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the stripping calculations fit the data fairly well and it is
expected that stripping is the main process for the
() reaction, contributions from other processes such
as knockon or heavy-particle stripping (as suggested
by the backward peaking in the angular distribution to
the 4.97-MeV level) remain open questions. These
contributions can be properly studied only when finite-
range calculations are available for these processes.
The large cross section to the 4.25-MeV level is
perhaps the most interesting result of this work. It
should stimulate more refined theoretical calculations
for the wave functions of Ne® and other neighboring
nuclei. The calculation of the contribution from higher
configurations other than the 1d, 2s shell can help to
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pin down the mechanism of the reaction. In particular,
once these contributions of the higher shells are known,
they will shed light on the role of “indirect” processes

such as inelastic excitations in this reaction.
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The effective matrix elements of the two-nucleon Yale potential have been used in doing Hartree-Fock
(HF) calculations in N=Z even nuclei (8<A4<40). The ground-state energy and single-particle energies
and wave functions have been calculated as a function of two deformation parameters. The calculated
equilibrium shapes and binding energy per nucleon are found to be reasonably good. The difficulties in the
HF formalism due to the state dependence on the reaction matrix have been discussed, and methods sug-
gested for doing a fully self-consistent calculation of the reaction matrix elements and the Hartree-Fock

energy and states.

I. INTRODUCTION

TOMIC nuclei are known to exhibit both single-
particle and collective properties. An interplay

of the two modes is also observed. Systems possessing
similar kinds of motion have been encountered else-
where in physics (e.g., the electron gas exhibiting col-
lective plasma oscillation), and adequately treated in a
unified theoretical frame. Similar unification has been
achieved in the nuclear-structure theory in recent years.
Considerable time elapsed between the development
of the unified outlook in nuclear-structure theory, and
the initial proposal of the structural models: the nuclear
shell model and the collective model. These models were
empirical in spirit and helped to explain and systematize
numerous experimental data on single-particle and
collective nuclear properties, respectively. The initial
understanding was handicapped by the dilemma of the
successful application of the shell model on the one
hand, and the strong two-nucleon interactions (having
a hard-core in some states), derived from an analysis of
two-body binding and scattering data, on the other. In

*Work supported in part through funds provided by the
Atomic Energy Commission under Contract No. AT(30-1)-2098.

more detailed spectroscopic calculations,! using the
shell model, various brands of smooth well-behaved
exchange-dependent potentials that are much weaker
than the observed two-nucleon potentials, have been
successfully used as the residual interaction between the
valence nucleons. In a somewhat different approach,?
the two-body matrix elements themselves have been
treated as parameters to be determined by fitting the
closed-shell plus two-nucleon nuclei, and then the
spectra of neighboring nuclei calculated in terms of these
matrix elements. Although such work rests heavily on
the assumption of simple shell-model configurations for
the nuclei under consideration, it is fairly successful in
many regions of the Periodic Table. What is important
here is that the effective two-body matrix elements
found in such work, once again, are of fairly reasonable
magnitude and bear no relation at all to the matrix
elements of the “actual” two-nucleon potential (which
are infinitely large because of the hard core) between
shell-model states.

1]. P. Elliott and A. M. Lane, in Handbuch der Physik, edited
by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 39, p. 241. This

review article describes many spectroscopic calculations using

smooth residual interactions.
1. Talmi and I. Unna, Ann. Rev. Nucl. Sci. 10, 353 (1960);
I, Talmi, Rev. Mod. Phys. 34, 704 (1962).



158 HARTREE-FOCK

The proper understanding came with the develop-
ment of the theory of nuclear matter by Brueckner and
collaborators,® Bethe and Goldstone,* and Gomes,
Walecka, and Weisskopf.® It has been shown that the
Pauli exclusion principle makes a fundamental dif-
ference between the correlated motion of a pair of
nucleons when they are left to themselves, and when
they are embedded in a many-nucleon medium. In the
former case the strong interaction gives rise to a
strongly correlated wave function exhibiting large phase
shifts at large separation distance. On the other hand,
in the second case the Pauli principle prevents a given
pair of nucleons to scatter to states occupied by other
nucleons in the Fermi sea; the correlation built up as a
result of scattering to very high momentum states is
confined only to a very small separation distance
(~1 F), after which the wave function quickly “heals
up” (a term used in Ref. 5) to the free-nucleon wave
function without any phase shift. It has further been
shown® that the effect of third- or higher-order cluster-
ing of nucleons in nuclei is also very small.

Thus, one should allow every pair of nucleons to
interact as many times as possible, obeying the Pauli
exclusion principle, and calculate the resultant energy
of the pair, and then sum such pair energies for all
the pairs in the nucleus. That will give the ground-state
energy of the nucleus. The pair energy that results from
multiple scattering of a pair through the actual po-
tential may be interpreted as the value of an effective-
potential operator for the given pair state. This operator
is usually known as the reaction operator, and denoted
variously by the symbols ¢, G, or K. We shall always
use the symbol ¢ in this paper.

The quick healing up of the correlated pair wave func-
tion (¥) to the uncorrelated wave function (¢) accounts
for the success of an independent-particle model of the
nucleus. However, the above discussion emphasizes
that the effect of the actual short-range correlation
present in the pair wave function has to be taken into
account by using the effective potential ¢ along with
the uncorrelated wave functions. The correlated wave
function has a zero, where the hard-core potential v
has its singularity, and as a result the matrix elements
of the effective potential between uncorrelated states
(¢m|t|¢n), which is identically equal to (¢m|v|¥n),
are well-defined finite quantities.

Associated with the calculation of the ¢ matrix is the
concept of two sets of states: (1) the low-lying states
make the first set and they comprise two types: (a)
states that are filled up in the ground state, and (b)

8K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958). This work lists all the earlier references by Brueckner and
collaborators.

“H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London)
A238, 551 (1957).

8L. C. Gomes, J. D. Walecka, and V. F. Weisskopf, Ann. Phys.
(N. Y.) 3, 241 (1958).

§ H. A. Bethe, Phys. Rev. 138, B804 (1965); S. A. Moszkowski,
ibid. 140, B283 (1965).
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those which lie above, but near the top of the occupied
levels. The importance of the type-b states is that
the residual interaction mixes them with the type-
a states and depletes the sharp Fermi sea (i.e., the
ground state with levels up to a certain maximum
occupied by particles). In a nucleus with an unfilled
major shell, the states belonging to set (1) determine
the ground-state and low-energy properties of the
nucleus. Mixing among them may cause the so-called
BCS pairing phenomenon in the ground state, or an
intrinsic deformation to a nonspherical shape, etc.
(2) The second set of states lie very much above the
low-lying set; these are the states to which a pair of
nucleons in the nucleus predominantly scatter as a re-
sult of the strong two-nucleon interaction having the
hard core. The excited intermediate states that enter
in the calculation of the correlated pair wave function
(and, hence the ¢ matrix) belong to this set. We shall
arbitrarily use the following nomenclatures to denote
the different kinds of states: “occupied” states (set 1,
type a), “unoccupied” states (set 1, type b), “excited
intermediate” states (set 2).

The effect of the excited intermediate states are
taken into account in calculating the -matrix elements,
which should then be used with the occupied and un-
occupied states (i.e., set 1) to calculate the ground-
state and low-energy properties of the nucleus. The next
step in this unified structure theory will be to calculate
the single-particle states belonging to set 1, self-
consistently, using the two-body ¢-matrix elements and
the Hartree-Fock (HF) formalism. The effect of the
residual interactions can then be taken into account
by a random-phase-approximation (RPA) treatment?
to yield collective vibrational properties. On the other
hand, if the HF treatment yields a deformed ground
state, then states of good angular momentum can be
projected out® which will yield the collective rotational
properties.

The self-consistent theory, however, is more com-
plicated in principle than the above discussion would
suggest. The effective two-body matrix elements (i.e.,
the ¢ matrix) used in such a calculation depend on
the energy spectrum and wave functions that result
out of the self-consistent calculation itself. This double
self-consistency requirement is very cumbrous to
satisfy in practice. To bypass this difficulty, it is
customary®1? to ignore the self-consistency requirement
in the calculation of the ¢ matrix. In this work we have

7R. A. Ferrell, Phys. Rev. 107, 1631 (1957); P. W. Anderson,
ibid. 112, 1900 (1958); S. Fallieros, thesis, University of Maryland,
1959 (unpublished); Maryland Technical Report No. 128, 1959
(unpublished) ; M. Baranger, Phys. Rev. 120, 957 (1960).

8 R. E. Peierls and J. Yoccoz, Proc. Phys. Soc. (London) A70,
381 (1957); W. H. Bassichis, B. Giraud, and G. Ripka, Phys. Rev.
Letters 15, 980 (1965).

9T. T. S. Kuo and G. E. Brown, Phys. Letters, 18, 54 (1965);
Nucl. Phys. 85, 40 (1966); R. L. Becker and A. D. McKeller,
Phys. Letters 21, 201 (1966).

