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Experimental and Theoretical Study: of Phonon Scattering from
Simple Point Defects in Sodium Chloride*
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Thermal-conductivity measurements have been made as a function of temperature on sodium chloride
crystals containing the nine monovalent substitutional impurities: F, Br, I, Li+, K+, Rb+, Ag+, Tl+,
and Cu+. These measurements extend over the temperature range 1.2 to 300'K. All of the systems showed a
lowering of the curves which is asymmetric which respect to the peak. In order to explain this behavior,
the Debye approximation in the expression for the thermal-conductivity integral has been relaxed. Phonon
data were calculated using the shell model for 64 000 points in the Brillouin zone. From these data a density
of states and frequency-averaged group velocities were obtained and then used in the conductivity integral.
In addition, exact relaxation rates were obtained; via a Green s-function formalism derived by Klein, .for
a simple model for the defect in the lattice, which assumed a,

,change of mass at the defect site and a change
of force constant to the six nearest neighbors. The changes in force constant were obtained using a Bork.-
Meyer repulsive potential between the ions. New equilibrium positions of the surrounding ions were obtained:
from published Hterature and from a method using the static Green's functions. The results for the change
in force constant varied considerably, so that this parameter was considered to be semivariable in the
analysis. Depressions of the conductivity curve were predicted at approximately the same positions as found
experimentally. The predicted high-temperature depressions occurred at slightly lower temperatures than
the experimental ones and the strengths did not agree very well with experiment. The degree to which
the theory successfully predicted the experimental curves is related to the size of the strain field about the
impurity. Thus it is hoped that a more sophisticated model containing long-range effects will improve the 6t.

I. IÃTRODUCTI05

'HE work described in this paper was undertaken
to make a systematic study of the scattering of

phonons from monovalent substitutional impurities in
sodium chloride. Nine impurities were studied: Qourine,
bromine, iodine, lithium, potassium, rubidium, silver,
thallium, and copper.

Experimentally, the scattering of phonons can be
observed by measurements of the lattice thermal con-
ductivity. Despite some rather severe problems in
analyzing the data, this is a good tool to use since at
low' temperatures defects in the lattice have a strong
influence on the thermal conductivity. Review articles
on this topic have been written by Klemens' and
Carruthers. ' At the present time, the most fruitful
method of analysis is one advanced by Callaway' which
is valid within the Debye approximation for the phonons
and which uses a relaxation-time approach.

A number of workers have Inade lattice thermal-
conductivity measurements at low temperatures on
alkali-halide crystals containing point defects such as
F centers, ' isotopes, s vacancies, 7 substitutional di-
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No. COO-1198-390), and also by the A, P. Sloan Foundation.
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valent impurities, ' " and substitutional monovalent
impurities. '~"With the exception of the isotope results,
all of these systems show non-Rayleigh scattering, i.e.,
depressions in the thermal-conductivity curves which
are asymmetric with respect to the peak. The Rayleigh
scattering laws were derived by Klemens15 within the
Debye and long-wavelength approximations.

Some thermal-conductivity work has already been
done at higher temperatures on some of the same

systems which we have studied, viz. , NaCl containing
Ag+, Bt, and K+ in the temperature range 100 to
380'K" and NaC1 containing Li+, I, and Rb+ at
room temperature. '7

Phonon scattering from point defects has been studied
from a theoretical. standpoint by a number of people
beginning with Lifshitz. ' The most extensively studied
model has been that of a change of mass at the defect

6 R. Berman and J.C. F.Brock, Proc. Roy. Soc. (London) A289,
46 (1965).

~ J. %. Schwartz and- C. T. %alker, Phys. Rev. Letters 16, 97
(1966).' G. A. Slack, Phys. Rev. 105, 832 (1957).

~ M. V. Klein, Phys. Rev. 123, 1977 (1961}.
's C. T. Walker and R. O. Pohj, Phys. Rev. 131, 1433 (1963).
"%.S. Vh11iams, Phys. Rev. 119, 1921 (1960).
"J.M. Vi7orlock, Phys. Rev. 147, 636 (1966}.
a F. C. Baumann, Bull. Am. Phys. Soc. 9, 644 (1964).
'4 R. O. Pohl (private communication)."P. G. Klemens, Proc. Roy. Soc. (London) A68, 1113 (1955).
'6 E. D. Devyatkova, M. I. Kornfel'd, and I. A. Smirnov, Zh.

Eksperim. i Teor. Fis. 42, 307 (1962) LEngiish transl. : Soviet
Phys. —JETP 15, 212 (1962)g.

'7 E. D. Devyatkova, M. I. Kornfel'd, and I. A. Smirnov, Fiz.
Tverd. Tela 4, 3669 (1962) LEnglish transl. : Soviet Phys. —Solid
State 4, 2683 (1963)].

~ I. M. Lifshitz, Zh. Eksperim. i Teor. Fiz 18) 293 (1948)
Nuovo Cimento 3, 716 (1956).
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Fzo. 1.Thermal conductivity of the system NaCl: NaF. Points are
the experimental data and the lines are the theoretical 6ts.

site. '~" This model produces expressions which allow
resonant scattering of phonons and hence depressions in
the conductivity curves. Expressions for scattering from
a defect model consisting of a change of mass and a
change of force constant to the six nearest neighbors
have also given rise to the possibility of resonant
scattering. ""

This paper has four objectives: (1) to present experi-
mental data on the thermal conductivity of sodium
chloride containing the nine substitutional impurities,
(2) to extend the validity of the usual Debye approxi-
mations by calculating phonon data for 64000 points
in the Brillouin zone and hence finding the density of
states and group velocities, and (3) to use the phonon
data to evaluate the expressions derived in Ref. 28 for
isotope and substitutional defect relaxation rates. The
model assumed for the defects is that of a mass change

'll S.Takeno, Progr. Theoret. Phys. (Kyoto) 29, 191 (1963);30,
144 (1963)."J.Callaway, Nuovo Cimento 29, 883 (1963);J. Math. Phys.
5, 783 (1964).

