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The correlation energy of the electron gas is treated as a perturbation on the total free energy computed
for the zero-temperature Thomas-Fermi-Dirae (TFD}model of a solid. The contribution to the free energy
is computed on the basis of two extreme assumptions: (i) The correlation energy is considered to be a local
function of position inside the Wigner-Seitz sphere; and (ii) correlation forces are suKciently long range so
that the correlation part of the free energy is determined only by the average electron density. It is argued
that (ii) is the more valid approach in the region of normal metallic densities. In terms of the parameter sao,
the radius of a sphere occupied by a single electron, an interpolation formula is developed for the correlation
energy in the intermediate region between s«1 (degenerate electron gas) and s~60 (electron lattice-Quid
phase transition). At extremely high densities, a series expansion in s is used to obtain an analytic expression
for the electron pressure up to terms of order s .For these high densities, prescriptions (i) and (ii) are equiva-
lent. At lower densities, numerical results are presented for an assortment of elements for the TFD model,
and TFD with correlations based on (i) and (ii). These are compared with shock-wave and seismic data, and
the average correlation contribution computed from (ii) is found to be in better agreement than the other
two procedures. A semiempirical formula is presented, which Gts the numerical data to better than 0.5%
for aH pressures and atomic numbers, and reduces to the correct expression in the high-density limit. From
this semiempirical formula, prcssure-density curves are obtained for a variety of elements and minerals which
have been considered as likely constituents of the core and mantle of the earth. A table of effective atomic
numbers, to be used in the semiempirical formula, is given for the minerals.

I. INTRODUCTION

~'UMKROUS authors' have used the Thomas-
Fermi model of a solid to derive the equation of

state for degenerate matter at extremely high pressures
and densities. Since this model takes into account only
first-order Coulomb interactions between the electrons
and the nuclei, and neglects exchange and higher-order
correlation effects, it does not yield a minimum value in
the free energy of the solid as a function of the lattice
constant. Hence it cannot account for the binding of a
solid at zero pressure. Dirac, ' and Slater and Krutter'
have prescribed a method for including exchange forces
in the Thomas-Fermi model, and the resulting Thomas-
Fermi-Dirac (TFD) equation has been solved numer-

ically by Feynman, Metropohs, and Teller. 4 Although
these solutions display a minimum in the free energy
curve, the resultant zero-pressure densities are smaller
than the empirical ones by a factor of three for the

~ This work has been supported in part by National Science
Foundation Grant No. GP-3488 with Cornell University and
NASA Grant No. NsG-436 ~vith the University of Maryland.

' An excellent survey of this work is contained in N. H. March,
Advan. Phys. 6, 1 (1957).

2 P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).
3 J. C. Slater and H. M. Krutter, Phys. Rev. 47, 559 (1935).
4 R. P. Feynman, N. Metropolis, and E. Teller, Phys. Rev. 75,

1561 (1949).

heavy elements, ' where one expects this description of
the. condensation process to be most valid. It has long
been conjectured that if one includes in the total free
energy the "correlation energy" due to long-range
interactions between electrons in the Fermi sea, the
resulting theoretical equation of state will be in much
better agreement with experimental data.

In order to make such a calculation, one needs a
theory of correlation interactions at degenerate-
electron-gas densities, and a prescription for interpolat-
ing the correlation energy from the high-density regime
to connect with the expression 6rst derived by signer' ~

for the lovt-density electron gas (the electron lattice).
The correlation energy for an extremely high-density
electron gas was evaluated by Brueckner and Gell-
Mann, ' and, using an especially simple interpolation
formula, I.ewis'" has written an equation of the TFD-
type which includes both the exchange and correlation
energy contributions. The resultant equation of state
includes the first two terms of the equation derived
from the TFB model, '4 and an additional negative

' W. M. Elsasser, Science 113, 105 (1951).
6 E. Wigner, Phys. Rev. 46, 1002 (1934).
7 E. Vhgner, Trans. Faraday Soc. (London) 34, 678 (1938).
8 M. Gell-Mann and K. Brueckner, Phys. Rev. 106, 364 (1957).
~ M. Gell-Mann, Phys. Rev. 106, 369 (1957).
's H. Lewis, Phys. Rev. 111, 1554 (1958).
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term which is a, function only of the Fermi momentum,

pe(R), at the edge of the atom. Unfortunately, this
elegant and simple theory does not surmount the
difhculties normally associated with the TFD descrip-
tion of matter; the differential equation which must be
solved to obtain pr(r) is nonlinear, and a series expan-
sion is good only near the atomic nucleus. Numerical
integration must be employed to continue the integra-
tion out to the edge of the atom.

In this paper, we take a somewhat diBcrent approach
to the problem. Ultimately, we wish to write an equation.
of state which can conveniently (if not trivially) be
used in numerical intcgrations of zero temperature
stellar and planetary models. Such an equa. tion, includ-

ing the correlation energy, has been derived for the
extreme high density regime by Salpeter, " and has
been applied by Hamada and Salpeter" in zero tempera-
ture stellar model integrations to determine the correc-
tions to the Chandrasekhar limiting mass. "*'4In Ref. 12,
the problem of the maximum radius for a cold object
was also discussed, but because of the brea, kdown of the
high-density equation of state near the relevant
densities, no very reliable conclusions could be drawn.

