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Three-Body Correlations in Nuclear Matter. IP
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The contribution of three-body correlations to the energy of nuclear matter is formally calculated. This
is necessary to get numerical results from the three-body wave function of Day and Kirson. The potential
energy for "particle" states is redefined. This definition, as well as other results, differ from previous ones.

1. INTRODUCTION

~~OR the correct treatment of nuclear matter, it is
essential that an expansion be made in the number

of interacting particles, not in the number of successive
interactions. Bethe' has given a treatment of the simul-
taneous interaction of three particles; this was subse-
quently improved by Day' and Kirson. '

The significant quantity in the theory is the three-
body wave-function defect, i.e., the amount by which
the actual wave function of three interacting bodies
diRers from the wave function without three-body cor-
relations. Kirson' has shown that this defect function
depends essentially only on the mutual distances of the
three particles r»~, r~3, and r3», not on the orientation of
the triangle r»~, I'23, and r3» in space. This is due to the
fact that kpc& 1, where kp is the Fermi momentum and
c the radius of the repulsive core. Day' has given explicit
expressions for the defect function Z&').

Less attention has been paid to the problem of evalu-
ating the erlergy of the nucleus due to three-body corre-
lations. The contribution of a given set of three nucleons
is described by a diagram like Fig. 1 in which Eo, E»,
and E2 denote simply the momenta of all three particles
at the levels indicated. For reasons explained in 83, the
interaction A and the preceding propagator are de-
scribed by q»2, the two-body wave function defect for
two particles irl, the Fermi sea, while 8 is described by
g23, the interaction function for two particles oR the
energy shell. The wave function arriving at 8 from
below is

C —Z&»,

Here each E; stands for the momenta of all three par-
ticles; speci6cally Eo refers to the initial and the others
to the two intermediate states. The 6nal state is of
course identical with the initial. The q, g, and Z are
operators and have therefore been denoted by a caret.
The erst operator represents

'912 gl Q/e (2.2)

i.e., the last interaction and the preceding propagator.
The last interaction is separated from the rest in this
manner because it ends with particles ie the Fermi sea,
and is therefore diRerent from the preceding interac-
tions g23 in which the particles are outside the sea, and
hence oR the energy shell. The most important factor is
of course the three-body wave-function operator Z&');

we assume this has been calculated using the methods of
Day' and Kirson. ' Following Kirson, ' we shall assume
that Z has the form

2(') leap&=Z~'&(rgp, rpp, rpg)C(Ep), (2.3)

where C is the unperturbed wave function (product of
three plane waves) and Z depends only on the distances
between the three particles, not on the directions of the
vectors r»2, etc.

This leaves the problem of the matrix element of g23.
Particle 1 is just a spectator in this element, and we may
consider the operator g23 as acting on the plane wave
representing particles 2 and 3 in state E», Denoting the
momenta of these particles by b and yp, respectively,
we may write

with 4 the unperturbed wave function of the three par-
ticles, and Z&') the three-body wave-function defect dis-
cussed above. Our task is now to calculate the contribu-
tion of Fig. 1 to the energy.

gp3 expi(b rp+pp rp) =e' ' ("+")p(rpp)p~s(rpp),

where
P=-', (b+ pp), k=-', (b—yp)

(2.4)

(2.5)

2. THREE-BODY ENERGY

Figure 1 shows directly that the energy of a group of
three nucleons, interacting by three-body correlations,
is

w, (z,)= dz,dz, (z, l &„lE:,&

X(ftllg»l&p&(&p lz'" I&p& (2 l)
* Supported in part by the National Science Foundation.' H. A. Bethe, Phys. Rev. 138, B804 (1965); quoted hereafter

as 83.
~ B. Day, Phys. Rev. 151, 826 (1966).' M. W. Kirson, Nucl. Phys. (to be published).

FIG. 1. Ladder dia-
gram for three-body in-
teraction. The initial
state of the system is
denoted by Ko, the state
before the last interac-
tion (A) by K~, that be-
fore the preceding inter-
action (B) by K2. There
may be any number of
interactions between B
and the initial state.
Momenta of particles at
various stages are at-
tached to the respective
propagator lines.