2' J. Krumhansl, in Proceedings of the 1963 International Con-
ference on I.attice Dynamics (Pergamon Press, Ltd. , London,
1964).

2' R. J.Klliott and D. W. Taylor, Proc. Phys. Soc. (London) 83,
189 (1964)."C. W. McCombie and J.Slater, Proc. Phys. Soc. (London) 84,
499 (1964).

'4 A. A. Maradudin, Westinghouse Research Laboratory Report
No. 64-929-100-P4, 1964 (unpublished) .

"K.Thoma and W. Ludwig, Phys. Status Solidi 8, 487 (1965).
'6 L. Gunther, Phys. Rev. 138, A1997 (1965).
'7 M. V. Klein, Phys. Rev. 131, 1500 (1963).
~8 M. V. Klein, Phys. Rev. 141, 716 (1966).
'9 M. Yussou8 and J. Mahanty, Proc. Phys. Soc. (London) 85,

1223 (1965); 87, 689 (1966)."G. Benedek and G. F. Nardelli, Phys. Rev. 1SS, 1004 (1967).
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Fio. 2. Thermal conductivity of the system NaC1:NaBr. Points
are the experimental data and the lines are the theoretical fits.

"M. V. Klein and R. F. Caldwell, Rev. Sci. Instr. 37, 1291
(1966)."R. F. Caldwell, Ph.D. dissertation, University of Illinois, 196$
(unpublished).

and simple force-constant change. (4) The fourth
objective then is to see how well this model and our
method of computing the conductivity can explain the
experimental data.

Section II of this paper describes the experimental
aspects of measuring the thermal conductivity of the
nine systems mentioned above over the temperature
range 1.2 to 300'K. Expressions used to calculate the
thermal conductivity are presented in Sec. III.

Section IV describes our calculations of the density
of states and frequency-averaged group velocities for
Nacl using the shell model for the lattice. These are
used to relax the Debye approximation.

Relaxation rates, based on expressions derived in
Ref. 28, are given in Sec. U for isotope scattering and in
Sec. UI A for impurity scattering. The former is an
exact calculation, i.e., as good as the phonons obtained
with the shell model, and the latter is exact within a
simple model of the defect and within the phonon data.
Section V contains a fit to the pure curve.

Section VIS discusses the results of the defect
calculations and a comparison with our experimental
data.

II. EXPERIME5'TAL ASPECTS

A. Technique

The thermal-conductivity apparatus used for these
measurements is described in detail elsewhere. ""Two
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FIG. 3.Thermal conductivity of the system NaCl: Nal. Points are
the experimental data and the lines are the theoretical fits.

Department. The first determination was made by
adding PdC1 to an aqueous solution of the NaCl-NaI to
form a colored solution of PdI which was then compared
to a standard. The second method was to oxidize the
I by adding HNO3 dissolved in CC14 and then measure
the absorption of violet light in the solution. The two
methods yielded results that were within 10% of each
other on the lightly doped sample, 6'%%u& on the medium-
doped sample, and 2% on the heavily doped sample.

The concentrations of the impurities Ag+, Tl+, and
Cu+ were determined by the analytical staE within the
Materials Research Laboratory. The silver concentra-
tion was determined by a gravimetric analysis and the
copper by emission spectrographic analysis;

The thallium analysis was performed by Mossotti
and Duggan of this laboratory by a calorimetric tech-
nique using Rhodamine B after a preliminary separation
of the thallium from the sodium. The result of several
independent determinations gave a ratio of 0.19&0.02
ppm/cm ' for the mole fraction T1C1/NaC1 divided by
peak-absorption coefficient in the uv absorption band
at 200 mp. We were able to grow only about 5 ppm mole
fraction Tl+ into our crystals. Because of its high vapor
pressure, the thallium concentration in the melt, and
hence in the boule, decreased during growth.

cryostats were used to cover the entire temperature
range. From 1.2 to 80'K a liquid-helium cryostat was
used. Germanium resistance thermometers were used
over this range. These had been previously calibrated
against a vapor-pressure thermometer and a helium gas
thermometer. The temperature range from 65 to 300'K
was covered in a liquid-nitrogen cryostat which used
platinum resistance thermometers. No corrections were
made for radiation losses; so the data beyond 250'K
are unreliable.

All of the crystals were grown by the Czochralski
technique in an atmosphere of pure argon. Prior to the
growing phase of the crystal preparation the sodium
chloride starting material (reagent-grade powder from
Mallinckrodt) was treated by passing C12 gas through
the molten salt for 12 h.

The analysis of the resultant boules was of two kinds.
First, an analysis was made by running an ultraviolet
absorption scan from 500 to 175 mp on a Cary model 15
Spectrophotometer. This was done for three reasons:
(a) to determine if any OH remained in the crystal
after the C12 treatment (OH band at 185 mp), (b) to
determine the relative concentrations between succes-
sive dopings of Ag+, Tl+, Li+, Cu+, and I, all of which
have a uv band or bands, and (c) to determine if any of
the uv active elements were contaminating the crystal.

The second analysis was quantitative. Commercial
firms determined the F and Br concentrations by wet
chemistry techniques and the Li+, K+, and Rb+ con-
centrations by Qame spectroscopy.