10 C. Shakin, Y. R. Waghmare, and M. H. Hull (to be
published).
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adopted the same simplifying assumption, and have
done self-consistent calculations with the #-matrix
elements of the Yale potential,’! determined once for
all by Shakin'® using harmonic-oscillator wave func-
tions and energies. We have, however, discussed at
length ways to improve upon this approximation, and
reach the ultimate ‘goal of achieving double self-
consistency. This has been done mainly with a view to
indicate our future program of work, which will be re-
ported elsewhere.

The present work is one of the few initial attempts at
using a realistic hard-core potential in HF calculations.
Shakin and Waghmare® have used their effective
matrix elements in doing HF calculations on closed-shell
spherical nuclei: O, Ca*, and Zr%. In the present
work we lay the main emphasis on non-closed-shell
nuclei, and exploring the nature of their deformation.
To the knowledge of the present authors, no HF cal-
culations have yet been done with the Hamada-Johnston
hard-core potential,’? for which the effective matrix
elements have already been evaluated by Kuo and
Brown,? and by MacKeller and Becker.?

Another realistic potential, which does not have a
hard core, was set up by Tabakin'® with the specific
intention of applying it to HF calculations. His potential
is separable nonlocal, and is smooth well behaved, and
as such, very easy in its application. It has been used by
Kerman, Svenne, and Villars! for closed-shell nuclei:
06 and Ca*. The inadequate binding energy, obtained
in this work, has recently been improved upon by Pal,
Svenne, and Kerman,' by including the second-order
terms. Self-consistent calculations, including the second-
order effects of the Tabakin potential, are now being
carried out for non-closed-shell nuclei by Bassichis and
Kerman.!6

HF calculations have also been done by Baranger
et al.' using a simple separable nonlocal potential, and
a smooth velocity-dependent potential. These authors
adopt the view that, in choosing a good two-body effec-
tive potential for HF work, one should be guidéd more
by its ability to produce rapid convergence in a many-
body theory, rather than an extremely good fit to the
detailed two-body data. The potentials they have used
were chosen to satisfy the above criterion.

In earlier HF work by Levinson, Kelson, and
others,'® a smooth well-behaved Yukawa potential with
Rosenfeld exchange mixture was very widely used. These
authors further confined their self-consistent calcula-

11 K. E. Lassila, M. H. Hull, Jr., H. M. Ruppel, F. A. McDonald,
and G. Breit, Phys. Rev. 126, 881 (1962).

12T, Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962).

18 F. Tabakin, Ann. Phys. (N. Y.) 30, 51 (1964).

14 A. K. Kerman, J. P." Svenne, and F. M. Villars, Phys. Rev.
147, 710 (1966).

1 M. K. Pal, J. P. Svenne, and A. K. Kerman (to be published).

16 W, H. Bassichis and A. K. Kerman (to be published).

7K. T. R. Davies, S. J. Krieger, and M. Baranger, Nucl.
Phys. 84, 545 (1966).

18 T. Kelson and C. A. Levinson, Phys. Rev. 134, B269 (1964);
J. Bar-Touv and I. Kelson, sbid. 138, B1035 (1965).
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tions to the nucleons in the last unfilled major shell,
and used experimental numbers to simulate the proper-
ties of the core. The importance of their calculations lay
in demonstrating that a HF calculation is practicable
in nuclei, and such calculations lead to extremely inter-
esting results on the energy gap in single-particle energy
spectrum, the shape and the moment of inertia of the
nucleus.

In their exploration of the shape of nuclei, Bar-Touv
and Kelson!® used various shapes of the single-particle
density to start the HF calculation, and then compared
the ground-state energies obtained in the different cases.
In this work we have followed a more systematic way,
using the method of Lagrange multipliers, to follow the
energy surface as a function of two deformation param-
eters, B and «y, the former giving theamount of spheroidal
deformation and the latter the departure from spheroidal
to ellipsoidal shape. This method was suggested by
Kerman,'® and has been used by Bassichis and Kerman?!6
in doing deformed HF calculations restricted to spheroi-
dal symmetry.

We have done the calculations for all even-even
(N=Z) nuclei in the range Be? to Ca*’. All the harmonic-
oscillator wave functions up to the 2s-1d major shell
were used as basis in the HF diagonalization. In Sec.
II we present the general HF formalism and its special-
ization to the hard-core potential. This section also
contains a scheme of future calculations in which the
effective two-body matrix elements themselves are
made self-consistent with respect to the HF states and
energies. Section ITI gives many details of the actual
HF computations, namely the choice of the initial
density satisfying general symmetry properties, its
subsequent changes through the Lagrange multiplier
method, exploration of the energy-surface versus the
deformation parameters, etc. Numerical results are
described and presented with the help of tables and
curves in Sec. IV. Section V discusses some of the
limitations of the present calculations, and points out
unexplored areas into which future work of the self-
consistent type could expand itself.

II. HARTREE-FOCK FORMALISM FOR A
HARD-CORE POTENTIAL
A. General Formalism

The nuclear Hamiltonian for a system of 4 nucleons
is given by

A A
H=3 T3 v (1a)
i=1 i<j
or its equivalent second-quantized form:
> (aB|v|yd)calcslcaicy. (1b)

H= Zﬁ(fxl T|B)catcat%

a,B,7,8

19 A. K. Kerman, Ann. Phys. (N. Y.) 12, 300 (1961).
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T and v are, respectively, the kinetic- and potential-

energy operators; a, $3, etc., represent a complete set of
single-particle basis states for which c.f, ¢ are, respec-

tively, the creation and destruction operators. In the

Hartree-Fock method one assumes a ground-state wave

function in a determinantal form in which certain

single-particle states I, m, n---, etc., are occupied.

These wave functions are first expressed in terms of the

single-particle basis states as follows:

D=3 xa!|e), (22)
subject to the normalization condition
> x| ?=1. (2b)

a

Then, the coefficients x,! are treated as variational
parameters for the minimization of the expectation
value (H) of the Hamiltonian in the deteiminantal
ground state. We have

()= ;:<ZITH>+§ (Im]o)impe

=3 ¥ waMagia| T|6)

=1 af

A
+ X Z xal*xleﬁm*x5m<aﬁlv|76>a (3)

I<mafyd

and the minimization of this expression yields the
equation

‘L;.(al Tlﬁ)xa’+§<al V|B)xgl= ewwals (4)

€ is a Lagrange multiplier that multiplies Eq. (2b) in
the process of variation, and the single-particle HF
potential V is defined by

(e|V]B)= %(avlv |88)apsy » (5a)
where
A A
Pey= Z=1 &5y = Z=l<6|m><mi7> (5b)

The operator
4
p=X |m)m|

m=1

is clearly the single-particle density operator, and psy
are its matrix elements with respect to the single-
particle basis states. The label ¢ on the two-body
matrix elements in Egs. (3) and (5a) denote matrix
elements for antisymmetric two-body states (i.e.,
direct minus exchange).

The program” to be carried out, for the minimiza-
“tion of ground-state energy, thus reduces to the solu-
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tion of the single-particle eigenvalue eigenfunction,
Eq. (4). Since the operator V is defined in terms of the
eigenvector «, a question of self-consistency is involved
here. This is usually achieved by repeated diagonaliza-
tion of T4V, starting with a guess for p and then re-
calculating p, and hence V, from the eigenvector at
each iteration.

B. Specialization to a Hard-Core Potential—
Double Self-Consistency

The description of the HF method given here is
fairly standard, and the same equations may be ob-
tained in many different ways (see, e.g., Baranger).2?
These derivations, however, do not hold for a realistic
two-nucleon potential that possesses a hard core, be-
cause the two-body matrix elements for the basis
states become infinite. As a result, although (1a) still
represents the Hamiltonian to be solved, the second-
quantized version (1b) in terms of the matrix elements
of v for the basis states becomes meaningless.

Fortunately, however, for a hard-core potential, the
Brueckner-Goldstone many-body theory®=5 gives rise
to an expression for the ground-state energy, in the
lowest order, resembling Eq. (3), except for the fact that
v is now replaced by the reaction operator ¢. The latter
was described physically in the introductory section,
and an exact mathematical definition will soon follow.
One can, as before, minimize the new expression,

<H>=é<llTIl>+§ mlilime, ()

with respect to the coefficients «,! of (2a), subject to
the restriction (2b), and obtain Eq. (4) to be diagonal-
ized. The definition of ¥V, however, now changes to

(o V|B)= §<avltlﬂa>ap57 (7

with the same definition (5b) for p.