-State Ko

-State K~

d -State K2

p& -$tgte Ko
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are the average and the relative momentum of the two First, we specify the momenta of the three particles
nucleons, and its is their wave function including inter- involved in the states Eo, Zi, Zs. We denote them as
action. It is convenient4 to write follows:

o(r28)QPk(r23) gP3(r28)$(r23)

&=expik (rs—rs).

Now Kirson' has shown that the distribution of the
momenta P', k is rather sharply peaked; therefore it is
tempting to ignore the dependence of g on P and k.
Then, including the spectator particle, we may put

gss I &1)= a(&23&c'(&1) (2 7)

State Eo.'py)p2)p3 j

State Ei.. a—=pi+y, —p,—2k, b=—p,+2k, ps; (2.15)

State Zs: a,c—=ps+ k+k', &—=ps+k —k'.

Then the q matrix element is

(pi ps I gis I a,b)= doris' exp[—i(pi ri'+ps'12 )]
where C (Es) is the product of the three plane waves cor-
responding to state Ei, and. g(rss) is assumed to be in-

dependent of the mornenta in Ei. If (2.7) is assumed,
the integrations over Xi and Es in (2.1) can be done
immediately and give

II 8(&o)= (&8I jisgss(&28)Z '
(&12 &23 &si) I&8& ~ (2 8)

However, (2.7) is not correct. To see this, we write

)&g*(pi,ys, ris')expi(a ri'+b rs')

d'ris' g*(ris') expi(ps+2k —ys) rsi',

and the g matrix element

(2.16)

gssl&i&=cissl &1&, (2.9) (P klgssl»k')=

where f28 is the two-body defect function, ' and the
operator e may be written in the reference spectrum
approximation'

72 g 2 (2.10)

As is shown in BBP, y increases with increasing excita-
tion of the state Ei. Therefore, just becassse f' is very
insensitive to Ei (see 83, p. 809), g is very sensitive: It
increases rapidly with increasing energy. This is par-
ticularly true for the contribution from inside the core;
we have

i28I&i&= l&i&, (2.11)

gssl&i&= (kss'+vs) I&i&, rss(c (2.12)

where k23 is the relative momentum of particles 2 and
3 in state K~. The contribution from the core surface'
is less sensitive to the energy of state E~, and that from
the long-range, attractive forces is insensitive, viz. ,

bsl&i&=o(rss) l&i&, r23»c (2 13)

Because g is sensitive to E~, Kirson has evaluated it
for an average momentum k23. Since (2.12) is the most
sensitive contribution, Kirson used the mean square of
Ps', the momentum of nucleon 2 between the last two
interactions (both 7 and kss depend chiefly on P2'). Thus
Kirson puts

g28 I
lt 1) g23(p2 A. &28)C'(&1) . (2 14)

Then the integration still leads to (2.8). This is a reason-
able procedure, but clearly an approximation. We shall
develop a more systematic approach.

)&exp[—i(b rs"+p3'13 ')]gPs*(rss")

&&expi[k' (rs"—rs")+(ys+k) (rs"+rs")], (2.17)

with
P= ps+k. (2.17')

(a,c,dl Z '&
I p, ,y,y, &

exp[—i(a ri+c rs+d rs)]Z&n(r12 f28,,rsl)

&&expi(yi ri+ps rs+ps r )d'r8d'r s8
Z&'& expi[(ps —ps+2k) ri+(ps —y,—k—k') rs

+(k' —k) rs]dsrsdsrs. (2.18)

The integrals in (2.1) are 2r sdsk(22r) 'd'O'. The integral

in (2.18) is over the spaces of rs and rs only, with ri kept
6xed; integration over r~ would merely give a factor 0
(normalization volume) which cancels against normali-

zation factors.
Now k' occurs only in (2.17) in the form c'""»",and

in (2.18) as e ' '".Integrationover (22r) 'd'k' therefore

gives 8(rss"—rss), with corresponding simplification of

the integrals:

g~q depends on the parameters P and k. Finally, the Z
matrix element

4 This is actually convenient only for an ordinary, central force.
For other types of forces, see Sec. 3.

~ H. A. Bethe, B.H. Brandow, and A. G. Petschek) Phys. Rev.
129, 225 (1963);quoted hereafter as BBP.' BBP, Eq. (5.28).

ws(zo)=~-8 d'k (yi, pslgisla, b&

&&(&ilg*Z&» IKo&, (2.19)
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Here, after simplification of the exponentials,

(I~llg Z lifo) d rlsd rss gPs (r23)

Equation (2.23) can be further simplified. Since g de-
pends only on r», we can integrate over the position of
particle 1, i.e., over r~2,keeping r» 6xed. This yields

XZ~" (rls, r33 rsl)expi(ps —ps+2k) rls. (2.20) ~1(r») = d'ru 11*(ru)Z'"(ru, r23 rsl), (2.24)

since ps&kr«k, in general. The functions gl and gs in
(2.21) are supposed to be independent of k; clearly, gl
dominates at large r, g2 at small r.