The NaI system was analyzed by two independent
methods by the analytic sta6 within our Physics
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300

B. Results

The thermal-conductivity data are shown in Figs. 1—9
for the nine systems studied. The points show experi-
mental data and the solid and dashed curves are the
theoretical fits which are discussed in Sec. VI. The
results of the concentration analysis are shown on each
graph.
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ductivity. The one curve shown was grown from a melt
containing over 1 mole% RbC1. Both the thallium an.d
copper samples contained less impurity but they
a8ected the conductivity, so an analysis was done on
these systems.

The following section gives the conductivity integral.
Section IV describes our calculations giving us a detailed
knowledge of. the phonon spectrum so th.at the Debye
approximation can be relaxed. The next step beyond
this, i.e., the calculation of relaxation rates which are
also valid outside the long wavelength and Debye
approximations, is described in Secs. V and VI for the
isotope and substitutional impurity rates, respectively.

.Ol
I

I

5 IO

TEMPERATURE (OK}

I i ilail
50 IOO 300

FrG. -5. Thermal conductivity of the system NaCl: KCl. Points are
the experimental data and the lines are the theoretical fits.

20

PURE NaCI

I

NaCI + RbCI

One of the features to be noted about these curves is
that with the possible exception of rubidium, they all
exhibit non-Rayleigh scattering behavior. The deviation
from Rayleigh scattering, which produces a symmetric
lowering of the curve about the peak, is most pro-
nounced in the Ag+, Cu+, and Br systems at the high
temperatures and the F system at the low temperatures.

No theoretical analysis was done on the rubidium
samples since not enough impurity could be grown into
the crystal to make an appreciable eAect on the con-

O I—
I-
I-

5—

I-

I-

Cixo .I—
O

~+.05—
LJJ

I-

0 0 0 0 3 OaiO 4AQCI

4 4 4 I. l&IO 3AgCI

~ 3.I IO 3
Ag Cl

v ~v v 32aIO-&AgCI

~a4
III

.OI
I

I t &
'I ) ital
5 0

TEMPERATURE ( K)

I i'& tel
50 IOO

FIG. 7. Thermal conductivity of the system NaCl:AgCl. Points
are the experimental data and the lines are the theoretical fits.

lal

CI

2
I
I

I

I-

I& 05
O
R
O

0.2

W
x,'

O.I

0.05-

0.03 I I l

5 IO 20
I

50
I I

IOO 200 %0

III. THE CONDUCTIVITY INTEGRAL

We shall use the following expression for the thermal
conductivity:

It = (P/3ps+) ~L(Tg ')$—'co'(I eI )

Xp(ca)e*/(e* —1)' (1)
where

—1Tc

is the combined relaxation rate due to several possible
phonon-scattering mechanisms. p(u) is the density of
states, and the brackets ( ) indicate frequency aver-
ages."The factor or is the maximum frequency in the

TEMPERATURE ('K)

FIG. 6. Thermal conductivity of the system NaCl: RbC1.
Experimental data only.

» The proper average to take is (v.vs), but since 1/~g (three
phonon) is so poorly known it is felt that the averaging procedure
used in Eq. (3) is entirely adequate and makes much more eKcient
use of computer time.
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delayed until. Sec. V.
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'4Throughout this paper, co denotes angular frequency in
rad/sec.

IV. PHONO5' CALCULATIONS

Knowledge of the dispersion curves and polarization
vectors of the individual phonons is necessary (a) to
relax the Debye approximation by using more exact
expressions for the phonon density of states and group
velocities and (b) to calculate exact rates for phonon
scattering by isotopes and substitutional impurities.

To obtain this detailed knowledge of the phonons, we
have used the shell model that was successfully em-
ployed by Cochran et ul.3~'7 at Chalk River to 6t the
neutron-determined phonon dispersion curves for KBr
and NaI and more recently by Boiling et al.'8 to fit
KI, data.

Phonon frequencies and eigenvectors need only be
computed for k vectors in 1/48 of the Brillouin zone;.
application of symmetry operations will then generate
eigenvectors for points in the entire zone. The effect
this has on expressions for densities of states is discussed
in Appendix C of the paper by Timusk and Klein."
All calculations were performed on either the IBM
7094-1401 computer installation~ or the "Illiac II"-1401
computer installation in the Department of Computer
Science at the University of Illinois.

A. Determination of Input Parameters

There are nine parameters in this modeP' '7: A, 8",
A', 8', Z, n+, 0, , d+, and d .There exist, unfortunately,
only 6ve relations involving these nine parameters and
the measurable constants listed in Table I. These are
the same data used in similar calculations by Karo and
Hardy" with the "deformation dipole" model. The
elastic constants were obtained from data extrapolated
to O'K by overton and Swim. 4' These relations are
found in the Appendix of Ref. 35:

c))——Le'/(rem)]L —2.555Z'+ (-,') (A+A'+8') g, (Ba)

C„=j "/(,.)j[O.696Z —(-')a'+ (-')a' —(-')a"j (3b)

C«= j:e'/(r») jLO 696~—(k)&'+(i)~'+(k)&"j, (3c)

» A. D. B. %'oods, %. Cochran, and B. N. Brockhouse, Phys.
Rev. 119,980 (1960).

"A. D. B. Woods, B. N. Brockhouse, R. A. Cowley, and
W. Cochran, Phys. Rev. D1, 1025 (1963)."R. A. Cowley, %. Cochran, B.N. Brockhouse, and A. D. B.
%'oods, Phys. Rev. 131, 1030 (1963)."G. Dolling, R.A. Cowley, C. Schittenhelm, and I.M. Thorsen,
Phys. Rev. 147, 577 (1966)."T.Timusk and M. V. Klein, Phys. Rev. 141, 664 (1966).