There is, however, some minor formal difficulties
which will be pointed out later on. We first define ¢ in
terms of v:

t=v—2(Q/e)t. @)

Here, Q is the operator that takes care of the Pauli
exclusion principle, i.e., it restricts the intermediate
states of the pair of nucleons, originally belonging to
the occupied set I, m, n-- -, etc., to states outside the
set. The energy denominator e is the difference between
the energies of the pair of nucleons in their excitéd
intermediate state and their initial state. The single-
particle energies, to be used in the energy denominator
should be the same as determined in the HF calcula-
tion. Thus, as mentioned in the introduction, there is a

20 M. Baranger, Theory of Finite Nuclei, 1962 Cargése Lectures
on Theoretical Physics, edited by M. Lévy (W. A, Benjamin,
Inc., New York, 1963).
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question of double self-consistency involved here. Not
only must the single-particle wave functions and energies
determined in the HF diagonalization be self-consistent,
they should also reproduce self-consistently the matrix
elements of £. This now brings us to the formal difficul-
ties mentioned above. The minimization of Eq. (6)
should have given rise to additional terms due to the
implicit dependence of f, through Q/e, on the single-
particle states. We shall arbitrarily ignore such terms
and assume that the HF equation is still approximately
good for the minimization of energy.

From the definition of the Pauli operator Q given
above, it is clear that the intermediate states could,
strictly speaking, belong to the ‘“‘unoccupied” set as well
as the “excited intermediate” set (nomenclatures de-
fined in Sec. I). In practice, however, it is necessary to
exclude the former set also from the intermediate states.
This set of states, being very close to the “occupied”
set of states, cannot be important as far as the scattering
of a pair of nucleons by the strong short-range part of
the force is concerned. On the other hand, the high-lying
excited intermediate states are very important as far
as such scattering is concerned; the effective potential
that results, being a weak, and rather long-ranged (see
Scott and Moszkowski?!) potential can mix the low-
lying unoccupied states very well with the occupied
ones. The unoccupied levels play a major role in this
type of mixing, and an extremely unimportant role in the
formation of the effective potential itself. Therefore,
to avoid double-counting of their contribution, it is very
important that they be omitted as intermediate states
in calculating ¢, and considered only in the subsequent
diagonalization process.

C. Simplifying Assumptions for {~Matrix Elements

In the case of infinite nuclear matter the self-consistent
calculation becomes easier because the single-particle
wave functions are always plane waves; only the energies
need be determined self-consistently. Kuo and Brown?
have introduced an approximation in the finite-nucleus
calculation in analogy with the above-mentioned sim-
plification for the case of nuclear matter. They argue
that the single-particle wave functions for finite nuclei
very nearly resemble harmonic-oscillator wave func-
tions and hence one may forget about making them
self-consistent, and achieve self-consistency only in the
energy denominator. In the actual calculations they
have gone a step further, and used the harmonic-
oscillator energies or a reference spectrum. Once this
second approximation is introduced, there is no require-
ment of self-consistency at all in their calculation of
the fmatrix elements with harmonic-oscillator states.
These numbers can then be looked upon as the matrix
elements, in oscillator basis, of the effective potential,
and used in Eq. (7) to carry out HF calculations in a

21 S, A, Moszkowski and B. L. Scott, Ann, Phys. (N. Y.) 11, 65
(1960).
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straightforward manner. This is the viewpoint adopted
in the present work. We have used the f-matrix elements
in oscillator basis for the Yale potential (calculated by
Shakin!® in a somewhat different way) in the HF cal-
culation without bothering about the self-consistency
of the /-matrix elements themselves. A few comments
on Shakin’s method of derivation of the matrix ele-
ments will be given in the Appendix.

D. Improved Methods of Calculating
Self-Consistent ¢ Matrix

Although not very relevant to the numerical results
presented in this paper, we would like to indicate here
several ways of improving upon the above-mentioned
viewpoint.

(1) The first is to adopt the view that the oscillator
wave functions are being used merely as basis wave func-
tions in the {-matrix calculations. Then, for each set of
injtial energy ene. (obtained from the HF spectrum
and treated as a parameter), one can calculate the full
set of matrix elements of ¢ in the oscillator basis. As
discussed by Bethe, Brandow, and Petschek,?? this ¢
matrix is Hermitian, and is dependent on the parameter
(em+€x). But then one immediately runs into formal
troubles in the definition (7) of V. These matrix ele-
ments of ¥ depend on the choice of the initial occupied
pair state. All one can hope for, under the circum-
stances, is that this dependence is not strong and,
hence, can be averaged out to give a fairly meaningful
definition of the matrix elements of the v in the chosen
basis.

(2) A slight variant of the procedure, which is much
easier to carry out, will be to use an average quantity
A for the energies (en+e€,) in the calculation of the ¢
matrix. The HF spectrum may be used as a guide in
choosing a value for A. It is expected that such a choice
will make the difference (Q/¢—1/es) very small. e,
is the energy denominator calculated with A.

(3) The most rigorous procedure is to calculate the
¢ matrix at each iteration of the HF equations, in the
representation of the contemporary HF single-particle
states. With such matrix elements, one can define the
matrix elements of ¥ in the same representation as
follows:

r|V])=3 X Lem|t|sm)+(sm|t|rm)],  (9)

where |r) and |s) can be both occupied and unoccupied
single-particle states, and the summation on # runs
over the occupied states only. To make ¥V Hermitian,
we now need the explicit symmetrization on the right-
hand side.

In the definition of ¢, given earlier by Eq. (8), we had
defined e as the difference in energy between the excited

 H. A, Bethe, B. H. Brandow, and A. G. Petschek, Phys. Rev,
129, 225 (1963). -
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intermediate state and the occupied initial state. That
definition, therefore, holds good in Eq. (9) when |s)
happens to be an occupied state. If |s) is an unoccupied
state, one would think that in the definition of e, one
should substitute e(s)4e(m) in place of the initial
occupied pair energy. This, however, is not true. The
reason, popularly known as the effect of propagation
“off-the-energy-shell,” has been discussed at length by
Bethe.?? This once again gives rise to formal troubles
akin to what was confronted in trying to define V in an
arbitrary representation; namely, (| V'|s) becomes de-
pendent on other state labels besides |7) and |s). It
will, however, be a good approximation at this stage to
simulate the effect of off-energy-shell propagation for
the case of unoccupied |s) by adding an average energy-
shift parameter 6 to e. With this approximation (r| V|s)
does not become dependent on extraneous state labels,
and hence the HF diagonalization equations can be
written down meaningfully:

S@(TH+V)|9)xe=ex,. (10)

Once the matrix elements (| V|s) are well defined in
terms of (rm|¢|sm) we can even convert the diagonaliza-
tion equation (10) to harmonic-oscillator basis using the
definition

(@|V|B)=2 xa"(r|V|s)xs**, (11)

where the summations are over all states, occupied and
unoccupied.

The reader is cautioned here to use the words
“occupied” and “unoccupied” states exactly according
to the conventions defined in Sec. I.

More practical details on the calculation of the ¢
matrix are relegated to the Appendix II.

1II. DETAILS OF THE HARTREE-FOCK
CALCULATION

A. Choice of the Density Matrix

To obtain the solution of Eq. (4) we must first choose
an initial density p. Once the density is chosen the HF
matrix I'(=7T4V) can be diagonalized and the new
density matrix obtained using Eq. (5b). The process is
repeated until a self-consistent density is obtained. The
choice of the initial density is very important for the
following reason. It is clear that the definition (5a) of
the HF potential ¥ can be written in a short-hand nota-
tion as Vi=Trevisp: where the labels refer to the par-
ticles. The two-body potential ;. is a scalar under rota-
tion, and is invariant under time-reversal and parity
operations. It follows, therefore, that whatever sym-
metry property is incorporated into the density p with
respect to the above three operations, gets reproduced in
HF-potential V. The wave functions that are obtained
from the resultant T' will yield a density at the next
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iteration having the same symmetry property. Thus all
the symmetry properties of the initial p are transmitted
on to the final self-consistent solution. To get HF solu-
tions with different types of symmetry properties one
has, therefore, to start the iteration with wvarious
choices of p. The self-consistent ground-state energy in
each such case represents a local minimum, and the
lowest of all these minima correspond to the energetically
most-favored ground-state wave function.

We first did a set of calculations with a completely
arbitrary starting density without caring to build in
any specific symmetry property. Nevertheless, we found
that the self-consistent single-particle states in even-
even (N=2Z) nuclei occur in time-reversed pairs of
good parity. The wave functions which are linear com-
binations of the states |nljm), in general, contain all
values of m between — 7 and j.

Use of the Body-Fixed Axes

By a suitable rotation of the coordinate axes, the
wave function can be transformed to a form where only
terms with angular momentum projection quantum
numbers “m’’ differing by two occur.

Bar-Touv and Kelson!® have shown that this cor-
responds to working in the body-fixed axes, which im-
plies imposing specific symmetry properties on the
density matrix. To obtain the Hartree-Fock solution
in the body-fixed frame we therefore demand the density
matrix connect states with angular-momentum projec-
tion m=7% to states with m= —$ and &, while those with
m=—%, —3% and % are connected with each other.
Corresponding to these two subspaces the density
matrix can then be divided into p; and p,, which are re-
lated as follows through the time-reversal invariance.