When (2.21) is inserted in (2.20), (2.19), the integral
over d'k can be carried out by closure. This is obvious
for gl. To do it for gs, we note that according to (2.16),

(ps —ps+2k)'( "lel

X V'g*(rls') expi(ps —ps+2k) rls'. (2.22)

Assuming again

I ps psl &&2k (2.22')

the left-hand side is 4k'( . l pl ) which is the quan-
tity we wish to calculate. Using the right-hand side of
(2.22), the integration over k reduces to

7r ' d'k exp2ik. (rls —rls') = h(rls —rls'), (2.22")

and we obtain

It may be noted that the exponential no longer contains
rs, and is the complex conjugate of that in (2.16), as it
should be. Of the initial momenta, only p3—y2 enters
here, and ps in the (relatively unimportant) parameter
P, (2.17').

Equations (2.20), (2.19), (2.16) are the greatest
simplidcati. on we have been able to achieve without
making assumptions about the dependence of g(r) on
k. Now (2.12) suggests that g has a component which is

roughly proportional to k', and (2.13) suggests another
component independent of k. The term from the core
surface can probably be represented as a sum a+bks
Thus we believe it is a good approximation to set

gPs(rss) gl(fss)+k gs(rss) (2.21)

The dependence of g on I' can adequately be described
as a dependence on k because, from (2.17')

1
Ps(r») d rls

LV'g*(ru)]ZAN'&(rls

rss~rsl) (2.25)

II 3(A Q)
= d'rss Lgl (rss)+1(rss)

+go*(rss)Fs(rss)7. (2.26)

The function F~ is identical with the Ii introduced in
83, Eq. (5.1), which was there shown to be small if rss
is inside the core and to increase rapidly (by about a
factor of 1.5) outside. The other correlation function Fs
is new.

Kirson's Approximation

As was mentioned above, Kirson replaces g(k, r») by
g(kA, rss). If g has the form (2.21), this amounts to the
replacement

+2(r23) ~ kA +1(rss) ~ (2.27)

No matter how k~ ' is chosen, this replacement can-
not hold for all values of r». Kirson's procedure, even
for the simple form (2.21) of g, can therefore at best be
approximate.

However, from (2.12) and (2.21) it follows that gs is
mostly important for small r», viz. , r»&c. In this case,
Ii» and Ii2 are nearly independent of r» because the
eocpticit dependence of Zi'i on rss is small, and rls=rls so
that also the implicit dependence is small. Sample cal-
culations, such as B3, Fig. 11, bear this out. Then the
replacement (2.26), and thereby the Kirson approxima-
tion, are justified.

The situation is not quite this simple, because of the
tensor force. As is well-known, the tensor force between
nucleons 2 and 3 gives rise, in second order, to an effec-
tive, attractive central force g„(rss). This effective force
becomes weaker with increasing k, the effect being
roughly proportional to k .This gives an additional con-
tribution to gs(rss) which has relatively longer range.
Nemeth and Bethe~ have found that this is about as
important as the core contribution. For the tensor con-
tribution, the Kirson substitution (2.27) is not accurate.

Ws(Eo) = d'rud'rss Z ' (r12 r23 r31)

X{V ("13)gl ("23) sl V rl*(ru)7gs*(r»)} (2 23)

Since both q and Z('& are essentially independent of the
momenta p&, p2, p3, this result may simply be multiplied

by p' to give the energy per particle. The effect of the
nonvanishing momenta y~, p~, p3 can be treated approxi-
mately, using the method of Kirson. '

3. THE INTERACTION g(r, )

We shall now investigate the form of g(r») for a more
realistic potential, and its relation to the approixmation
(2.21). We proceed in stages.