Thc purpose of this pRpcl ls to pl cscnt R scmicITlpirlcal

equation of state which reduces in the limit to the
analytic expressions which can be derived for the
high-density electron gas, and 6ts the numerical solu-

tions of the TFD equation with correlation corrections
to better than 1% at low densities. We find it most
convenient to carry out this program by treating the
correlation energy as a small perturbation on the TFD
solutions.

In Sec. II, we begin by reviewing the TFD Inodel.
Two procedures are dehned for including the correla-
tion energy as a perturbation in this modd. In the hrst
of these, we imagine the correlation energy to be due to
"local" forces which are of short range compared to the
size of the atom, while the second procedure treats these
forces as long range, and correlation energy is then
determined by a single parameter, the mean density of
electrons in the a,tom.

In Sec. III we discuss the correlation energy in the
low-density regime (the electron fluid) and we write an
interpolation formula to connect this regime with the
high density one. We also discuss the relative merits of
including the correlation energy as a local or an average
contribution, and, although it is clear that the correct
prescription involves some compromise between these
extreme assumptions, we conclude that the average
correlation energy should yield more accorate results in
the case of normal metallic densities.

In Sec. IV we examine the high-density limit, and wc

iI. F K Salpeter, Astrophys. J. I&4, &69 (i9&i).
I' T. Hamada and K. K. Salpeter, Astrophys. J. 134, 683 (196i).
"S.Chandrasekhar, Monthly Notices Roy. Astron. Soc. 95,

207 (i9SS)."S.Chandrasekhar, INtrodlcteon te the Stl/ly of Stellar Strletgre
(Dover Publications, Inc., New York, 195'/).

obtain an analytic equation of state from a series solu-
tion of the TFD equation.

In Sec. V, we summarize the results obtained from
numerical solutions of the TFD equation, including both
the local and the average correlation corrections. W' e
present a semiempricial equation of state which agrees
with the numerical data for the average correlation
corrections to better than 0.5% for a large range of
pressures and atomic numbers. This semiempirical
formula is then used to compute the equation of state
of an assortment of elements and compounds, and thc
results are compared with experimental data obtained
I'om shock-wave mcasurcIlMnts, Rnd seismic soundings

from the core and mantle of the earth. For convenience
in geophysical calculations, we also present a table of
effective atomic numbers (as a function of pressure)
for a group of suggested core and mantle minerals.

3 Pr' 2.21 (9rr) '" le

Er(s) =- = Ry ps=] —
I

— —,
5 2tte s' E4) sa,

Ry = ttt, '/2lts.

Er(s) is the average zero-point kinetic energy, while ps
and E~= (5/3)Er are th—e Fermi momentum and Fermi
energy, respectively. E, is the well-known expression
for the exchange energy", obtained from the first-order
Coulomb matrix elements for electron-electron interac-
tions in the Fermi sea"

3 9 )r/3 es
E.(s)=—

4 4x') sao

0.9I6
Ry

while all higher order terms are lumped into the
"correlation energy" part, E,(s). An explicit analytical
approximation for E,(s) is presented in Sec.III.The total
energy, Es(s), of an electron at the top of the Fermi
sea is given by the energy increment due to the addition

j& See, for example, K. A. Brueckner, in The Many Bod'y
Problem, edited by C. De Witt, ~d P. Norieres (John 97iley
R Sons, Inc., Ne~ gogk, 1959),

II. THE GENERALIZED THOMAS-FERMI-
DIRAC METHOD

(a) The Free Electron Gas

Consider 6rst the hypothetical case of an electron gas
at zero temperature with m particles per cm' in a neutral-
izing background of continuous and uniform positive
charge. Instead of e, wc shall use R dimensionless
density parameter, s

n-'=—{4~/3)(sa,)', a,={as/~s)=529&&10-scm. (1)
The average energy per electron, Es(s) can be written
as the sum of three terms,

Es{s)=Er {s)+E.(s)+E.(s) (2)
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of a single electron to the sea'.

8 $8
E,(s) = (1+m—sa (s) = 1——s (s)

Bs 3 8$

and the electron pressure, P(s) is given by

aEp Ns BEp(s)
P(s)=e'

Bs 3 8$
(6)

(1) The Differential Equation

We now return to the actual problem of a solid at
zero temperature, with mass density p, nuclei of atomic
mass A (in physical atomic mass units), and atomic
charge Z. I et. e be the average number density of
electrons and r, a dimensionless density parameter
dehned analogously to s above:

n '= (4~/3) (r,a())' (7a)

For the moment, let us assume further that s(r)
varies slowly enough so that the electron energy, EI„
can also be considered as localized and, in the neighbor-
hood of point r, can be replaced byEp(s(r)) according to
Eq. (2). The requirement of a constant thermodynamic
potential throughout the Wigner-Seitz sphere then
leads to

eV(r)+Ep(s(r)) =E,
where EI, is the explicit function of s de6ned by Eq.
(5). Equations (10) and (12) can be combined to give a
single differential equation for s(r) with E as an eigen-

value. For given values of Z and radius, R~p, the
solution of this equation gives E, s(r), V(r) and also

so= s(&oao), &—= (r./so)

which we shall need for determining the pressure.
In the unmodified Thomas-Fermi-Dirac procedure

one simply omits the correlation energy, E, from the
expression for Ep and Eq. (12) can then be written as

so that
(9n.) '"1 1 1 2mapo i/2

I

—
I
—-= —+ C&—eV(r)3 (14)

E4) s
(o= (A/Zr o) X2.679(g/cm') . (7b)

/128 "' r, Rpap
x=—

I
Z Sp= g

&9~' a(, r
Ep(r.)= 51.6r,—' Mbar (8)

(15)where 1 Mbar=10" dyn/em=1. 053)&10P atm. Equa-
tion (8) is just the Chandrasekhar equation of state" for
a nonrelativistic, zero-temperature Fermi gas, written
in terms of a diferent variable than is customary.