Time-Reversal Invariance

It has been already stated that the self-consistent
solutions do occur in time-revised pairs for (N=2Z2)
even-even nuclei, even when one starts the calculation
with a general density matrix. Thus, the convergence
can be improved by starting out with a density matrix
that is invariant under time reversal. Applying the
time-reversal operator T to p, we obtain

mljm | T1T |0l j'm’)
=(=1)Fmt=m (plj —m|p|n'l §', —m').

(12)
Therefore, TtpT=p requires
(nljm) pal W'V j'm)

= (=1)Fmt =" (nlj, —m|pa| W'V j'—m'). (13)
By choosing the initial density matrix p; in the sub-
space of (m=—4%, §, §) and also demanding that the
density p is given by Eq. (13), we obtain self-consistent

solutions in the body-fixed axes with the time-reversal
invariance built in from the very outset. The only re-
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striction that has to be satisfied in choosing p; is
Trp=2 Trp1=2XTr ps=A, the number of nucleons. At
subsequent stages of the iteration this is automatically

satisfied.

Behavior under Rotation

. The choice of a general p; which contains mixing of
different m quantum numbers (Am===2) corresponds
to a very general intrinsic shape of the nucleus. All it
presupposes is the presence of a quantization axis, the
z axis shall we say, and a symmetry under rotation of
180° about the y axis. Applying further restrictionstothe
initial choice of the density matrix, we may generate
solutions which are spherical and axially symmetric.

Tf the density has an axis of symmetry (which we may
conveniently label as the z axis), then clearly it cannot
have matrix elements connecting different m values;
only the (nlj) quantum numbers mix. The matrix ele-
ments connecting different (nl4), however, depend on
what m quantum number these states correspond to.
On the other hand, a spherical density, being rationally
invariant, cannot mix different /, j, and m quantum
numbers; it mixes different #» quantum numbers and
the matrix elements have to be independent of .

In our calculations the radial mixing is restricted to
the 1s and 2s states. Thus, the asymptotic form of the
Hartree-Fock field and the wave functions is Gaussian.
If the expansion of the HF wave function is not trun-
cated with respect to the sum over the principal quan-
tum number %, the solutions would be independent of
the oscillator constant & (cf. Baranger!” and Kerman,
Svenne, and Villars'): b2=7%/Mw and b makes # dimen-
sionless in the oscillator wave function. Because of the
limited basis used in the present calculation, the radial
dependence of the HF field and the wave functions are
characterized by the oscillator constant b. Therefore, &
was chosen so that the rms radii agreed with the results
from electron scattering. Since we are primarily inter-
ested in calculating the gain in the binding energy as
the self-consistent field is allowed to deform, we do not
consider the restricted radial dependence to be serious.
Further remarks about the truncation of the expansion
Yur in terms of oscillator wave function is included in

Sec. V.
Parity Mixing

We found, for an arbitrary initial density connecting
states of opposite parity, that in all cases the ultimate
self-consistent solutions were of good parity. We now
show that our calculations include the possibility of
generating mixed parity solutions. ‘

Consider the definition (Sa) of the HF potential V.
It is clear that the states « and B8 are required to be of
same (opposite) parity depending on whether v and 6
have the same (opposite) parity. This follows from the
conservation of parity in the matrix elements of v.
Thus, starting with a density that mixes parity, we
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should be able to reproduce self-consistent wave func-
tions of mixed parity. Further insight is obtained by
writing the multipole expansion for the potential » in
the two-body matrix elements that enter into the cal-
culation of V. For a central potential, we have

v(lrl—-rzl)=LZA:{ Vi(rir) Va"*(P) Y a"(72) , (14)

and hence (ay|v|B8). contains factors of the type
(a| Y a"*(71) | B)(v| Y r(#2) | 8) in the direct term, and
(0| Y 2r2*(71) | 8)(v | ¥ a%(72) | B) in the exchange term. It
is clear, therefore, that the direct term mixes parity in
the HF potential through the odd multipoles, and the
exchange term through both odd and even multipoles.

The tensor potential may also be written in multipoles.
Each Y 5% now appears multiplied by a 7. Since the
latter changes parity, the role of the odd and even
multipoles will now be reversed.

Since, however, good-parity solutions were found to
be energetically favored (at least for the two-body po-
tential that we have been working with), we chose for
our final calculations an initial p that conserves parity.
This achieved faster convergence. Kerman, Bassichis,
and Svenne?? have made very detailed investigation of
the role of parity mixing in HF calculations. In par-
ticular, they explore the effect of changing the strength
of the tensor potential to achieve a lowering of the
parity-mixed HF solution below the good-parity
solution.

B. Nuclear Deformation

The self-consistent wave functions allow one to ex-
press the nuclear deformation quantitatively in terms of
parameters, familiar to the nuclear collective model.

We first evaluate the quadrupole moments:

16w \1/2 4
(QM>=<"“5—> <§1 727 32(0::) ) (15a)

using the HF determinantal wave function.

In the body-fixed axes, the M==1 terms are zero
due to reflection symmetry. Only Qo, Q2, and Q_, are
nonvanishing with Qa=Q_o.

We characterized the nuclear shape by the elongation
parameter 8 and the angle of asymmetry . Expanding
the deformed nuclear surface to lowest order, as

R=RJ[1+3 anY u*(6,9)],
M
the collective model gives, to first order in ayr,

ZR%ax. (15b)

Q)= o

Using the calculated values of Qu, Eq. (15b) and the

2 A. K. Kerman, W. H. Bassichis, and J. P. Svenne, Bull.
Am. Phys. Soc. 11, 304 (1966).
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relations,

1
a=Bcosy, and ay=a_s= Eﬂ siny, (15¢)

we evaluated the deformation 8 and the angle of asym-
metry v. It should be mentioned here that only values
of v in the range 0°-60° are important. Higher values
of v mean a repetition of the same ellipsoidal shape, with
the labeling of the #, y, z axes interchanged.?*

C. Method of Lagrange Multipliers

The calculations were first carried out starting with
an initial density which had unity for the elements of
p1 and =1, for the elements of ps (ps being the time
reversed of p;). For all nuclei the program converged to
give a self-consistent field. In order to confirm that the
calculation had converged to the lowest minimum we
were forced to use a method that permits the determina-
tion of the energy as a function of 8 and . The method
of Lagrange multipliers, used extensively by Bassichis
and Kerman,'® has been used for this purpose.

The Hartree-Fock approximation requires 8(¢|H |¥)
to be zero with the constraint that (¢|¢) be normalized.
This leads to the variational equation

SLWIH|Y)— W l¥)]=0, (16)

where e is a Lagrange multiplier to take into account the
single constraint mentioned above. It has been already
shown in Sec. IT that using a determinantal form for ¢,
and single-particle wave functions in the form (2a),
yields the HF equation (4). The constant e, which is the
energy eigenvalue, is the simplest Lagrange multiplier.

In the present case we want to evaluate the energy as
a function of 8 and v. We therefore seek a deformed ¢
in the minimization of (Y|H|y) subject to further
constraints:

where Qj is the quadrupole operator in the body-fixed
frame, and ¢, is its specified value.
We are thus required to solve

SLWIH ) — e@[¥) =MW [Qo[¥)
—Xe(¥]Qat0-2[¥)]=0, (18)

where Ay are the new Lagrange multipliers multiply-
ing the additional constraints. Substituting the expres-
sion for the wave function in terms of harmonic-
oscillator wave functions, Eq. (2a), and carrying out the
variation we are led to the following modified HF
equation:

% [T+ V—=NoQo—A2(Q2+Q—2) Japris’= eiwa®.  (19)

The terms Qu in Eq. (19) are the driving terms for

24 A, Bohr and B. R. Mottelson, Kgl. Danske Videnskab.
Selskab, Mat. Fys. Medd. 27, 1 (1953).
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nuclear deformation; the amount of deformation they
can force is dependent on the numerical value used for
the Lagrange multipliers A sr. Our previous observation
that the symmetry properties of the initial density is
propagated unaltered through the iterations is no
longer true for Eq. (19). Even if we calculate V with a
starting spherical density (and hence V spherical), the
presence of the terms Q in Eq. (19) yields nonspherical
solution for the wave functions x.’, and hence the
density, and V calculated for the next iteration becomes
nonspherical. For Q finite and Qs=Q_=0, V is axially
symmetric.
We expressed Ao and \; as functions of X and 6:

No=Acosd and Ae=(A/V2)sind,

and generated the HF field for A\=—22 to 22 and §=0°
to 60°. For each value of X and 6 the corresponding ¢
enables one to calculate gy (which alone have physical
significance as the quadrupole moments of the nucleus),
and the deformation 8 and angle of asymmetry v by
Egs. (15b) and (15¢).

Although it is possible to increase or decrease the
driving terms continuously through the Lagrange
multipliers Az, the response of the system, which is
measured by the corresponding changes in g¢a, is
found to be rather sluggish.