Let us first assume that the potential is central and
has Serber form, then

(3.1)
' J. Nemeth and H. A. Bethe (to be published).
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The right-hand side contains only even angular-momen-
tum components. However,

y(r) e&k r (3.2)

contains all angular momenta and so, therefore, does
g(r)

Great simplification of (3.1) is possible for the long-
range interaction in the sense of Moszkowski and Scott
(MS). Here, }Pmay be replaced by P and (3.1) and (3.2)
give

g(r») = v(r»)(1+e—2&'»3) . (3.3)

This is not of the form (2.21). However, insertion into
(2.20) gives, apart from unimportant factors, the simple
result

cause these aftect primarily the S-state wave function.
It is obviously not convenient to calculate g, from (3.7)
because g, will contain all angular-momentum compo-
nents, due to &t (r). It is better to go back to (2.1) and
evaluate this directly.

With the interaction (3.7), we have (omitting the
spectator particle 1)

g23
~
Xl)—ve(r23 ')}pp(rss")e' '+k ' ""+"" (3 8)

(E'1
~ g, s

~
Es)= fd'rss" v, (rss")pp(rss")e'k' &'2"-""&. (3.9)

In this matrix element, the expi(ps+k)(rs"+rs") has
been canceled between initial and final state. %e com-
bine (3.8) and (2.18) and integrate over k', this gives
I'23 = 1'23 and

g8(rss)e2ik r}8 v(rss)(e2ik r}2+e2ik ~ rls) (3 4)

Closure with (2.16) can still be achieved; integration (Iki~gZ&'&~Ep)= d'rsd'rs v, (rss)}pp(rss)Z&'&
over k gives, again apart from unimportant factors,

~(r12 r12)+ ~(r12 r18)

(2.23) is replaced by

Ws(E p) d risd rss

(34')

v, (r)gp(r) —=g.(k,r)yp(r), (3.11)

where }tp is the unperturbed S-state wave function,

Xexpi[(ps ps—+2k) (rl rs—)+k rssj (.3.10)

%e now write'0

X[e*(r12)+21*(ris)jv(rss) Z"'(r 12 r 13 r28) ~ (3 5)

Z&'& is clearly symmetric' in r»2 and r»3., therefore the
two terms in (3.5) are equal, and the exchange term in
(3.1) has simply the effect of doubling the result. (This
is due to the neglect of the momenta pi, ps, ps in the
initial state. ) Thus (2.26) is replaced by

ll 8(+8) d r23 g1 (r23)+1(r23) (3.6)

pg(r) = v, (r)}pp(r), (3.7)

where }Pp is the L= 0 component of P, and v, is the extra
S-state potential. If desired, this v, may be chosen to
include the effect of the repulsive core, or the entire
"short-range potential" of Moszkowski and Scott, be-

8 H. P. Noyes, in Proceedings of Conference on Nuclear Forces
and the Few-Nucleon Problem, London, 2959 (unpublished); H. P.
Noyes and T. Osborn (private communication).

9 R. V. Reid, Jr., Cornell University thesis, 1967 (to be pub-
lished).

with Fi given by (2.24).
The Serber force, however, is not a sufficiently good

representation of the realistic potential between nu-
cleons, even apart from tensor forces. Considering just
singlet even states, it has been shown" that the attrac-
tion in the 'S state is greater than in the 'D and 'G
states. The triplet even states behave similarly. A
reasonable approximation is achieved if we choose v(r)
in (3.1) to represent the interaction in the D state (the
G state does not matter), and then add a term for the

difference between the S and D states, viz. ,

}t}p(r)=Jp(kr) = (4}r) ' dQ expik r'. (3.12)

&}(r12+sr23+21' r12 )expsi(ps —ps) (r2$+r')

so that the gi part of (2.23) is replaced by

(3.14')

Ws (Ep) = (4}r) ' d'r12d f23 dfl «*(8+sr')g, l(r28)

X[expsi(ps ys) (r'+—ssr)]Z&'&(ris, rss, rsi), (3.15)

"This g, is of course diferent from that in (3.7).