At pressures of about 1-10Mbar and larger, the stable
lattice phase of a simple solid is usua1ly a close packed
structure with one nucleus at the center of a lattice cell
in the form of a regular polyhedron. It is then a reason-
ably good approximation to replace the lattice cell by a
"Wigner-Seitz sphere" of radius

one can rewrite Eq. (10) as'

d'P P(x)-Uo '
=x p+

dx g
(16)

32% Z

with the boundary conditions

If the electronic charge, e, were zero, the electron density
would be uniform, E and E, in Eq. (2) would be zero, Changing variables to
and Eq. (6) would give for the pressure,

Egcp—=Z ~ f&cp.

We shall also neglect the zero-point motion of the nuclei.
In this approximation, the electrostatic potential, V(r),
is spherically symmetric and (since the sphere contains
Z electrons in addition to the nucleus) is taken to be
zero on the surface of the sphere, as is the electric field
(which follows more generally from symmetry argu-
ments). In the spirit of the Thomas-Fermi method,
we pretend that Z&&1 and that we can speak of a local
number density, e(r) Land corresponding density
parameter, s(r) ] with V(r) satisfying Poisson s equation:

(1/r') (d/«)(r'(d V/«)) =4~«(r) = (3e/s'(r)ao') (10)

and boundary conditions

I' lj3

Sp )
I'p 4x 9~

(18)

0(o)=1 (4/dx). ,=(0(*o)/*p) (17)

and with (df/ dx) at x=0 as an eigenvalue. For given
values of p and xo, numerical integration gives P(x)
and. hence E, s(r), s(), and X.

Since the electric Cield vanishes at the boundary of
the Wigner-Seitz sphere, and since we are assuming the
electron energy is a local quantity, the pressure in the
solid equals that of a free electron gas at the density
of the sphere bounda, ry. The pressure is then given by
Eq. (6) with so substituted for s.' Thus, using Eqs. (3)
and (4), the TFD pressure formula is

lim er V(r) = —Ze',

V= (dV/dr) =0 at r=Epao.

where I'p is the Chandrasekhar expression given in
(11) Eq. (8) and X' is the ratio of the TFD density at the

sphere boundary to the mean-electron density. Numer-
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ical solutions of Eq. (16) and tables of the corresponding
pressures have been given by Feynman, Metropolis,
and Teller. 4 Provided e is not zero, there is always some
6nite value of xp for which $(xp)=0. Equation (18)
gives a negative pressure for this value of xp when we
use the corresponding value of sp determined from
Eq. (15).At a somewhat lower value of xp, the pressure
goes to zero, and the TFD model always leads to this
condensation at a nonzero density.

For a solid consisting of a pure element, r, and Rp
are given directly in terms of the mass density, p, by
Eqs. (7) and (9). Equation (18) can be inverted to give
the function Rp(P, Z). For a solid consisting of a
compound or alloy, the Thomas-Fermi philosophy
ascribes a separate Wigner-Seitz sphere to each nucleus
with the constraint that the pressure at the surface of
each of the constituent spheres be the same. Knowing
Rp(P, Z), and the number of nuclei of each species, one

simply adds the volumes of the separate spheres to
obtain the average density of the compound as a
function of P.

eV (r)+Er(s')+E, (s')+E, (s') =E'= E+AE (19)

and we now write

E.(s') E,(s), (20)

where we take s as the TFD value given in Eq. (15).

(c) Correlation Corrections

In Sec. V, we present numerical results obtained from
three alternative prescriptions. One is the unmodi6ed
TFD procedure, described above, where the correlation

energy, E, is simply omitted from Eq. (2) wherever

E~ occurs.
In the second procedure for computing the pressure,

we include the correlation energy, E,(s), and consider
this as a localized quantity. Here, in contrast to the
TFD method, E,(s) is a transcendental function of s,
and Eq. (12) cannot be inverted analytically to give

s(V(r), E). This means that Eq. (10) must be written
explicitly in terms of the parameter s, rather than the
variable P which is linear in V (r). Lewis" has followed
this procedure, and obtained an equation involving
transcendental terms in the independent variable.
Instead of attempting to numerically integrate such an
equation, we shall make a further approximation, as
follows. For Z))1 one can show that E,«Ey+E,
everywhere except possibly very close to the boundary,
xp. (For r,«1, this is true regardless of the magnitude
of Z.) We then treat the change in the energy eigenvalue
due to the inclusion of E„AE—=E'—E, as a small
perturbation. We denote by s' the parameter analogous
to s which we would obtain by actually inverting the
transcendental equation

We then 6nd

14 '»-
1+ 1——— s

s' s x 9~

where

x'map'8
X (21)

5'+ 2m'map'(E —eV(r)

8—=d,E—E,(s) .
The new density distribution, n (r), thus induced inside
the Wigner-Seitz sphere,

3 1
n'(r) =-

4%Cps
(22a)

must satisfy the consistency requirement

+pap

r'e' (r)dr =
Bpap

r'I( )dr (22b)