Since the expectation values of Qu are not linearly
related to Ay, one obtains solutions for restricted values
of gar. As the parameters \ and 8 vary, the expectation
values gar of Qu are given in a few isolated domains.
Table I, which gives the results for Mg, demonstrates
this fact. Each isolated domain corresponds to one
local minimum of the ground-state energy. The results
show that the Lagrange multiplier method cannot be
used to determine the energy surface as a continuous
function of 8 and v. However, they can be used to drive
the system from one local minimum to another on the
energy surface. We found that once the system has
been driven into a local minimum with the help of
Lagrange multipliers, then the corresponding density
can be very conveniently used to start the iterative
solution of the original HF equation (4) [in other words,
Eq. (19) with Ay =0]; this procedure very quickly leads
us to the neighboring minimum point on the ground-
state energy versus the deformation curve.

It was further noticed that the driving of the ground-
state energy from one minimum to another is intimately
related with the crossing of single-particle levels near
the Fermi surface. This suggests a possible alternative
way of exploring all the minima of the energy. Instead of
constructing a ground-state wave function, at each
iteration, by filling up the lowest 4 levels (4 =number
of nucleons), one can always choose to have the par-
ticles in a given set of levels, and iterate the original
HF equation (4) to obtain the corresponding self-con-
sistent solution and the ground-state energy. Then one
should exhaust all possible ways of allotting particles to



932 M. K. PAL AND A. P. STAMP 158
TasiE I. Hartree-Fock solutions for 2¢Mg as a function of A and 6°. BE/A is the binding energy
per particle in MeV and (#2¥,?) and (r2(Y 22+ ¥ _5?)) are in F2.
o 20° 40°
6° (V32
A (r?Yy2) +Y_s%)) BE/A (rPY?) (r*(Y22+Y_2?)) BE/A (Y% (r2(Y2+Y_s?)) BE/A
—22.0 —26.207 0 —35.292 —26.197 —0.029 —5.296 —16.387 —12.045 —4.346
—18.0 —26.196 0 —5.310 —26.186 —0.028 —~5.314 —16.396 —12.013 —4.379
—14.0 —26.178 0 —5.334 —26.167 —0.027 —5.339 —16.409 —11.971 —4.416
—10.0 —26.145 0 —35.366 —26.132 —0.026 -5.371 —16.418 —11.914 —4.460
—6.0 —26.074 0 —5.411 —26.059 —0.024 —5.416
—4.0 —26001 0 —5.442 —13.291 —7.747 —6.818 —13.129 —8.076  —6.778
—13.016 —17.753 —6.879 —13.034 —8.023 —6.828
—2.0 —14.250 0 —6.462 —12.755 —7.731 —6.909 —12.835 —7.936 —6.883
—1.0 —13.411 0 —6.566 —12.529 —7.704 —6.923 —12.628 —17.850 —6.911
—-0.5 —12.899 0 —6.598 0 0 —6.205 —12.447 —17.781 —6.924
0 0 0 —6.205 15.753 3.733 —6.924 0 0 —6.205
15.932 3.808 —6.911 15.699 3.822 —6.923
0.5 15734 0  —6.758 16.135 3.895 —6.883 15.845 3.947 —6.909
1.0 15947 0  —6.745 16.341 3.975 —6.828 16.001 4.097 —6.878
2.0 16.188 0 —6.716 16.453 4.006 —6.778 16.129 4.270 —6.817
4.0 16.426 0 —6.659
22.798 4.102 —4.461 13.058 15.946 —5.416
6.0 22.901 0 —4.069 22.862 4.069 —4.417 13.097 15.990 —35.371
10.0 22.983 0 —4.016 22.907 4.040 —4.380 13.116 16.011 —5.338
14.0 23055 0  —3.935 22.940 4.015 4.348 13.127 16.022 —5.314
18.0 23.074 0 —3.904 13.134 16.022 —5.296
220 23.074 0 —3.904
0 —12.182 0 —6.612 —12.096 —7.631 —6.931*
0 —25.458 0 —5.502
0 15328 0  —6.765 15.394 3.592 —6.931*

alternative levels near the Fermi surface, and get the
self-consistent solution for each such choice. The lowest
of these solutions is the true HF ground-state solution.
The other solutions represent excited intrinsic states.
This method, however, yields only a few isolated points
on the energy surface (versus the deformation), while
the Lagrange multiplier method generates parts of the
energy surface in the neighborhood of the above points.
Moreover, the Lagrange multiplier method auto-
matically causes the shift from one set of occupied
levels to another without requiring any intuition in
making the choice.

It may appear that the single-particle spectrum, ob-
tained by solving Eq. (19), should need corrections cor-
responding to the extra quadrupole terms before they
can be used in setting up the HF determinant. The
manner of derivation of this equation will, however,
tell us not to do this. It was proved that the determinan-
tal ground-state wave function, built with the help of
the single-particle spectrum and wave functions ob-
tained from Eq. (19), does really minimize, subject to
certain given values of the quadrupole moments, the
ground-state energy (¢|H |¢), where H is the original
Hamiltonian. :

IV. NUMERICAL RESULTS

The calculations were carried out for the 4% nuclei,
8<A4<40. The HF fields were generated for A in the
range —22 to 22 and 8 between 0° and 60°. In general,
for larger values of A, either the calculations failed to

converge, or the 1s state was found to be bound very
strongly (>120 MeV). Such solutions were considered
unphysical. For 6 in the range 0° to 60° all possible
axially asymmetric shapes are possible; 6>60° cor-
responds to a rotation of the body fixed axes. In the
calculations the initial density matrix was taken to be
spherical plus the admixtures due to the driving terms
MoQoand Ao(Qa+Q—2). Hence A was increased from 0 to 22
and decreased from 0 to —22. To illustrate the pro-
cedure we followed we present the results for 2Mg first.
In Table I we give the values of 72V % r2[ V24V _o?]
(ie., B and v), and the binding energy per particle
(BE/A), as a function of \ and 8. For §=0, four axially
symmetric solutions were found. The minima corre-
sponding to (Y 2)=~—12 F? (oblate) and 415 F?2
(prolate) correspond to the configurations (1ds,*5/2)2
X (1ds /2322 and (1d5/2%%/2)~2(1d5/9%3/%)2, respectively.
The solution with (r2Y¢®)~—26 F? has the 1d;,,%5/2
states filled, while the 1d5,,*%/2 shell is populated at the
expense of the 1p3,2V/2 and 1p1»*1/? states. The dis-
continuities in the expectation values of 72Y,? and
r}(V>+Y_o?) occur when the single-particle levels
cross and the particles occupy different states.

In all cases, we found, when driving the system from
one minimum to another, the system possessed an
intrinsic inertia against changing its shape. Consider,
for example, prolate deformations. The expectation
value for 72¥¢*=15.734 F? and that of 72(V 24V _,%) =0.
Adding a small amount of the axially asymmetric driv-
ing term, 6=>5° we found the value of 72(Vy2+¥_,?%)
=3.568 F2 For 0= 20° and 40°, the value of 72(V2+V_s?)
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Fic. 1. Variation of the binding
energy per particle as a function of
(r*Y2(6¢)) for axially symmetric
deformations in 2*Mg. Note that the
coordinate axis is broken.
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=3.733 and 3.822 F?, respectively, while the value for
the absolute minimum is 3.592 F2. The system is,
therefore, very stable near the minimum. With only a
small admixture of an axially asymmetric term to the
density matrix, the calculation iterates to nearly the
absolute minimum. We also point out that the system
is always driven past the local minima by Ao and \.
(i.e., for A=0.5, 1.0, 2.0, and 4.0 the BE/A decreases).
Therefore, once the local minimum (72V2=15.328 F?)
was obtained we used the resulting density as the start-
ing density for further calculation and drove the system
in the opposite direction (i.e., A=—0.5, —1.0, —1.5,
—2.0). We then obtained the HF solution for 82 Bmin,
ie., (PV )2 (2 0®)min. We give the results in Fig. 1.
The last three lines of Table I give the various absolute
local minima. The solutions denoted by an asterisk are
related by a rotation of the frame of reference. In Table
ITI, we give the single-particle spectrum for the spherical,
oblate, prolate, and absolute minima. There is no 1p3s,
1p12 state splitting when Mg is constrained to be
spherical ; however, the absolute minimum does give a
reasonable splitting of the p levels. The wave functions
for the absolute minimum and for the prolate minimum
are given in Table III.

The only other nucleus, besides Mg, which was
found to be axially asymmetric was 32S. In Table 1V,
we summarize the minima occurring in %S and give the
wave functions for the absolute minimum. It is re-
assuring that the HF approximation gives axially asym-
metric shapes for Mg and #S which are the 8-particle
and 8-hole nuclei, respectively, in the s-d shell. The
remaining nuclei were found to be axially symmetric,
except for 10 and Ca, which are spherical.

