Ws(Ko)=(2m)= [ d% y*(0)U ), (4.3)

where

»(6)= / o)y (44)

11 G. Brown and T. Kuo, Nucl. Phys. 85, 40 (1966).
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Fi1c. 2. A third-order Goldstone
diagram in which the middle inter-
acEic))n is with the particle potential
U(d).

—-—xU

is the Fourier transform of 4, denoted by F;; in BBP.12
Then the “insert” diagrams of the Goldstone theory,
Fig. 2, will give exactly minus the right-hand side of
(4.3). Adding this to W gives zero; in other words, the
three-body correlation energy is compensated by the
potential insert diagrams of Fig. 2. The energy is then
given simply by the first-order two-body interactions

To this must be added the four-body (and higher)
correlations, and diagrams with more than one potential
insert. In addition to the expectation that these will be
small, Rajaraman'? has shown that the most important
more-body correlations probably involve the long-range
force in all interactions except the first and last, and this
force is well represented by the potential U(d). There-
fore, choosing U(b) to satisfy (4.3), we shall probably
also minimize the net effect of the correlations of more
than three bodies. The claim is then that at present it is
best to find a U(b) compatible with (4.3), insert it into
the energy denominators in the Brueckner integral
equation for the two-body G matrix, and calculate the
nuclear matter energy by summing the two-body G’s.
Then no further corrections are needed.

To calculate U(d), we go back to (2.19) and (2.20). We
assume now

then (2.15) gives
2k=b. (4.6)
Equation (2.20) may be written'
(K:1|g*ZD | K o)= /d3723 gpi¥(r23) Vo(ras) , 4.7)
YVy(res)= / d*r1g Jo(bri) Z O (rigrasrs),  (4.8)
and (2.16)
(p1,p2| m2| 2,b)=y*(d). 4.9)

Then (2.19) takes the form (4.2), with

U@®)= /d37’23 gri*(res) Vo(ras) /y(0).  (4.10)

12 See BBP (Ref. 5), Fig. 14.

13 R. Rajaraman, Phys. Rev. 155, 1105 (1967).

4 Tn (4.8) we have tacitly assumed that there is no correlation
between the directions of k and ra;; then expib-ri2 in (2.20) can be
averaged over angle. This is, of course, not necessary.
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It is clear that by construction (4.10) satisfies (4.3).
Equation (4.10) must be modified for various types of
interaction, similar to Sec. 3.

Equation (4.10) is a reasonable definition of U(b). To
obtain ¥, from (4.8), we must integrate over the two
variables 715 and 713 for every value of b and of 745. This
is evidently quite laborious, so an approximate discus-
sion is in order.

U (d) is most important [cf. (4.3)] for those states for
which y(d) is large, ie., for* b=4 F-. In this case,
Jo(br12) is similar in shape to 5(r12), in the sense that both
770 and 7y have peaks at r=¢ (the detailed shapes are
different). Then, from (2.24),

Vi(ras)~F1(rss). (4.11)

This justifies, for this most important range of b, the
use of (4.1); it is easy to see that also the normalization
is correct.

On the other hand, for small b, of order kp, 7o(bri2) =1
for the important values of 71; then ¥ will not depend
very much on 73 In this case, small distances 7e5 will
be weighted in (4.10) about as much as large 743, i.e., the
influence of the repulsive core will not be cut down ap-
preciably by the three-body correlations. This does not
do any harm because the core is not very important for
small b anyway; see BBP, Fig. 11. Indeed, it is desir-
able that the core not be suppressed, because otherwise
U(d) for b slightly above kr can easily become less than
U(m) for an occupied state m slightly below kp. Such
a ‘“‘negative energy gap” was found by Sprung and
Bhargaval® using (4.1), and was arbitrarily removed by
them. Our consideration here justifies this removal;
further justification will be given below.

A difficulty with (4.10) is the denominator y(b). Ac-
cording to BBP, Fig. 14, this is zero just about at b=Fkp.
This would cause a singularity in U(d). We shall now
show that this singularity is removed by including the
tensor force.