4'The facility is partially supported by the National Science
Foundation Grant No. NSF GP700.

4' A. M. Karo and J. R. Hardy, Phys. Rev. 141, A696 (1966}.
42%. C. Overton and R. T. Swim, Phys. Rev. 84, 758 (1951}.
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Pp —P=4 l(lP+2) (2+2+ lL) —8/(O'VPPlp ) I (3d)

The 6rst three involve the elastic constants and the
last two are the generalized Szigeti relations where p, is
the reduced mass of the two ions and ~0 is the TO
phonon frequency at 0=0.

Three of the parameters can be disposed of by making
the not too unreasonable assumptions that the electronic
polarizabilities are equal to the ionic polarizabilities
listed in Table I and that the ionic charge Z= I. This
leaves the five equations (Ba)—(3e) for the remaining
six unknowns. Two possibilities now present themselves
for the sixth relation: (a) Assume a van der Waals force
between next-nearest-neighbor ions, i.e., Vp a/rP, o-—r

(b) assume that the number of charges on each ion shell
are equal, i.e., I"+=F .

Table II lists the results of using both of the assump-
tions. It is felt that the close agreement is somewhat
fortuitous since Karo and Hardy used a Szigeti relation
to obtain the parameter e in Table I.

Since the van der Waals forces assumption seems
more physically reasonable, it was used. The results in
the form of dispersion curves in the various directions in
k space are plotted in Fig. 10. A total of 64 000 points
was used in the 6rst Brillouin zone of k space.

B. The Density of States

The density-of-states histogram appearing in Fig. j.j.
+as obtained by dividing the total frequency range into
75 bins. A second set of 75 bins over the entire range
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FIG. 11. Calculated density of
states for NaCl for a total of
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Fxe. 12. Calculated group veloc-
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was de6ned so that the beginning of each bin was
staggered %'ith respect to the original set of bins a
distance equal to 3 a bin width to the left. A third set
was similarly staggered ~~a bin width to the right. The
225 sub-bins resulting from this staggering procedure
were then averaged with proper care being taken at the
ends to ensure that all of the points are counted within
the original frequency span. The sum of the points under
the histogram is 6X64 000=384 000.

C. Group Velocities

Figure 12 shows the average group velocity for the
64 000 phonons as a function of frequency. These were
computed according to the equation

a;(kX) = h&v, /hk, ,

V. ISOTOPE SCATTEMNG

A. Relaxation Rate

An exact expression for the relaxation rate due to
phonon scattering by isotopes has been derived in
Ref. 28. This expression was evaluated on the computer.
Figure 13 shows the result of this calculation with the
~' dependence divided out or, in other words, shows the
deviation from Rayleigh scattering. The three main
peaks in the center correspond to the three main peaks
of the density-of-states plot in Fig. 11. The general
lowering of the curve at high frequencies reQects the
fact that the heavier chlorine ion does not move as far
from equilibrium as it does at low frequencies. At low
frequencies the scattering rate is given by

1/r=3.00X10 ~co'sec '.

where i denotes one of the three Cartesian coordinates
and kX denotes the phonon involved.
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Tmr.E II. Shell-model-calculation parameters
for two approximations.
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FIG. 13. Frequency-averaged relaxation rate divided by co'
for phonon scattering from chlorine isotopes in NaCl.



858 R . F. CALDKELL AN D M. V. KLEI N

IO

T = 2 I I 4K

IO
I I

T=5 00'K

lO

rts
EA

ol
'10

E
CP

O
EP
tA

E
O IS

IO

O

K
C9
or

&. Id

O
D

IO

ld
~0
X
LLI

10
0.2 0.4 0.6 0.8 I

FREQUENCY 00 SEC j
1.2

I

1.4

IO

IO-

2 3

FREQUENCY (10 SEC )

Pro. 14. Integrand of the thermal conductivity expression pEq. (1)g without the factor I (r, r)g r: ore( Is I )srr(or) ee/(e' —1)s.

This is the same as would be obtained with Klemen's
expressions" with the group velocity e=2.93X10'
cm/sec.

p(or) =1.58X10eD(M) .
~ Reference 15, Eq. (45).

(6)

B. Fitting the Pure Curve

We are now in a position to relax the Debye approxi-
mation by using more realistic terms in Eqs. (1) and (2).
The frequency-averaged group velocities (rr) are shown
in Fig. 12. The calculated density-of-states histogram
D(or) appearing in Fig. 11 is not the true density of
states p(or) but is proportional to it:

The factor 1/r, in Eq. (1) contains four contributions
for the pure crystal curve: (a) boundary scattering,
(b) normal three-phonon processes, (c) umklapp three-
phonon processes, and (d) isotope scattering. The
isotope scattering term is shown in Fig. 13.The bound-
ary scattering term was derived by Casimir, and for a
crystal with a square cross section is

1/r (boundary) = rr/(1. 128), (7)

where 8 should take on the value of the square root of
the cross-sectional area, but for this calculation best
results were obtained with 8=0.691+area. This in-
crease of 1/r above that predicted by Casimir seems to
hold generally and is discussed in some detail by



Thatcher. 5 Klcmens" has derived an expression for
umklapp px'occsscs Rt low tempcl'RtUx'es:

1/r (umlrlapp) ~ e 'I ate'Ts,

where a~2 for cubic crystals. Herring" has suggested
thRt thc QormRl ploccss scRttcx'lng x'atc should go Rs
~'T' at low temperatures. For R good 6t to our data, Rt
high temperatures the two three-phonon terms were
condensed into one:

1/r (three phonon) =2.9X10 tse ' le~ teTssec '. (8)

The results are shown as the top solid line in Fig. 1.
It is felt that the remaining deviation between this
cuI'vc Rnd thc expcrinmntal datR points ls duc, fol thc
Dlost pax't, to t11e pool' cxplcssloQ fol thc thlcc-phonoQ
PI'OCCSSCS.