The most interesting axially symmetric nucleus is

L.
-230 ¢

!
-130 120 ‘150 160
< Y:(a,¢)>f‘ —_

2851, where we found three minima corresponding to
oblate, prolate, and approximately spherical HF fields.
We expect the prolate and oblate fields since 2Si is
midway between the closed shells of *O and “°Ca.
Also, if the j-7 coupling is valid, *Si would correspond
to the ds;» subshell being occupied, and we would
then expect to find a minimum corresponding to a
spherical field. The results are illustrated in Fig. 2 and
the wave functions are given in Table V.

The case of Ne is also of considerable interest. We
find that the absolute minimum is axially symmetric
(prolate); however, a minimum corresponding to an
asymmetric field was found. The minima occurring in
20Ne are given in Table VI as are the wave functions.

In Table VII the HF single-particle energies for 10
and %°Ca are given along with the experimental values.
The 1ps/3; 1p1/2 splitting in %0 is in good agreement

TasrE II. Single-particle energy levels in 2Mg in MeV.

Spherical Oblate Prolate Asymmetrical
YE/A <
Level —6.205 —6.612 —6.765 —6.931
Occupied levels
1519102 —62.978 —61.267 —65.042 —64.650
1pg/a%312 —33.849 —=37.779 —30.303 —32.066
1psp®l/2 —33.849  —36.267 —39.857  —39.115
1py9%12 —33.845 —25.547 —28.445 —26.385
1ds/2*5/2 —9.128 —14.875 —5.118 —6.310
1ds/9%3/2 —9.128  —11.489 —10486  —13.471
Unoccupied levels
syt —9.128  —9.142  —16191  —16.556
25,412 —4862  —5053  —2323  —2.155
1dsp*¥*  —6815  —3877  —0512  —0.546
1ds/o%112 —6.815 —0.031 —8.941 5.124
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TasirE III. Results for 2Mg.
Energy
(MeV) 151791/ 1pg573/% 1ps/? 1p1et? 1dse82 1ds/9!/2 1ds/25/2 25172112 1d3/s73/% 1d3e 112
HF wave functions (absolute minimum); 3=0.324, y=17°52’, and BE/4A = —6.931 MeV.
Occupied levels
—64.650 —0.9906 —0.0114 —0.0570 —0.0225 —0.1068 0.0204 0.0550
—39.115 0.0451 —0.8960  0.4418
—32.066 —0.8900 0.1649 0.4252
—26.385 0.4538 04123  0.7900
—16.556 0.0078 0.2072 —0.8174 —0.0653 0.4798 0.1325 0.1918
—13.471 0.0012 —0.7705 0.0583 —0.0513 0.2777 —0.2231 0.5228
Unoccupied levels
—6.310 0.0334 —0.3218 —0.4122 0.7388 —0.3450 —0.1108 —0.2198
—5.124 —0.0233 0.4075 0.3078 0.6165 0.1847 0.0818 0.5637
—2.155 0.1121 0.2074 —0.2443 —0.2522 —0.6663 —0.3139 0.5278
0.546 0.0667 —0.2249 —0.0277 —0.0555 —0.2902 0.9026 0.2053
HF wave functions; (prolate) 8=0.323, y=0, and BE/4 = —6.765 MeV.
Occupied levels
—65.042 —0.9905 —0.0656 —0.1065 0.0575
—39.857 —0.8772 0.4802
—30.303 1.0
—28.445 0.4802  0.8772
—16.191 0.0168 —0.7902 0.5118 0.3366
—10.486 0.9543 0.2990
Unoccupied levels
—8.941 —0.0228 0.5340 0.3075 0.7873
—5.118 1.0
—2.323 0.1348 —0.2934 —0.7951 0.5134
—0.512 0.2990 —0.9543

with the results of quasi-(p,p’) scattering.?* However, for
160 the HF approximation overbinds the p states by ap-
proximately 4 MeV, while in #Ca the calculations over-
bind the d levels by 5 MeV and the s level by =9 MeV.
In Table VIII we give the single-particle energies for
the remaining 47 nuclei when the fields are constrained
to be spherical. We see from Table VIII that when

Mg is constrained to be spherical there is no 1pss,
1p1/2 splitting. However, from Table ITI we see that for
the asymmetric field the p state splitting is reasonable.
When 2Si and 325 are restricted to having spherical
fields the 1p1/, state lies below the 13, state.

It is clear that deformed HF fields must be allowed,
to account for the level splitting and binding energy,

TaBLE IV. Results for 32S,

Energy
(MeV) Shape 7230 (F?) (Y +V27%) (F2) BE/A (MeV) Energy gap (MeV)
Hartree-Fock minima.
Spherical 0 0 —17.602 0.570
Oblate —6.933 0 —8.004 3.673
Asymmetrical —14.061 —4.437 —8.129 6.063
Prolate 12.022 0 —8.026 3.043
HF wave functions, 8= —0.190, y=23°33’, and BE/A = —8.128 MeV.
131/2112 1p3/2—3/2 1?3/21/2 1#112112 1d6/2—8/2 1d5/21/2 1d512512 251/21/2 ldslz—alz 1d8/2”2
—74.489  —0.9957 0.0063 0.0431 0.0183  —0.0678 —0.0206 —0.0381
—48.303 0.8465  0.3679 0.3877
—44.342 —0.5275  0.6732 0.5182
—37.799 0.0719  0.6432  —0.7623
—23.481 0.0034 0.0784 0.1532 0.9409 0.2895  —0.0158  —0.0320
—21.517  —0.0015 —0.7242  —0.4933 0.2347  —0.3070 0.2537  —0.1363
—18.753  —0.0101 —0.4519 0.5654  —0.1968 0.4547 0.3953  —0.2725
—16.336  —0.0070 —0.2043  —0.2338  —0.0945 0.3955  —0.7221  —0.4656
—10.273  —0.0465 04133  —0.5368 —0.0734 0.4014 0.5063  —0.3406
—6.683 0.0792 0.2293 0.2622 0.0793  —0.5415 0.0301  —0.7563

% H. Tyren, S. Kullander, O. Sundberg, R. Ramachandran, P. Isacsson, and T. Berggren, Nucl. Phys. 79, 321 (1966).
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TaBLE V. Results for 28i.
Energy
(MeV) 1s191/2 1ps/s7802 139102 1p10172 1ds/573/2 155112 15252 2512112 1d3/o312 1d3 ! /?
HF wave functions; 8= —0.282, y=0, and BE/4 = —7.539 MeV.
Occupied levels
—70.617 0.9910 —0.0676 0.1004 0.0568
—42.978 1.0
—40.826 0.6991 0.7151
—29.633 0.7151 —0.6991
—19.862 1.0
—17476  —0.0157 0.6143 0.7330 —0.2916
—16.268 —0.6823 0.7310
Unoccupied levels
—7.379 0.6823
—6.760 0.0626 0.7430 —0.4135 0.5225
—1.813 0.1170 0.2568 —0.5307 —0.7992
HF wave function; 8~ —0.002, y=0, and BE/4 = —17.163 MeV.
Occupied levels
—66.646 0.9995 0.0015 0.0292 0.0101
—39.942 0.5930 0.8052
—39.421 1.0000
—39.041 0.8052 —0.5930
—16.774 0.9716 0.2365
—16.140 0.0071 —0.7810 0.0108 —0.6244
—13.235 1.0000
Unoccupied levels
—11.458 0.2365 —0.9716
—7.947 0.0054 0.6240 0.0524 —0.7796
—7.449 0.0296 0.0243 0.9981 —0.0474
HF wave function; 3=0.284, y=0, and BE/A = —7.418 MeV.
Occupied levels
—69.556  —0.9923 —0.0588 —0.0855 0.0688
—45.436 —0.8853 0.4651
~36.153 1.0000
—31.795 0.4651 0.8853
—20.984 0.0117 —0.8447 0.5256 0.1004
—18.749 0.9399 0.3416
—13.324 0.0019 0.3549 0.4098 0.5403
Unoccupied level
—9.350 1.000
—4.502 0.1239 —0.3963 —0.7406 0.5283
—2.665

0.3416

—0.9399
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TasLe VI. Results for 2Ne.
Energy {r2V,0) (r2(Y24Y572)) BE/A Energy gap
(MeV) Shape (F2) ¥?) MeV) (MeV)
Hartree-Fock minima.
Spherical 0.000 0.0 —6.026
Oblate —6.652 0.0 —6.168 0.095
Oblate —20.560 0.0 —4.781 4.146
Prolate 12.336 0.0 —6.601 7.423
Asymmetric 19.078 8.016 —4.908 3.401
Asymmetric 3.232 3.958 —6.390 5.006
HF wave functions, (Prolate) 8=0.335, y=0, and BE/4 = —6.601 MeV.
1517912 1502 1pgsti2 1puat?  1dgdi 1ds)M2 1ds55!2 25179112 g2 1dgsl2
Occupied levels
~59.171 —0.9894 —0.0455 —0.1315 0.0425
~32.216 —0.9202 0.3915 .
—26.315 1.0000
—22.018 0.3915 0.9202
—12.263 —0.0073 —0.7976 0.4574 0.3931
Unoccupied levels
—4.839 —0.9856 —0.1690
—2.557 1.0000
—1.488 —0.1030 0.5930 0.6962 0.3912
1.294 0.1025 0.1005 —0.5374 0.8310
3.810 —0.1690 0.9856

for nuclei between closed shells. For Mg the gain in
BE/ A when the field is allowed to change from spherical
to axially asymmetric is 0.726 MeV,while the gain, when
the field is allowed to change from axially symmetric to
asymmetric is 0.166 MeV.