Xp

with

1 r.g 3

f(x) =
II (x) s(x) p+(It/z)"'

(23)

where s(x) and P(x) are taken from the TFD solution.
One could continue to iterate with this procedure, but
we have stopped after a single iteration in our numerical
calculations. We then insert our new eigenvalue, E'=8
+DE, into Eq. (19), with V(r) =0 at the Wigner-Seitz
boundary, and solve the resulting transcendental
equation numerically for the new parameters X' and sp'.
The pressure of the free electron gas at the boundary
is now given by

s
=X' 1——— sp

5(4 '" d
sp" E,(s)—

6(9s ds
(24)

s=8p

Our third prescription for computing the pressure is
based on the assuroption that the correlation energy is
not a localized quantity, but, on the contrary, averages
over distances of the order of the sphere radius, RpGp.
In this case, we simply add the TFD pressure in Eq. (18)
to the correlation pressure of a uniform electron gas at

to insure that we still have Z electrons contained in
the sphere. Equations (21) and (22) lead to

Sp

f(x)E,(x)dh
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the average electron density, n, to get

P, — 5 4q'"—
=X' 1———

i
sp

4x 9x]'

5 4 '" d
r.' E,(—s)

6 9x ds
(25)

' W. J. Carr, Jr., Phys. Rev. 122, 1437 (1961).
~VW. . Carr, Jr., Rosemary A. Coldwell-Horsfall, and A. E.

Fein, Phys. Rev. 124, 747 (1961)."N. F. Mott, Phil. Mag. 6, 287 (1961).

III. THE CORRELATION ENERGY FOR
AN ELECTRON FLUID

We return to the hypothetical problem of electrons
at zero temperature immersed in a homogeneous
background of positive-continuum charge density
(giving over-all neutrality) with density parameter s
according to Eq. (1). At high densities, s«1, the
electrons approximate a degenerate Fermi gas and
in Eqs. (2)—(4) we have Er))E,))E,. Gell-Mann and
Brueckner, ' ' have obtained

E,(s) = —0.0622 ln(4. 69s ')Ry (26)

with an error proportional only to the first or higher
powers of s.

On the other hand, at a suKciently low density, say
s&100, the electrons form an almost perfect lattice.
Carr gt al"' have obtained for the average total
energy per electron

E&(s)={—1.792s '+2.66s '"(1—0.27s "'))Ry (27)

with an error of order s '" or higher. The first term in
this expression is the Madelung or classical Coulomb
energy, the second term is the lowest order expression
for the zero-point energy of the lattice vibrations, and
the third term is the first anharmonic correction to the
zero-point energy. The numerical coefficient, 1.792, in
the Madelung energy applies to within one part in
Gve thousand for the body-centered and face-centered
cubic lattices and for the hexagonal lattice. This coeK-
cient has a remarkably weak dependence on the lattice
type; for the simple cubic lattice, for instance, it is only
replaced by 1.760 and in the Wigner-Seitz spherical
approximation (with no long-range order at all) by
1.800.

At low densities where Eq. (27) applies, the lattice
has perfect long-range order, whereas the almost
perfect Fermi gas at high densities has no long-range
order at all. It is likely that the change from the lattice
phase with long-range order to the "Quid" phase
without such order is a sharp first order transition, even
at absolute zero temperature, "For the Quid phase, but
near the transition density (parameter s„;i) we assume
the absence of long-range order but still some short-

s.„, 7 1(b/a). ' (29)

We can get another very rough estimate for s„;& by
arguing, as did Nozieres and Pines, " that Lindemann's
law for melting points also holds for the electron Quid-

lattice phase transition. Let (Ar')"' be the root-mean-
square amplitude of lattice vibrations for one particle.
Iindemann's rule states that the lattice will "melt"
when (Ar')"' is about one-quarter to one-third the
lattice spacing, or about 0.5 s„;&ao. At zero temperature
one can derive from the virial theorem the relation

(Ar'), = (3b/2m)(pi, '). ,

where ~„ is the frequency of the jth mode of lattice
vibrations. A rough numerical calculation of the
average over Carr's frequency spectrum" gives 1.3 s@'

atomic units for (p&, '), . Lindemann's rule then gives
s„;~ 60, which is in agreement with de Wette's recent
calculation"; and Eq. (29) gives b~3a With E, d. efined

by Eq. (2), we then have for the fluid with s near s„;„
E.(s) =[—0.826s '+2.26s 'i' —2.83s ')Ry. (30)

For use in our TFD calculations we need expressions
for E,(s) for high and intermediate electron densities,
but never for very low densities, since even at zero
pressure s&4.8 according to Eq. (18). In this range
we are dealing with the continuous transition from the
low-density Quid to the high-density gas, and we expect
E,(s) and its derivative to be smoothly varying func-
tions of s. We simply adopt the analytical interpolation
formula

( )
Ry. (31)

s (1+0.236s'")

4.69 1+0.676s'"
E,(s) = —0.0622 ln 1+

For s& 20 this expression can be expanded in powers of
s 'I' and the first two nonzero terms (but not the third)
agree with those in Eq. (30).The expression in Eq. (31)

"P. Nozieres and D. Pines, Phys. Rev. 111,442 (1958)."F.W. de bette, Phys. Rev. 135, A287 (1964).

range order. For the energy we adopt

Ep(s) = [—(1.792—a)s '+2.66(1—b)s Pi'

)& (1—0.27s "')JRy. (28)