Here r is a vector of magnitude r23, pointing in an arbi-
trary direction, and fdQ is an integral over all direc-
tions of r'. In (3.11), g, is close to v, for r) d, with d the
Moszkowski-Scott separation distance; this means that
the zeros of }f}p will not cause any singularities in g, in
this region; for r(d, g, is more complicated, but }t}p will
in general have no zeros because kd is not large. It is
likely that g, (in contrast to the original g) c&82$ be
represented, with good accuracy, by an expression like
(2.21),

g, (k,r) = g, l(r)+k'g, s(r) . (3.13)

Inserting (3.11 and 3.12) into (3.10), the exponential
will have a k-dependent term

k (2ris+rss+r'). (3.14)

In addition there is k dependence in g, . If we neglect
this, i.e., write g, = g,», we can effect closure with the g
matrix element (2.16). Integration over k gives from
the exponentials
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FIG. 2. A third-order Goldstone
diagram in which the middle inter-
action is with the particle potential
U(s).

then (2.15) gives
P3 P&= 01

2k= b.

(4.5)

(4.6)

Equation (2.20) may be written'3

is the Fourier transform of g, denoted by Ii&j in BBP."
Then the "insert" diagrams of the Goldstone theory,
Fig. 2, will give exactly minus the right-hand side of
(4.3). Adding this to Ws gives zero; in other words, the
three-body correlation energy is compensated by the
potential insert diagrams of Fig. 2. The energy is then
given simply by the 6rst-order two-body interactions
(333m l

6
l
rrsss).

To this must be added the four-body (and higher)
correlations, and diagrams with more than one potential
insert. In addition to the expectation that these will be
small, Rajaraman" has shown that the most important
more-body correlations probably involve the long-range
force in all interactions except the first and last, and this
force is well represented by the potential U(b). There-
fore, choosing U(b) to satisfy (4.3), we shall probably
also minimize the net effect of the correlations of more
than three bodies. The claim is then that at present it is
best to find a U(b) compatible with (4.3), insert it into
the energy denominators in the Brueckner integral
equation for the two-body G matrix, and calculate the
nuclear matter energy by summing the two-body 6's.
Then no further corrections are needed.

To calculate U(b), we go back to (2.19) and (2.20). We
assume now

It is clear that by construction (4.10) satisfies (4.3).
Equation (4.10) must be modified for various types of
interaction, similar to Sec. 3.

Equation (4.10) is a reasonable definition of U(b) To.

obtain Fs from (4.8), we must integrate over the two
variables r» and r» for every value of b and of r». This
is evidently quite laborious, so an approximate discus-
sion is in order.

U(b) is most important l cf. (4.3)g for those states for
which y(b) is large, i.e., fors b=4 F '. In this case,
js(bris) is similar in shape to 31(ris), in the sense that both
rj 3 and re have peaks at r=c (the detailed shapes are
different). Then, from (2.24),

I'3(rss)-Pi(rss) . (4.11)

Tensor Forces

This justi6es, for this most important range of b, the
use of (4.1); it is easy to see that also the normalization
is correct.

On the other hand, for small b, of order br, js(bris) 1
for the important values of r», then Yb will not depend
very much on r23. In this case, small distances r23 will
be weighted in (4.10) about as much as large rss, i.e., the
inhuence of the repulsive core will not be cut down ap-
preciably by the three-body correlations. This does not
do any harm because the core is not very important for
small b anyway; see BBP, Fig. 11. Indeed, it is desir-
able that the core not be suppressed, because otherwise
U(b) for b slightly above kr can easily become less than
U(3rs) for an occupied state rrs slightly below br. Such
a "negative energy gap" was found by Sprung and
Bhargavais using (4.1), and was arbitrarily removed by
them. Our consideration here justi6es this removal;
further justi6cation will be given below.

A difliculty with (4.10) is the denominator y(b). Ac-
cording to BBP, Fig. 14, this is zero just about at b =kg.
This would cause a singularity in U(b). We shall now
show that this singularity is removed by including the
tensor force.

(K, lg*z ' lite)= d'rss gi„*(rss)I'3(rss), (4 7) If the first and last interaction" is by tensor forces,
Dahlblom'~ has shown that the function Z&'& must be
modified to read

I'3(rss) = d r13 js(bris)Zoi(ris, rss, rst), (4.8)

and (2.16)
&131,1 3 I n» I a,h) =y*(b) .

Then (2.19) takes the form (4.2), with

(4.9)

U(b) = d rss gps*(rss) I'3(rss)/y(b) . (4.10)

"See BBP (Ref. 5), Fig. 14.
R. Ra3araman, Phys. Rev. 155, 1105 (196'?).