In Tables IX and X, we give the wave functions for
8Be and !2C, respectively, while in Table X1, we present
a summary of the results for the 4» nuclei. Figure 3
illustrates the variation of 8 with mass number. The
agreement with the predictions of the collective model
is satisfactory. Figure 4 gives the binding energy of the
1s1/5%1/2, 1d5,9%5/2, and 1d5/9%1/2 levels as a function of 4.

TasrLE VII. Self-consistent single-particle
energies in %0 and “Ca, in MeV.

150 4Ca 160 data 40Ca data
1s12  —52.783 —62.408
1ps2 —23.309 —39.579 —19.0
1p12  —17.568 —36.952 —124
1ds/2 —0.993 —21.111 —15.5
1d3/2 6.004 —17.159 —~8.3
51/2 1.499 —16.358 —11.6
BE/A -6.7715 —7.506
TasLE VIII. Single-particle binding energies
for spherical fields in MeV.
(State) 8Be 12C 2Ne %Mg 285 88
1s1/2 —44.040 -—60.680 —57.806 —62.978 —68.295 —78.534
1p3/2 —5.650 —16.321 —28.587 —33.849 —39.102 —43.308
1p172 —~1.509 —16.517 —25.720 —33.844 —41.946 —44.382
1ds/2 16.138 9.558 —5.067 —9.128 —13.177 —16.482
1ds)s 21.688  14.313 —0.414 —6.818 —13.207 —15.912
251/2 13.021 8.233 —1.734 —4.862 —7.909 —16.502
BE/A  —2.780 —5.548 —6.026 —6.205 —6.916 —7.602

It is seen that the binding of the 1s1,5%!/2 levels increases
with 4 in agreement with the results from (e,e’p)
experiments.?

V. DISCUSSION—~CONCLUSION

We have shown that the HF approximation, for the
4n nuclei, 4 <40, gives results, in reasonable agreement
with experiment, provided the field is permitted to be
deformed (axially symmetric or asymmetric). The re-
sults of the numerical calculation using the singular
Yale potential are encouraging. However, we would
like to point out several features of the calculation
which are open to question.

Firstly, in the expansion of the HF wave functions
Yur in terms of oscillator wave functions, only the 1s,
2s, 1p, and 1d functions have been included. It has
been shown, for the closed-shell nuclei O and Ca#®
with nonsingular potentials, that harmonic-oscillator
wave functions containing at least 3 nodes should be
included in the HF calculation of the binding energy;
with further increases in the number of nodes the bind-
ing energy and rms radius of the nucleus gradually
tend to be independent of the oscillator well parameter
b. It may appear, since we do not include the oscillator
functions with higher number of nodes that our results
are in error. We would like to point out that the situa-
tion is a bit ambiguous when singular potentials are
used which require higher-order terms to be included in
evaluating the effective interaction. It has been pointed
out in the introduction that in calculating the latter
the effect of exciting a pair of nucleons to very high-

2% U. Amaldi, Jr., G. Campos Venuti, G. Cortellessa, C.

Fronterotta, A. Reale, P. Salvadori, and P. Hillman, Phys. Rev.
Letters 13, 341 (1964).
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TasLE IX. 8Be HF wave functions; 3=0.786, y=0, and BE/A = —5.506 MeV.
Energy
(MeV) 15122 1pge~%2 1pg/012 1p122 1ds57%2 1dg91/2 1ds/5%2 251212 1d37%02 1d3)51/2
Occupied levels
—40.744 —0.9764 —0.1452 —0.0714 0.1429
—18.566 —0.8701 0.4930
Unoccupied levels
—0.130 1.000
6.865 0.4930 0.8701
8.608 0.0877 —0.8043 0.5830 0.0737
12.050 0.9337 0.3580
17.287 —0.1523 0.5641 0.8091 —0.0628
20.149 1.0000
21.523 0.1254 0.1172 0.0184 0.9850
26.353 0.3580 —0.9337
TasLE X. 12C HF wave functions; 8= —0.343, y=0, and BE/4 = —7.039 MeV.
Energy
(MeV) 151,212 1pas™32  1pgtl? 1p12112 1ds,2—812 1ds51'2 1ds28/2 25172112 1d35312 1ds21/2
Occupied levels
—55.522 0.9882 —0.0977 0.0714 0.0939
—24.238 1.0000
—21.230 0.7187 0.6953
Unoccupied levels
—2.381 0.6953 —0.7187
2.078 1.0000
6.368 —0.9009 0.4339
7.216 —0.0016 0.6333 0.7685 0.0916
14.012 0.0819 0.7028 —0.6195 0.3399
16.222 0.4339 0.9009
19.932 0.1294 0.3090 —0.1434 —0.9313
TasLE XI. Results of Hartree-Fock calculation for the 4% nuclei, 4 <40.
8Be 12C 150 20Ne Z4Mg 2SSi SZS 40Ca
Binding energy
per particle (MeV) —5.507 —7.039 —6.775 —6.601 —6.931 —7.539 —8.128 —35.706
Oscillator
parameter b? (F?) 2.3716 2.3716 3.100 3.100 3.100 3.100 3.100 4.36
Rms radius (F) 2.156 2.245 2.596 2,754 2.854 2.925 2.977
B 0.786 —0.343 0 0.335 0.324 —0.282 —0.190 0
Y 0 0 0 0 17°52 0 23°33’ 0
Energy gap (MeV) 18.436 18.849 16.574 7.423 7.161 8.889 6.063

lying intermediate states is considered to all orders.
Such an effective potential should be diagonalized in a
subset of states that lie near the Fermi surface. In
particular, there should be no overlap between this
subset of states and the excited intermediate states con-
sidered in the calculation of the effective interaction,
because if there is an overlap, then the contributions of
such intermediate states are doubly counted. Since
the harmonic-oscillator states with 3-4 nodes are very
high lying in energy, it would appear that they should
be omitted from the subset chosen for diagonalization
in order to avoid double counting.

We are, therefore, faced with two alternatives in the
case of a singular potential. If the oscillator wave func-
tions with higher number of nodes are included in the

expansion of Hartree-Fock wave functions, then we can
make the HF results independent of the oscillator
parameter b, and we may claim that the spherically
symmetric HF potential has also been self-consistently
determined giving the correct asymptotic behavior
(provided the number of nodes included is large
enough) of the self-consistent wave functions. If, on
the other hand, we wish to avoid the possibility of double
counting the contribution of some intermediate states
then the oscillator wave functions with large number
of nodes should be expressly omitted in the expansion of
HF wave functions. This, however, prevents the possi-
bility of determining the spherical HF field too well,
and yields radial functions with incorrect asymptotic
behavior.
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Since we have mostly concerned ourselves with de-
formed nuclei, we did not lay the primary emphasis on
being able to determine the spherical part of the HF
field too accurately. The limited set of states we have
used will be good enough for the self-consistent de-
termination of the deformation. We have, therefore,
decided in favor of the second alternative mentioned
above.

The limited asymptotic radial dependence of our HE
fields may cause up to 209, error in the moments
72V 2 and #2[V2+V_»?]. In our calculation this error
could not be avoided. The values of 8 deduced from the
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HF field are less than the predictions of the collective
model, as expected.

Another limitation of the present work is the neglect
of Coulomb forces for the protons, and consequent treat-
ment of neutrons and protons on an equal footing in
N=Z nuclei. We have also ignored the correction to
the binding energy due to the center-of-mass motion.
Both the Coulomb and center-of-mass effects have been
calculated for O and Ca* in Ref. 14 and found to
make nearly equal and opposite contributions to the
binding energy. Since our omission of wave functions
with higher nodes has already made the calculated
binding energies liable to some error, we did not think
it worthwhile to calculate such small corrections. More-
over, our primary aim in this work was to calculate the
effect of the nuclear deformation on the binding energy,
and hence other small effects were ignored consistently.

One interesting aspect of our results for the 1s single-
particle energy has already been mentioned in Sec. IV,
and it deserves some comments here. We have found
that as the nucleon number increases the binding energy
of this level increases much faster compared to those
near the Fermi surface. This phenomenon has been
noticed by earlier workers! also, and has been attributed
to the nonlocality of the HF potential. There is some
experimental evidence from (e,¢’y) experiments?® that
the binding energy of this level really changes from
~35 to 60 MeV as one goes from 4=12 to 28. How-
ever, the interpretation of the data is not unambiguous
in view of the very wide peak corresponding to the 1s
level. More experimental investigations to settle this
point conclusively seem to be necessary.