Tensor Forces

If the first and last interaction'® is by tensor forces,
Dahlblom!? has shown that the function Z® must be
modified to read

ZrO =T [1— 155815828
—3Ps(r1a- t13) 1T [1—Crot3 510825 ]
—3P2(r1o- Yog)nesT[$1of 13— $1a—$1sl,  (4.12)

where 57 is the radial part of the 3D wave function which

15 D. Sprung and P. Bhargava, Nucl. Phys. (to be published).

16 If the first interaction is tensor, it introduces the spin-depen-
dent operator S12 which must be compensated by the last interac-
tion, which therefore also must be tensor. Intermediate interac-
tions are assumed to be central, except that they may include the
effective central force generated by the tensor force in second
order, as at the end of Sec. 3. T. Dahlblom, K. G. Fogel, B. Quist,
and A. Térn [Nucl. Phys. 56, 191 (1965)] have calculated the
effect of three successive tensor forces and found it to be small;
this will not be treated here.

17 T. Dahlblom (to be published).
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is associated with an unperturbed 3S wave by the tensor
force [the function Xg;©® = —1,;® in the notation of
BBP, (6.29), and Fig. 137. The reason for the difference
between this result and Day’s? is the summation over
the spins. Dahlblom now points out that the tensor
wave-function modification 47 is zero for r<c¢, and then
rises gradually, but that { (which comes from the repul-
sive core) drops rapidly for r>c¢. Therefore the terms
involving products 5¢ are apt to be small, and the only
important terms are
Zps W =4n1s"— 215" (4.13)

This, however, is exactly the third-order contribution,
without corrections for three-body correlations. Dahl-
blom has calculated Fy, Eq. (2.24) inserting (4.12), and
has confirmed that it depends very little on 7e5. The same
will undoubtedly be true of Yyr(res), Eq. (4.8), when
(4.12) is used for ZM, especially if b is not too large.

This means that for (initial and final) tensor interac-
tion, U(b) in (4.10) reduces, apart from a constant fac-
tor, to

UT(b):‘/daf’za grir*(res), (4.14)

which is just the elementary ‘“bubble” interaction.
Dahlblom has shown, using (4.12), that (again apart
from a constant factor)
gr=g(even L)+3g(odd L), (4.15)

in contrast to the case of an initial central interaction
for which g(rss) is given by the even L states alone.

Generalizing (4.3), it can easily be shown that the
correct three-body energy is obtained if we define U(b)
as follows:

UG _ ¥ O)U)+yr*B)Ur(b) ’
ye*(6)+yr*(8)

where U,(b) is defined by (4.10) and (4.8) with Z®
being Day’s wave function with an initial central in-
teraction, while Ur(d) is obtained similarly with Z®

(4.16)
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being Dahlblom’s expression (4.13). Similarly, y. and
yr are the Fourier transforms (4.4) of 9., 17.
Equation (4.16) has the following advantages:

1. For small b, the tensor term dominates because
yr>>y, (BBP, Fig. 14). This makes U(b) essentially that
of the simple ‘“‘bubble” with even greater assurance than
the argument below (4.11). It eliminates the danger of
a ‘‘negative energy gap” between hole and particle
states, especially because the high weight of the odd-
state interaction (4.15) introduces a repulsion for the
particle states. The dominance of the tensor term is also
satisfactory because U(b) for states of low & is chiefly
needed to evaluate the two-body tensor G matrix.

2. There is no longer any singularity for y.(5)=0.

3. For large b, above about 3 F~! (BBP, Fig. 14), .
dominates and our previous estimate of U(d) remains
correct.

Brandow'® has recently constructed a somewhat dif-
ferent theory of nuclear matter, which however is also
based on the idea that the energy should be expanded in
the number of interacting particles. The difference lies
mainly in the choice of the intermediate-state potentials
U(b). In Brandow’s theory these are essentially zero, but
it is then necessary to do a separate calculation of the
three-body cluster energy, as we do in Sec. 2.

The discrepancy between these viewpoints is not as
great as it may appear. Brandow states!® that our pres-
ent treatment of U(d) is essentially equivalent to a fur-
ther rearrangement of his expansion. His argument lends
support to the Sprung-Bhargavals prescription whereby
the potential-energy function U(k) is forced to be con-
tinuous at kr. We believe that the present approach will
give a more accurate treatment of the energy contribu-
tions from the states just above &p.
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