Bcfox'c plocccding GQ to R discussion of tbc IQCIUslon

of defect scattering, it is pro6table for us to look in more
detail at the integrand of Kq. (1}without the r, factor
and also at the three-phonon term given by Eq. (8).

Figure j.4 shows that the intcgrand is R very sharply
peaked function at low temperatures, e.g., at 1'K it
falls O6 to j.o ' of its peak value in a frequency span of
0 to 0.2X10" rad/sec. The effect of increasing the
tempexaturc is mainly to broaden the peak and shift it
to higher frequencies. At 56'K, for instance, the main
contribution (within a factor of 3) comes within the
frequency span 1.0X10~ to 2.5X10"rad/sec. Therefore,
to hRve RQ RppI'cclablc cBcct on thc conductivity at
55'K, the factor r, must have a large depression, or 1/r,
must have R large humpq wlthln this I'RQgc.

The combined relaxation rate 1/r, is the sum of
several terms, one of which is the three-phonon term
shown for various temperatures as the sobd lines in
Fig. 15. Another one of the terms is the isotope term
shown in Fig. j3 which reveals that it deviates from
Rayleigh scattering most strongly in the region between
1.5X10"and 2.5X10"rad/sec. The dots on the three-
phoQGQ cuI'vcs I'cpx'oducc the lsotopc-I'claxRtloQ 1Rtc
of Fig. 13. The cfkct of the deviation from Rayleigh
scattering on the conductivity curves will be washed
out by the three-phonon processes at temperatures
above 70'K. Below 30'K, however, the isotopes wiH

dominate the three-phonon CGccts in this frequency
range of 1.5 to 2.5X10" rad/sec so that r, will be
Rejected most by the isotopes at temperatures below
30'K. Between 30 and 70'K the isotope domination of
1/r, is slowly replaced by three-phonon domination.
Looking at the integrand curves of Fig. 14, we see that
in the curve for 7=15'K the major contribution to the
integral occurs at frequencies less than 1.5X10"rad/sec

P. G. Klemens, in Eecycloped~fJ Of I'byes, edited by S. Hugge
(Springer-Verlag, Berlin, 1956), Vol. 14, p. , 198.

"C.Herring, Phys. Rev. 94, 9&4 (19S4).

I

2

FREGUENCV (lO SEC ~

Fro. 15. Relaxation rates for the three-phonon processes LEq.
(14)j for various temperatures. The dots superimposed upon these
form the curve for the isotope relaxation rate given in Fig. 13.This
shows the various temperature-frequency combinations in which
the isotope term will be important.

where thc thrcc-phoQGQ cGccts still dominate. YhUs wc
can say that the deviation from cv' Rayleigh scattcx'ing
of phonons by isotopes, which is R rcQection of the
density of states, will make R contribution to the con-
ductivity throughout the region between 26 and 70'K
with the major effect bring in the region 30-40'K.

VL SCATTERgf6 FROM SUBSTITUTIONAL
XMPUMTIES

A. Relaxation Rates

/, INkfodscAON

Our model for the defect is a change of mass at the
impurity site plus a change in central force constant to
the six nearest neighbors. "Kith this model the per-
tUI'batloQ D1RtI'lx I ls of order 9. By gloUp-thcoI'ctlcRl
arguments this n1atnx can be reduced to a much simpler
irred. ucible form, diagonal in one Al~ "breathing" con-
6guration and two degenerate E, "tetragonal" con-
6gurations, and having three identical 2&2 submatrices
operating on two coupled odd g,„confjgurations. Thc
primed basis of Ref. 28 was used. Expressions for the
scattering rate within each of these irreducible repre-
sentations were derived in Rcf. 28. We shaH not re-
produce them here but merely mention that they
involve the imaginary part of the T matrix defined by
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where F=—A' —A is the change in the dynamical matrix,

and the Green's-function matrix G is given by

Z. GfGas s PQsc/zoss

In the basis spanned by the con6gurations just
mentioned, G has the same number of components as the
defect matrix I".Reference 39 gives the method used to
calculate the real and imaginary parts of these matrix

elements of G needed for the calculation of T and hence

of v.Lj. They are plotted in Figs. 16—20 for each of the
6vc matrix clcn1cnts fol both R ncgRtlvc- Rnd R posltlvc-

ion impurity. They were drawn on the basis of 225 fre-

quencies, one in the center of each bin. There were

originally 75 bins used to compute the histograms; they
were then shifted over by plus or minus 3 a bin

width to provide a smoother and 6ner mesh. Neverthe-

less~ we still hRd coRI'sc gI'Rlnlng cGects) Rnd thc first

15 bins were forced to take the proper analytic fre-

quency dependence. One can readily show that the

imaginary parts in the long-wavelength Hmit must go

as ~'. for the A~„E„and T~„-12 elements, ~' for the

T~„-22 elements, and co for the TI„-11 elements. Some

small-scale wiggles can be seen in some of the curves

because of residual coarse-graining CGects.
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I'(Ag, ) =I'i(E,)=F2(E,) =hf/M„ (11a)

I'gg(Tg„) =5f(2/M, +1/M, )—2AM, oP, (11b)

Fn(Tg )= —EM;co', (11c)

(11d)

where R= hM;/[M, (M,+2M, )j, M, is the mass of the
host ion at the impurity site, M, is the mass of the
nearest-neighbor ion, hM , is the change of mas's. hf is

3. Pertlrbatiorl, Matrix

The expressions for the components of the perturba-
tion matrix are given in Ref. 28 and are

the change in central force constant to the nearest
neighbors, which we must now try to estimate.