The factor (1—b) takes account of the fact that
transverse vibrational modes of long wavelength are
missing in the fluid phase and do not contribute to the
zero-point energy, whereas the longitudinal compression
modes and transverse modes with short wavelength
are present in the Quid with s near s„;f,, and are similar
to those in the solid. The term involving a in Eq. (28)
accounts for the fact that we are not dealing with
perfect lattice cells to optimize the Madelung energy.
The value of u for the Quid is presumably slightly
larger than the value of 0.032 one would get for a simple
cubic lattice. Comparing Eqs. (27) and (28) for the
two phases gives roughly
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IV. THE HIGH-DENSITY LIMIT

At suKciently high average density the actual
electron density varies little from the mean value except
near the origin of the Wigner-Seitz sphere, and expan-
sion methods can be used. The criterion for high density
in this case is not simply r„((1, but that xo~Z"'r,&&1.
The problem is to solve Eq. (15), which, in terms of a
new dimensionless parameter,

y= (x/xp)
can be written

(dV/dy') = 'xy( »"e'+(0/y)'"&' (32)

"J.Hubbard, Proc. Roy. Soc. (London) A243, 336 (1957).
~ D. F. Dubois and M. G. Kivelson, Phys. Rev. 127, 1182

(1962).
"See, for example, A. J. Glick, Phys. Rev, 129, 1399 (1963).

agrees to within 0.01 Ry with the interpolations of
Hubbard, "Nozieres and Pines, "and Carr et al."for the
range of metallic densities, 1&s&5, falling roughly
between the two extremes of these previous results.
For s«1, (31) reduces to the high-density expression,
Eq. (26), and it should be in error by less than +0.02
Ry in the whole intermediate range.

We now turn to the question of the localization of
E,(r) as a function of s(r) in the Wigner-Seitz sphere in
an actual solid Ls(r) increases monotonically from zero
at the origin to sp somewhat larger than r, at the
surfacej. For the exchange energy, E, the situation is
clearcut since the "range" for exchange forces is of
order sao, so that the averaging volume contains about
one electron, and for Z appreciably larger than unity,
i.e.,

r,= (Rs/Z'")«Ro

the localized approximation is a good one at all densities.
For the correlation energy, Dubois and Kivelson22

have used field-theoretic arguments to show formally
that Lewis's localization procedure" would become
valid in the limit of Z ~ ~ at constant density. How-
ever, in practical cases where we require nonnegative
pressures, the minimum density increases with Z and
the situation is as follows. It is highly plausible" that
the "averaging length, " l,ao, for the correlation energy,
is of order s'/s(r)as. At low pressures, near the boundary
of the Wigner-Seitz sphere, Eo and I, are both of order
unity, even for Z))1. At low or medium pressures for
distances near rTp, inside which about half the electrons
are contained, rTI; and l, are both of order Z 'f'. Finally,
for r«rrx and any Z, we have f,/r~(rTF/r)'/4&)1.
Thus, the extreme localization procedure is never valid
and the opposite approximation of a fully averaged
correlation energy is valid only for r(&rTp. We have
carried out calculations on each of these extreme

assumptions (see Sec. II) and expect the correct correla-
tion energy to lie in between but closer to the fully
averaged value.

with the boundary conditions

lt (0)=1 4'(1)=4 (1).
We expand the solution in the form

(33)

fo(0)=1; fo'(1)=fo(1)=0
fo(0) = fi(1)= fr'(1) =0,
f, (0)=f, (1)=f,'(1)=0 etc

(35)

Inserting this expression in Eq. (32) and equating
coefFicients of powers of xo, we obtain after some algebra,
Ao, Ai, As, fo, fi, fs, and, to this order, the quantity X

defined in Eq. (13), is

3'" 3'" 3 )As=1— xs+ +—e ~x +s
20 400 20 ) (36)

The expansion technique breaks down for the next
order (in xs') since fs(y) ~ lny as y-+ 0 and the bound-
ary conditions of Eq. (35) cannot be satisfied. It will

suSce for our argument, however, to retain only terms
up to 0(xss). Equation (18) for the pressure then gives

P -3/ 4 2/3 5 4 i/s-—= 1——
~

— Z"'+—— r,+0(Z'r ') . (37)
Pp 2(9m 4x 9~

One of us" has derived the first three terms of this
formula previously by a diGerent method. The first term
is simply the Chandrasekhar pressure for a uniform
density, perfectly degenerate Fermi gas; the second
term comes from the Coulomb energy of a uniform
distribution of Z electrons in the Wigner-Seitz sphere;
the third term gives the pressure due to "exchange"
forces. We note that there is no term of order r,' in
the formula. It has been shown" that this is also the
case for the ordinary Thomas-Fermi atom, and the
physical interpretation is that the first-order distortion
of the electronic charge distribution away from uniform-
ity (due to the point charge at the center of the Wigner-
Seitz sphere) vanishes in the high-density limit. It is now
also clear that the effect of exchange forces in inducing
a nonuniform charge distribution also vanishes in lowest
order. The corresponding term in the total energy per
lattice cell is independent of r,. Although the TFD
model is based on the assumption that Z»1, the expan-
sion in Eq. (36) is exact up to order r,s even for small Z.
For r,&Z"'r,&(1p the correlation energy to lowest order
in r. is given by

E,(s(r)) = —0.0622 ln(4. 69r, ')Ry (38)

and AE in Eq. (29) has the same value. Hence the
quantity 3 defined in Eq. (21) vanishes in this order,
and the effect of a localized correlation energy correction

xi=A p+Aixp+Asxs'+.
+xoLfo(y)+xofi(y)+xs'fs(y)+" j (34)

where Ao, A~, A2, are constants and
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on X is then found to be only of order xo'. Like exchange
and Coulomb forces, correlation forces at high densities
do not induce nonuniformities in the electronic charge
distribution in lowest order. To order xo' we then get
the same (nonlocal) correlation contribution to the
pressure from Kqs. (24) and (25), namely

(&P,/I' p) = —-', X0.0622 (4/9rr) "sr '

to be added to Kq. (37).