The HF determinant gives the zero-order intrinsic
wave function of the nucleus. If the effects of the re-
sidual interactions are not strong enough, then the pro-
jected wave functions having good angular momentum
correspond to actual states in the nucleus. For detailed
spectroscopic calculations it becomes necessary to carry
out this projection procedure. Up to the present time
there is only one published work by Ripka ef al.8 that
deals with this problem for the case of axially symmetric
intrinsic deformation. Since the general method of
calculating the intrinsic wave function through the HF
procedure has been well established now, more and
more spectroscopic calculations based on such wave
functions are desirable.

In many cases there are two or more intrinsic HF
wave functions which are fairly close to each other in
energy. The lowest of such wave functions yield the
ground state, when a suitable projection is made out of
it. However, the states of same angular momentum
may be projected out of the excited intrinsic wave
functions also. In some nuclei the mixture of such states
with each other may be quite important in fitting the
spectroscopic details. One such case is fairly well known
now, namely, the case of the ground and excited Ot
states in O6, The latter state belongs to a fairly low-
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lying deformed intrinsic HF wave function. Brown?’
has dealt with this mixing without using HF wave
functions. In a calculation using HF wave functions
one ‘encounters the following major difficulty. The
intrinsic wave functions belong to different HF Hamil-
tonians, and hence are not orthogonal to each other.
The states projected out of them are also not neces-
sarily orthogonal. Hence there is a great deal of work
involved in calculating the admixture and energies.
Working out the details for such calculations will pave
the way to many interesting applications.

Although HF calculations using realistic two-body
potentials (like the present work) have already yielded
encouraging results, it still remains to see whether these
HF energies and wave functions lead to significantly
different effective matrix elements at the next stage of
a doubly self-consistent calculation. We therefore feel
that such calculations be done in the future to put the
HF method in the theory of nuclear structure on a firm
foundation.

After the completion of this paper, we came to know
that the matrix elements of the Yale potential used in
this work are being revised by Shakin et al. A few of
their new matrix elements differ from the old ones by
about an MeV. Since these matrix elements are weighted
by a lot of Moshinksy brackets and added together to
give the two-nucleon matrix elements in the harmonic-
osillator representation, we expect that this revision
will not alter our results too much.
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APPENDIX I

Let us consider two ¢ matrices with labels 4 and B,
defined by equations similar to Eq. (8) of the main text.
Bethe, Brandow, and Petschek?? have derived the fol-
lowing general expression connecting two such ¢
matrices:

T
ta= tB'r-l-QBT('UA—vB)QA—l-ZBTIi(Q—B)—-%‘:It,; . (A1)

€B €A

% G. E. Brown and A. M. Green, Nucl. Phys. 75, 401 (1966).
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If only the potentials are different in the two cases, 4
and B, and the operators Q/e the same, then the equa-
tion simplifies to

tA= tBT-I-QBT('UA—‘Z)B)QA.

The Mgller wave operator Q produces the perturbed
wave function ¢ operating on the unperturbed wave
function ¢. All other symbols have been defined in the
main text.

We now identify the potential v4 as the entire two-
body potential v, and resolve it into components that
are diagonal (D) and nondiagonal (ND), respectively,
in the relative orbital angular-momentum space. Only
the tensor force (T°) contributes to the latter component.
We further break up the diagonal component into a
long-range (/) and a short-range (s) part. We then
identify the latter as vp. Since £4 and Q4 now correspond
to the exact reaction and wave operators, we may omit
the labels from them; we may further replace the label
B by s (short range). Thus, Eq. (A2) yields

t=1,4-Q, (vpH-vxpT)Q. (A3)

If the hard core of the potential is followed by an
attractive well (as in the 35 state), then a separation
distance d may be chosen for making the short- and
long-range separation such that /£, has vanishing matrix
elements for. the relative two-body state under con-
sideration. In such a case, Eq. (A3) states that the
matrix element of ¢ is the same as that of (vp'+oxpT)
evaluated between the wave function ¢, (generated
by Q) corresponding to the short-range potential alone,
and the exact wave function ¢ (generated by Q) cor-
responding to the entire two-body potential:

(6]t] )= .| (vo'HvxpT) [¥). (A4)

On the other hand, if the potential outside the hard
core is repulsive (like in the 3P state), then the above
choice of a separation distance fails. In Shakin’s work,©
an attractive square-well pseudopotential, vs, of ad-
justable radius d, has been introduced in such states to
achieve the vanishing of the matrix elements of i,.
Then the matrix elements of ¢, of course, are equal to
those of (vp!4ovnpT—1s,) between the states men-
tioned above.

For practical calculations an expansion of ¢ in terms
of ¢, is necessary. We have

Yv=v,— (Q/€)(vp"+onp" et - . (AS5)

Using the first two terms of this expansion in (A4) one
gets the expression of the f-matrix element derived in
Shakin’s work for the unitary-transformed effective
matrix element. The present derivation shows that, in
spite of the formal dissimilarities of the methods used,
the introduction of the short-range and long-range
separation in Shakin’s work makes it completely
identical with the fmatrix formalism. This is a conse-
quence of the fact that the separation distance is

(A2)
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energy-dependent, and hence it spoils the unitarity of
the transformation.

The most important contribution of snxp? in Eq.
(A4), after the substitution of (A5), is given by

W] onn?(Q/€)vnnT |¥s),

where ¥, refers to the relative 3S; state. Since vxp” is not
included in the determination of the separation distance,
the integration is to be performed carefully. Although
¥, is zero inside the core there is a finite contribution to
the above matrix element from the core because of the
discontinuity in the gradient of ¥, at the core radius.
This is in addition to the contribution from core to
infinity.

The core contribution has not been estimated in the
work of Ref. 10. Furthermore, the occurence of the
entire vxp?, and the additional repulsive square-well
(—vsq) in triplet odd states, ought to raise convergence
questions that should be settled by higher-order
calculations.

It is well known that other types of separation of the
potential could also have been done in Eq. (A2). In the
separation used by Kuo and Brown,? the nondiagonal
component of the tensor force is explicitly included.
These authors use the reference-spectrum method,??
and not the separation method in triplet odd states.
In both these respects, the Kuo-Born results should
have better convergence.

In obtaining the separation distance from the equa-
tion satisfied by f,¢, the latter is usually simplified by
substituting (1/en.0.) for (Q/e). The ew.o. denotes the
energy denominator calculated with the harmonic-
oscillator spectrum. Therefore, strictly speaking, the
third term in (A1) should also be included as a cor-
rection term. It is given by

1 0
€H.0. €

and can be separated into the so-called dispersion and
Pauli corrections. The matrix elements calculated in
Ref. 10 and used here, do not contain these corrections
and the core contribution mentioned earlier.

APPENDIX II

In this appendix we shall derive the #-matrix equa-
tion to be solved in a fully self-consistent calculation.
The matrix elements needed for setting up the HF
equation are of the form (rm|t|sm), where m is an
occupied HF state and 7, s may be both occupied and
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unoccupied states. (These nomenclatures are explained
in Sec. 1) Each of these HF states are expressed in
terms of harmonic-oscillator states, and then each pair
of harmonic-oscillator states on the two sides of ¢ can
be expressed as a sum of products of relative and center-
of-mass (c.m.) harmonic-oscillator states with the help
of Moshinsky brackets.

The excited intermediate states used in the calcula-
tion of the ¢ matrix can be very well approximated by
plane-wave states |kyks), and hence the energy-
denominator e can be written as

(#2/2M) (kr*+ko%) — e(s) — e(m)— 3,

where 6=0 when s is an occupied state, and it is a
finite adjustable parameter when s is an unoccupied
state. Since the intermediate states are well above the
occupied states, the Pauli operator Q may be put equal
to unity. Then, the fmatrix equation (8) of the text
reduces to the following equation for the wave functions:

[—(#/2M)(Vi*+ V)
—e(s)—e(m)—81(o—¥)=p.

Vi24-Vpl=Vg¥4-V,2,

(A6)
We write

where R and r are the c.m. and relative coordinates
defined as

1 1
R=—(11+r), r=—(11—r).
Vf( 1+ 12) \/Z( 1—12)
The reader should note that » is usually defined in terms
of r=r—r,, which differs from our definition by a
numerical factor.

The operator — (#2/2M)Vg? can now be approxi-
mated by its expectation value $Ey; for the c.m.
harmonic-oscillator state |NL). This approximation
reduces (A6) to an equation for the relative coordinate
only, which can be solved for the important relative
angular-momentum states, namely the various .S, P, D
states. The solution of the differential equation, and the
calculation of the relative f-matrix elements have been
discussed by Kuo and Brown in Ref. 9. For our purpose
the work has to be repeated for various values of Exy,
and pair energies e(s)+ e(m).

Since Q has been substituted by unity in setting up
Eq. (A6), it is a better approximation to use only a part
of the potential up to a short distance d in this equation
and solve it. The solution will yield a #, (not neces-
sarily zero). Then the corrections due to the long-range
part of v can be calculated using (A1). This will reduce
the Pauli correction.