"In (4.8) we have tacitly assumed that there is no correlation
between the directions of k and r23, then expib r12 in (2.20) can be
averaged over angle. This is, of course, not necessary.

Zr 3112 L1 t 13+sf 130335

3P3(ris r—is—)3113 [1 t 13+3(1st—33]

P2(r13' rss)'f23 Lfls—t 13 f12 f 13] (4.12)

where q~ is the radial part of the 'D wave function which

"D. Sprung and P. Bhargava, Nucl. Phys. (to be published).' If the erst interaction is tensor, it introduces the spin-depen-
dent operator S» which must be compensated by the last interac-
tion, which therefore also must be tensor. Intermediate interac-
tions are assumed to be central, except that they may include the
effective central force generated by the tensor force in second
order, as at the end of Sec. 3. T. Dahlblom, K. G. Fogel, B.Quist,
and A. Tom LNucl. Phys. S6, 191 (1965)] have calculated the
effect of three successive tensor forces and found it to be small;
this will not be treated here."T.Dahlblom (to be published).
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is associated with an unperturbed '5 wave by the tensor
force Lthe function X2i~"=—N2i"~ in the notation of
BBP, (6.29), and Fig. 13j.The reason for the difference
between this result and Day s 1s the summation over
the spins. Dahlblom now points out that the tensor
wave-function modification g~ is zero for r& c, and then
rises gradually, but that t (which comes from the repul-
sive core) drops rapidly for r&t, . Therefore the terms
involving products gf are apt to be small, and the only
important terms are

Zz 3&') =4ggg~ —2gg3~. (4.13)

This, however, is exactly the third-order contribution,
without corrections for three-body correlations. Dahl-
blom has calculated Fi, Eq. (2.24) inserting (4.12), and
has confirmed that it depends very little on res. The same
will undoubtedly be true of F~r(r23), Eq. (4.8), when
(4.12) is used for Z&'i, especially if b is not too large.

This means that for (initial and final) tensor interac-
tion, U(» in (4.10) reduces, apart from a constant fac-
tor, to

UT(b) d r23 gPkT (&28) p (4.14)

which is just the elementary "bubble" interaction.
Dahlblom has shown, using (4.12), that (again apart
from a constant factor)

gr g(even L——)+3g(odd L), (4.15)

in contrast to the case of an initial ceetral interaction
for which g(r~3) is given by the even L states alone.

Generalizing (4.3), it can easily be shown that the
correct three-body energy is obtained if we de6ne U(»
as follows:

y. (~)U.(»+y"(»U.(»
U(b)=, (4.16)

y.'(»+yr'P)

where U, (» is defined by (4.10) and (4.8) with Z"'
being Day s wave function with an initial central in-
teraction, while Ur(» is obtained similarly with Z&'&

being Dahlblom's expression (4.13). Similarly, y, and

yr are the Fourier transforms (4.4) of g., gr.
Equation (4.16) has the following advantages:

1. For small b, the tensor term dominates because
yr))y, (BBP, Fig. 14).This makes U(» essentially that
of the simple "bubble" with even greater assurance than
the argument below (4.11).It eliminates the danger of
a "negative energy gap" between hole and particle
states, especially because the high weight of the odd-
state interaction (4.15) introduces a repulsion for the
particle states. The dominance of the tensor term is also
satisfactory because U(» for states of low b is chiefly
needed to evaluate the two-body tensor G matrix.

2. There is no longer any singularity for y,(» =0.
3. For large b, above about 3 F ' (BBP, Fig. 14), y,

dominates and our previous estimate of U(» remains
correct.

Srandow" has recently constructed a somewhat dif-
ferent theory of nuclear matter, which however is also
based on the idea that the energy should be expanded in
the number of interacting particles. The di6erence lies
mainly in the choice of the intermediate-state potentials
U(». In Brandow's theory these are essentially zero, but
it is then necessary to do a separate calculation of the
three-body cluster energy, as we do in Sec. 2.

The discrepancy between these viewpoints is not as
great as it may appear. Brandow states'9 that our pres-
ent treatment of U(» is essentially equivalent to a fur-
ther rearrangement of his expansion. His argument lends
support to the Sprung-Bhargava'5 prescription whereby
the potential-energy function U(k) is forced to be con-
tinuous at kp. We believe that the present approach will

give a more accurate treatment of the energy contribu-
tions from the states just above kg.
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