(39)

Fn. 1. Density versus pressure for an assortment of elements.
The heavy solid curves on the left summarize Bridgman's data
(Ref. 5), triangular and circular points are the shock wave data
of Rice, McQueen, Walsh (Ref. 24) and Altschuler et al. (Ref. 25),
respectively. The solid curves on the right are obtained from the
TFD equation of state, the dashed curves include "local" correla-
tion corrections, and the dotted curves show the e6ect of "average"
correlation corrections.

We have used an IBM7090 computer to numerically
integrate the TFD equation, and to evaluate pressure
as a function of density on the three assumptions of (a)
negligible correlation corrections $Kq. (18)], (b) local
correlation corrections LKq. (24)], and (c) average
correlation corrections LKq. (25)g. These computations
have been done for seven elements with Z ranging from
1—92 and A from 1—238. The results for five representa-
tive elements are plotted in Fig. 1. The solid curves on
the left, labeled by element and atomic number rep-
resent a survey of Bridgman's data on a sample of
elements, as plotted by Elsasser. ' The triangular points
are data obtained by Rice, McQueen, and Walsh'4

from shock-wave measurements, and the circular points
are some of the shock-wave data of Altschuler, et al.25

The five sets of three curves coming from the upper
right and labeled by A and Z summarize our numerical
calculations. In each set, the solid curve is the TFD
result without correlation effects, the dashed curve is
the theoretical equation of state with local correlations,
and the dotted curve gives the average corre1ations.
Below a pressure of one megabar it is clear that the
TFD model with correlations is an oversimplification
of the problem, and individual differences in crystal
structure must be invoked to explain the large discrep-
ancies in density, say, between Na, Mg, and Al which
differ from each other only by two atomic mass units.
At larger pressures, however, one begins to get good
agreement with the TFD results. In all cases, the method
of average correlations yields a larger density at "zero"
pressure, than the local correlations, and, as expected,
the inclusion of correlation effects by either method
increases the zero pressure density rather noticeably
over the straightforward TFD value. The average corre-
lation curves show the most drastic deviation at low

pressures, and, at least for 25&Z&100, show the best
agreement with the data at these pressures. Since the
local approximation becomes more accurate with
increasing Z, we argue on the basis of the experimental
data that, for all practical values of Z, the average
correlation correction is more realistic of the two. We
have used the results of our calculations to derive a
semiempirical formula for density as a function of
pressure based on the average correlation correction.
From Kqs. (25), (37), and (39), it is easy to obtain
an approximate analytic expression in the high pressure
limit. Recalling that the Chandrasekhar pressure can
be written

P,= (z/xp'),

'4 M. H. Rice, R. G. McQueen, and J. M. Walsh, Solid State
Phys. 6, 1 (1957)."L. V. Altschuler, K. K. Krupnikov, and M. I. Brazhnik,
Zh. Eksperim. i Teor. Fiz. 84, 886 l1958l t'English trsnsl. :
Soviet Phys. —]KTP 7, 614 (1958)g.
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r~Lx I. Value of &;.in Kq, (45d).

1.512X10»
2.181X10 '

—3.328X10-4—1.384XlM

8.955X10-»
—4.015X10 '

5.167X10-i
—6.520X 10-~

1.090X10 j
1.698—2.369
3.529

5.089—9.566
1.349X10—2.095X10

—5.980
9.873—1.427 X10
2.264X10

for f(&1. Thus, we set

P =P ~+D1+Po)/e] (45b)3 (9s)'"re')'(mc ' 1
SEC

2O E4& Ehc) 4 h 2x'e'Z'"

and de6ning

With the above values of po and pi, we 6nd a Gt with the
computer data to better than 0.5% for 1&Z&92, and

dyn all pressures. We take
=9524X1O» XZ-»i~ (4O)

CIl1 (1/~) = 1.941X1O- —e'i'X6.277X 10-'+.X1.0&6 (45c)

vre 6nd,

f'=—(&/x)"'
(1/P.)=(yo.+xi ~"'+vs ~+v3 ~"'+v4 e'}"

I=2, 3, 4, 5. (45d)
(42)

with
31I8 e 3 ) i/3

+
2O 4 3i~3' 32~2Z2/

For lovr densities, we have obtained an empirical 6t
to the numerical data for the zero-pressure TFD radius,
xo(0). To an accuracy of better than 0.2%, for the seven
cases which were computed, vre get

xo(0) = L8.884X10 '+ e'i'X4. 988X10 '
+ex5.2604X10 '] ' (43)

In fact, the numerical results approach the asymp-
totic form of Eq. (42) extremely rapidly. The empirical
criterion turns out to be not 1'))1, but rather l))Q. In
practice, this means that even for the least favorable
case, Z=1 (/=0. 109), one finds agreement between
Eq. (42) and the exact numerical calculations to within
several percent for l')0.5. We have succeeded in
reproducing this behavior with a formula of the
follovring form:

R= (97rm/128)'"Z '"xo(g)ao

we get, 6nally,

p (l )= (3AM„/4irR') =3.886 (AZ/xo') g/cm',

P(dyn/cmm) 'I5
g-2/3

9.524' 10»

(46a)

with xo given by (44). For a compound or an alloy, the
total volume occupied by a single molecule is simply the
sun1 of the Indlvldual atomic volumesq Rnd we have

g e;A; g
p(f) = x3.ss6

PLN;xo;3(f')/Z;] cm

The values of y;„are displayed in Table I. Considered
as functions evaluated at all real values of e, Eq. (45d)
and the coefhcients of Table I yield poles in P„, but
these are vrell outside the range of "physical" values of
e, de6ned by 0.212&&&0.0104 for 1&Z&92. In this
range, the functions P (e) are smoothly varying.

Recalling that the radius, R, of the TFD atom is
given by

To obtain the correct zero pressure result, we must have

Po= xo(o)4 —1. (45a)

Since the sound vdocity, (dP/dp)'", is always finite
and nonzero in a solid at zero pressure, and our formulas
above give (dp/dI') ~ (1/i 4) (dxo/dl ) for t &&1, we should,
ideally, use a polynomial in Eq. (44) which has no
terms of order less than l' for l«1 We have fo.und that
this procedure does not give a good 6t to the numerical
data at high pressures, hovrever, and the best we have
been able to do is eliminate the linear term in xo(l)

where e; is the relative abundance by number of the
ith element.

We have used the above formulas to compute the
equation of state and sound velocity as a function of
pressure for a large assortment of elements and com-
pounds. In Fig. 2, vre plot the theoretical equation of
state for six selected elements. These appear as dashed
curves. The solid curves show the shock-wave data"'5
as reduced by KnoppoG and MacDonald. "for the same
six elements. With the exception of Fe and Sn, all of
these elements have a face-centered cubic lattice
structure at zero pressure. Fe is body-centered cubic

"L.KnopoB and J. F. MacDonald, Geophys. J. 3, 68 (1960).
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at pressures below, say, 0.1 Mbar. Here, also, one begins
to see quantitative agreement between theory and
experiments at 10 Mbar.

Since 10 Mbar is not much larger than the run of
pressures in the core and lower mantle of the earth, one
can attempt a comparison of state equations obtained
from seismic measurements for the core with our semi-
empirical equation for various compounds which have
been suggested in the literature as good candidates
for core material.

In Fig. 4, we plot Birch's solution I" for the run of
density and pressure in the lower mantle and upper core
of the earth. The seismic discontinuity at a depth of
approximately 2900 km, which is reflected as a discon-
tinuity in density at a pressure of 1.35 Mbar in Fig. 4,
has been interpreted by Ramsey" and others as due to a
phase change (silicate compounds going into their
metallic phase, for example), and by MacDonald and
Knopo6'9 as caused by an abrupt change in chemical
composition. The latter authors" and Knopo6 and
U6en" have computed state equations from numerical
solutions of the TFD equation without correlation
corrections, and have compared them with seismic
models such as birch's in order to determine the
chemical composition on both sides of the discontinuity.
When correlation e6ects are taken into account, the
numerical results are altered quite drastically in the
range of pressures near the discontinuity. In Fig. 4 we

plot as dashed lines the results of our equation of state
for a selection of compounds discussed in Refs. 26, 29,
and 30. At a pressure of 0.1 Mbar, the correlation
e6ects increase the density by approximately a factor
of 2 over the TFD densities for the assortment of
compounds and minerals considered.

No very serious comparison of the numerical values of
our purely theoretical densities with the seismic data
for the core and mantle should be made at these still
relatively low pressures. It is clear, for example, that
pure iron should be at least as dense as the core at the
pressures which prevail in that region. Ultimately, the
problem of the core's composition will probably be
solved by a combination of theoretical and experimental
arguments. Such an attack has been made by Mac-
Donald and Knopo6. " They have normalized the
theoretical TFD equation of state so that it agrees with
experimental data at low pressures, and on the basis of
this procedure, they conclude that the core composition
lies somewhere between the iron-silicon mixtures,
Fe2.~Si and Fe~.6Si. Two definite conclusions can be
made from our theoretical results: (1) Correlation
corrections to the TFD equation of state very definitely

go in the right direction to give agreement with the

"F. Birch, J. Geophys. Res. 69, 4377 (1964}.
'8 W. H. Ramsey, Monthly Notices Roy. Astron. Soc. Geophys.

Suppl. 5, 409 (1949).
"G. $. F. MacDonald and L. KnopoG, Geophys. J. j., 284

(&958).' L. Knopoft and R. $. Uffen, ].Geophys. Res. 59, 471 (1954).
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empirical data; and (2) even in their metallic phase
(which is the only phase we can hope to even approx-
imately describe with a TFD model), the silicate
compounds will not have sufFiciently large densities at
core pressures to fit the seismic data. This latter point
is one more supporting argument for the interpretation
of the core-mantle discontinuity as a composition
discontinuity, rather than a phase transition.