4. Theoreti eat Estimates of 4f
When an impurity is added, the nearest neighbors will

move to a new equilibrium position somewhere between
that of sodium chloride and that of the dopant material.
In order to calculate the change in nearest-neighbor
force constant one must know what the new equilibrium
position is.

I"ukai has calculated4' what these displacements
should be by two different methods for the impurities

4' Y. Fukai, J. Phys. Soc. Japan 18, 1413 (1963).
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I', Br, I, Li+, K+, and Rb+ in NaCl. One method
used the isotropic approximation of Brauer, 4~ the other
a discrete lattice-dynamical method due to Hardy, 48

which assumed the rigid-ion model for the phonons,
I'ukai has also experimentally measured the displace-
ments for all the above impurities using nuclear-
magnetic-resonance techniques. 4'

%e now derive a method of determining these dis-
tances using the Green's function for the A ~, configura-
tion at zero frequency. Although our derivation uses
different language, the method is equivalent to that

4' P. Brauer, Z. Naturforsch. 79, 372 (1952).
4S ].R. Hardy, J. Phys. Chem. Solids 15, 39 (1960),
'9 V. Fukai, J. Phys. Soc. Japan 18, 1580 (1963).

of Hardy. '8 The result that we shall obtain for the
nearest-neighbor displacement e is contained in Kq.
(15') or (17) below.

The change in the force vector hF' (I-) along the
bond lengths between the impurity and the nearest
neighbors is in general given by

~F' (L)=—L(~I"/~N' (L))—(~I'o/~N' (1))3 (12)

where I is the displacement from the old equilibrium
position ro. The subscript i denotes the bond between
the impurity ion and the nearest neighbors and the
subscript zero denotes the host bond. The remaining
notation is that of Ref. 28. The 6rst term on the right is
evaluated at the new equilibrium position and the
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second is evaluated at the old equilibrium position.
T e vector hF' (L) is localized and has A x, symmetry.
In fact we can write

dF' (L)=hF „„'(1.),
where e@x,'"(I)=

~
2x,) is a unit vector of Ax, symmetry

aving components dedned on the nearest-neighbor sites
(having position vectors &aj; j=l, 0 3 th
vectors along the cube axes):

s»u'"(+i) =~ (1/v'6) (&~. ')
if 0. refers to nearest neighbors,

=0 at all other sites.

In Eq. (13) AF is given by

M= —$V (ra+I) —Vo'(r0) j (13')

where the prones indicate derivatives with respect to r.
Equation (13') is a scalar equation obtained by multi-

plying both sides of Eq. (13)by e~x,'~(1.) and suxnxning

over I., j, and e, i,e., by taking the inner product with
the vector e~x, ' (L).

The change dS&'~(l) will be balanced by the
(assumed) harmoni'c response of the rest of the lattice.
At the new equilibrium position, the condition

0=EF' (I.)
—

I g P P C»&' "'(l.,l.')I" '(1.')—correction| (14)
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correction= Vo"ue~I, ' (L) . (14')

holds. The factor C is the unperturbed coupling con-
stant matrix given in terms of the second derivative of
the potential energy. The correction term comes from
the fact that we have already taken care of the short-
range force between the impurity and the nearest
neighbors in Eq. (13).It can be written

We now take the inner product of this equation with

iAI, ) and find that the displacement u of the nearest
neighbors is given by

=(A„i )=(A,, ig-IiA„)(gp+V, "u). (15)

The matrix element of III—' appearing in Eq. (15) can
be written

Go(A Ig)/Mg= (A Ig i G(0) i
2 Ig)/Ms ~

Letting @ represent the matrix with components
4»'~ '(L,L') and u the vector with components uI' (L), Equation (1.5) can be written in the form used by
we can use Eqs. (13) and (14') to write the formal solu- Hardy,
tion of Eq. (14) as u=np„(15')

u= III-Ii A Ig)(&p+ Vo"u) . where p, =gp+V, "u and eI=G, (JI I,)/M, . The values
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TABLE IlI. Summary of the nearest-neighbor equilibrium displacements and changes in force constant.

Impurity

F
Br
I
I.i+
K+
Rb+
Ag+
Tl+

—6.5
2.5
6.2—4.2
6.5
8.5—1.2

13.0

—18 500
8800

14 900—10 600
13 200
14 700
15 800
50 000

Green's function
u/r0 Af

erg/cm~
Q/r 0

—5.2
4.1
9.5—3.0
7.9

10.8

Bracer
Af

erg/cm~

—19 000
2000
2200—13 000
6600
6500

Af
rg/cm~

—18 000
6800

11 000—13 000
16 000
19 000

—5,6
2.7
6.3—3.0
5.3
7.5

Hardy
g/ra

'Fo

—4.2
5.5

12.4—5.2
9.2
9.8

—19000—1600—5000—8200
2000
9800

Experimental
e/rp 6f

erg jcms

V=38 "~i'

Thus the equilibrium condition, Eq. (15), becomes

(16)

(A,/p, )e—"' *'e " '—(Ap/pp)

=PM, /ReGp(Rip) —(Ao/po')e
—"o' o7N. (17)

We have used Eq. (17) to obtain the values for the
displacement I shown in the hrst column of Table III.
In other columns we have listed the values found by
Fukai using the Brauer method and the Hardy method
plus the values obtained by Fukai from his nuclear-
magnetic-resonance data. The input parameters used in
our calculations were obtained from the following
sources: The room-temperature values of the constants
3 and p were taken from Born and Huang" for all of
the impurities except silver and thallium. For silver,
the values of A and p were derived from the relations
in Ref. 50, Eqs. (3.10)—(3.14), with the compressibility
being obtained from elastic constant data given in
Kittelp' (/= 2.26X10 "cm'/erg) and a van der Waals
term given by Fukai" (D/as=0. 273X10 " erg). For
thallium we obtained the compressibility from Tolpygo"
(/=4. 8X10 " cm'/erg) and the lattice constant from
Kristofel" (r, =3.38X10 ' cm). A van der Waals term
was not included, since it was unknown. Zero-degree
values of ro, po for NaCl and of p, for F, Br, I,
Li+, and K+ were obtained from data tabulated by
Karo and Hardy. '4 They also list 0' values for the

5 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Clarendon Press, Oxford, England, 1954), p. 20.

"C.Kittel, INtrodlctiorl, to Solid-State Physics (John Wiley 8r
Sons, Inc. , New York, 1961),p. 63.

+ K. B. Tolpygo, Izv. Akad. Nauk, SSR, Ser. Fiz. 24, 177
(1960).

'3 N. N. Kristofel, Fiz. Tverd. Tela 3, 1876 (1961) )English
transl. : Soviet Phys. —Solid State 3, 1366 (1961)).

~ A. M. Karo and J. R. Hardy, Phys. Rev. 129, 2024 (1963).

for n that we obtained from our values of Gp(Hip) were

n~=2.49X10 ' cm/dyn for positive impurity,

n = 1.93X10 ' cm/dyn for negative impurity.

Hardy's value for e+, obtained using a rigid-ion model"
is n+ ——2.04X 10 s cm/dyne.

The short-range potential V is the only potential
assumed to change when the impurity is added. It has
the form

compressibility and lattice constant, so that we were
able to determine A o and A; from the same relations in
Ref. 50 as mentioned above. The values for I (and hF)
that we obtained by the Green-'s-function method and
show in Table III used the low-temperature parameters
for these five impurities (F,Br, I,Li+, and K+). Th
values for other impurities that we obtained used the
high-temperature parameters but, somewhat incon-
sistently, still used the value of the Green's function
obtained with low-temperature phonons. Fukai used
room-temperature parameters, exclusively.

An independent calculation of the displacements of
the neighbors of Ag+, Li+, K+, I, and Rb+ in NaCl
using the shell model has been made by Zhurkov and
Oskot-skii. "Their results agree quite closely with those
found by Fukai using the Hardy method for all of the
impurities except Ag+, which Fukai did not calculate.
Their value for silver agrees quite well with that cal-
culated by our Green's-function technique (Table III).

Once the new' equilibrium displacement I is known,
the change in force constant hf can be calculated if a
given force law is assumed. We have used a method due
to Benedek and Nardelli. '0 They include the eRective
noncentral forces due to bond bending between nearest
neighbors and handle the Coulomb part through the
ionic polarizabilities:

2f= 2 (r7'Va/Br')+4(ol V~/r8r)

-(")'(~+=)/LD(-.+ +D)7, (»)
where D=6r'/8rr, the derivatives are evaluated at the
equilibrium distance, and e is the effective charge. fp
is obtained by using the appropriate values for NaCl,
and f; is obtained by using the values of the impurity
lattice and evaluating everything at the new equilibrium
distance. Using this model we obtained 2fp ——30700
ergs/cm' at room temperature and 2fp ——32 800 ergs/cm'
at O'K.

Another method of 6nding effective force constants,
applicable to fp, is to, set fp equal to that value of —6f
that will make the perturbed crystal unstable against a
displacement in the 22(Ti ) configuration, i.e., give a
zero-frequency resonance. Using Eq. (22) we obtain

"I.S. Zhurkov and V. S. Oskot-skii, Zh. Eksperim. i Teor. Fiz.
43, 2261 (1962) LEnglish transl. : Soviet Phys. —JETP 16, 1597
(1963}j.
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for a negative impurity

23f+M
2fo=

2M++M
G22 (T~ )=30 700 ergs/cm', (19)

and for a positive impurity

2fo=
2M +M+

G~2+(T~ ) =31 500 ergs/cm' (20)

(at O'K). The agreement with the results using Eq. (18)
is not bad.

Table III summarizes our results for hf It w. as
calculated using Af= (f;—fo). "Brauer" stands for
Fukai's results using the Brauer method; "Hardy" his
results using the Hardy method; and "Experimental"
denotes his NMR results.

As will be discussed in the next section, the value
entered here for silver is probably not correct. Even
though the compressibility is smaller for AgC1 than for
NaCl, it apparently has a negative hf. Its force-constant
change, like that of copper, is calculated from optical
data.

Because of the wide variety of values for 6f appearing
here, they will be used merely as guide lines for the
application of the theory to the experimental results.
The seemingly unphysical negative results for hf for

Br and I as calculated from the experimental dis-
placement serves to point out the futility of trying to
obtain exact values for the change in force constant at
the present level of experimental and theoretical
knowledge.

5. Expressions for the Relaxation Rates

Since the relaxation rates for each mode q will go
into an integral over cv, they should be converted to a
frequency dependence. This is done by averaging the
expressions for ~& ' in Ref. 28 over frequency. The
results are

(1/r(A )g)) = (2cED(v/~) ImG(A ~g)

XImT(A„)/D(~), (21a)

(1/r(Eg)) = (4cXE(o/vr) ImG(Eg)

XImT(E, ')/D(&u), (21b)

(1/r(Tr ))= (6cNA(o/7r)g ImG"(Tg„)

X ImT'&(Tg. )/D((o), (21c)

where D(&a) is the calculated. density-of-states histogram
which appears in I'ig. 11, and AM is the bin width.