It has been customary in the literature to summarize
the data for a given compound or mixture by computing
an e6ective Z, Z, which when inserted into the TFD
equation of state for a single element, yields the
pressure-density values for the compound. In general,
Z, is a very slowly varying function of the pressure, and
its precise numerical value depends on how one defines
the average mass, 2, for the compound. In Ref. 29,
the ratio of neutrons to protons is held fixed to its
actual physical value, while, in Ref. 30, this ratio is
deined to be unity. We have found it more convenient
to fix A as the average value for the compound, A
=P m;A; and vary Z such that, when inserted in
Eqs. (44)—(46), it gives agreement with the numerical
results for the compound. In Table II, we summarize the
resu1ts obtained for a large assortment of minerals,
pure elements, and mixtures at pressures of 0.1, 1.0, and
10 M bar. At extremely high pressures, all Thomas-
Fermi type equations of state give densities proportional

FIG. 4. Theoretical density-pressure curves (TFD plus average
correlation corrections) for an assortment of minerals. The solid
curve with the step discontinuity is Birch s solution I (Ref. 27)
for the actual run of pressures and densities in the lower mantle
and upper core of the earth.
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TABI,E II.8 and p are tabulated at pressures of 0.1, 1.0, and 10 Mbar for an assortment of pure elements and minerals. The quantity
Z, when used in Kqs. (44)-(46), gives the same density for mineral at a given prcssure as Eq. (49). A and go are the mean atomic
weight and atomic number, respectively; 3 =Km;A;, Zo ——Zm;Z;.

Mineral or element

Bi
Pb
Au
Galena-PbS
Sn
Cd
Ag
Zn
Cu¹i
Fe
8phalerite-Zn8
Fem, ySi
Fey. 6Sl
Troilite-FeS
Pyrite-FeSg
Wustite-FeO
Oldhamite-Ca 8
Magnetite-Fe304
Hematite-Fe~Og
Fayalite-FemSiO4
Rutile-Ti02
Andratite-Ca3Fe2 (SiQ4}3
Pyrope-FeIA13 (Si04)3
Grossularite-CaIAl~(Si04) 3
Diopside-CaMgSi206
Anorthite-CaAl~Si208
Orthoclase-KAlSi~OS
Corundum-A1~0~
Spinel-MgA12O4
Jadeite-NaAlS1206
Albite-NaAlSigOS
Quartz-SiQg
FOrSterite-MgpSi04
Enstatite-MgSi03
Periclase-MgO
Spodumene-I iAlSi206
Beryl-3eeAlgSigOgs

209
207
197
119.5
119
112
108
65
64
59
56
48.50
46.98
45.22
44.00
38,00
36.00
36.00
33.12
32.00
29.16
26.66
25.40
25.01
22.50
21.60
21.39
21.39
2.040
20.29
20.20
20.16
20.00
20.00
20.00
20.00
18.60
18.52

go

83
82
79
49.0

48
47
30

28
26
23.00
22.14
21.38
21.00
16.50
17.00
18.00
15.70
15.20
14.01
12.66
12.50
12.15
11.20
10.80
10.62
10.62
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
9.20
9.17

20.61
20.26
19.46
19.77
17.73
12.58
17.88
11.70
11.38
11.08
10.43
10.56
10.42
10.12
994
9.84
9.86
960
9.63
9.57
9.55
9.49
9.62
9.58
9.72
8.28
8.46

21.8
21.6
20.5
12.8
12.3
11.6
11.1
6.78
6.71
6.18
5.90
5.22
5,06
4.89
4.76
4.17
4.15
3.94
3.88
3.76
3.44
3.19
3.04
3.00
2.71
2e62
2.Q)
2.60
2.49
2.47
2.46
2.46
2.44
2.44
2.44
2.44
2.35
2.33

21.47
20.98
20.16
20.19
17.95
13.84
17.89
12.77
12.38
11.83
11.00
11.06
10.64
10.41
10.16
10.04
10.06
9.71
9.73
9 69
9.67
9.63
9.72
9 69
9.80
8.56
8.66

26.2
26.0
24.8
17.0
15.6
14.7
14.3
9.20
9.11
8.45
8.13
7.37
7o17
6.98
6.78
6.04
6.17
5.72
5.83
5.68
5.25
4.92
4.70
4.65
4.24
4.11
4.09
4.09
3.95
3.92
3.91
3.90
3.88
3.87
3.87
3.86
3.78
3.74

21.95
21.36
20.55
20.45
18.10
14.74
17.92
13.55
13.12
12.38
11,42
11.42
11.16
10.61
10.32
10.19
10.20
9.78
9.80
9.77
9.76
9.72
9.80
9.77
9.85
8.73
8.79

41.0
40.7.

29.6
26.6
25.4
24.6
17.0
17.0
15.9
15.4
14.2
13.9
13.6
133
12.0
12.4
11.5
1'1.9
11.7
10.9
10.4
9.88
9.83
9.06
8.82
8.80
9.78
8.56
8.50
8.48
8.46
8.40
8.39
839
837
8.27
8.20

to (2/Z) I a't a fixed. prcssure. A't tile pressures glvc11 111

Table II, however, the densities are stiB far more
strongly correlated with the atomic mass numbers, 2,
although occasional exceptions to this rule can be found
in the table. For instance, the mineral Wustite, with
A =36.00, is more dense than Pyrite which has A =38.00
at a pressure of 1.0 Mbar. The former has a ratio
(A/Z)=2. 599 at this pressure, while for the latter,
(3/Z) = 2.117.

n a future pubhcation, we will consider the applica-
tion of our equation of state to computations of models
for the Jovian planets.
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