The imaginary parts of T for the even configurations
are given by the simple expressions

(6f/M, )' ImG(A gg)
ImT(A gg) =

[1+AfReG(A~, )/M, ]'+[hf ImG(A~, )/M, ]'
(0,f/M, )' ImG (E,)

ImT(E, )=
[1+AfReG(E,)/M, ]'+[Af ImG(E, )/M, ]'

(22a)

(22b)

where M, is the mass of the ions surrounding the
impurity.

The odd configurations, being coupled, are not so
easily treated. They involve three sets of 2X2 matrices
which can then be separated into real and imaginary
parts:

lengthy. They are obtained as follows:
When the 11, 22, and 12 elements of Eq. (22c) are

written out and separated into their real and imaginary
parts, they will all have the same denominator given by

denominator= [det(I+GI')][det(I+Gi')]~. (23)

The real and imaginary parts of det(I+Gl') are, in

This is easily done but the expressions get rather detail:

Re det(I+Gi') = 1+M„ReG226f—(ReG»+M~ ReG» —2(QM„) ReG~2) (hM/Mo)aP
—[ReG» ReG22 —ImG» ImG22 —(ReG»)'+ (ImG~2)']Dr~oP, (24a)

Im det(I+GI') =M„(lmG»)&f —(ImG»+M„ ImG2q —2(/Ms) ImG»)(AM/M@)co'
—(ReG» ImG»+ReG» ImG» —2 ImG» ReG»)D&~~', (24b)

where M„=(M;+2M, )/M, M, is a reciprocal mass, Ma=M~+2M„Drsr=hfhM/M;M„and M„=2M,/M;;
and, for instance, G» ——G»(T&„).The subscripts i and s indicate the host ion at the impurity and surrounding sites,
respectively.
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The numerators of Eq. (22c) are given in terms of Eqs. (24a) and (24b) by

num-11= $1+M„(ReG»)Afj(AM/M q)~' Im det(I+GF) —Dp~(ImG22)aP Re det(I+Gl'), {25a)

num-22= $(M~AM/Mq)aP —M„Af+D~3r(ReGn)aP j Im det(I+Gr) —Dp3r(ImGn)co2 Re det(I+GF), (25b)

num-12= P(—QM~) AM/Mq+D

pj's

ReG(2]oP Irn det(I+GI')+D g~ ImGg2co' Re det(I+Gl') . (25c)

In the limit as cv ~ 0 the 11 contribution to 1/r will dominate for a system where AM is not zero. In this limit

ImT" (Tg„)-+ —(AM/M q)'(ImG»)(v4. (26)

The other two elements are considerably more complicated, but if we impose the two additional limits Af ~ 0
or hM —+ 0 we can get an idea of their behavior. In the limit Af ~ 0 and ~~ 0, the denominator approaches unity
and

ImT" (Tg„)—+ —M~(6M/M q)'(ImGn)&o',

ImT" (Tg„)—+ M„(hM/Mq)'(ImGn)(o',

and for AM-+0 and~~0 (but Af/0)

ImT»(T, ) —+ —M '(ImG22) (Af)'//11M (ReG~2)&f1'
ImT" (T ) -+ —(hM/Mq) (ImGg )Afro'/Ll+M, (ReG22)&fj. (28)

Thus we see that in all cases the imaginary part of the
odd-parity T matrix goes as co' in the long-wavelength
limit. (Remember that ImGn —+or, ImG22~~', and
ImGU, ~ oP.) In the expression for the relaxation rate,
Eq. (21c), we see that these expressions get multiplied
by the lIllaglnary parts of the Green s fullctlons and
divided by the density of states, which goes as m'. Thus
the {11)contribution will dominate when AM&0 and
the relaxation rate goes as ~'. In the extreme case of
3M=0 we see that the (22) element will dominate and
the relaxation rate goes as ~' as discussed in Ref. 27.

From Kqs. (22a) and (22b) for the even-parity T
matrices and Kqs. (21a) and (21b) for the even-parity
contributions to the relaxation rate and the fact that
ImG(even) goes as oP as ~~ 0 we see that both even-
parity contributions to the relaxation rates go as cd in
this llQllt also.

The nonperturbative character of the expressions for
the relaxation rates can be seen by looking at the
denominators of the T matrices. %hen perturbation
theory holds, the denominators should be equal to unity.
Ke will investigate this for the eGect of a bromine
impurity on the E, con6guration. A reasonable force-
constant change from Table III would be 5000 ergs/cm'
and Fig. 1'1 shows that at zero frequency ReG(E,)
=1.4X10-"sec' and ImG(E, )=0. Therefore

Denom= (1+5000X1.4XI "X6.03X10»/23.0)'
= (1.18)'.

This shows that even in the long-wavelength region
perturbation theory would begin to break down for the
force-constant change description.

Resonances, of course, will occur when the real part
of these denominators goes to zero. This condition will

be discussed more fully in the next section.

3. SQdxQIIl ChlQI'lde vQth DCfectS

I. Genera/ Eensarks

In order to obtain the larger non-Rayleigh depressions
of the conductivity curves due to the addition of defects
which couple more strongly to the lattice, the same
conditions mentioned above in Sec. V must hold.
Within the "window" allowed by the integrand at the
temperature of the depression, the defect-relaxation
rate must have a contribution which will dominate those
of aB other processes, while at temperatures away fron1
the depression the contribution will not. be propor-
tionally as large.

For low-temperature depressions, the three-phonon
processes will be negligible, and all that is important is
the large contribution within the peaks of the integrand.
This will be within the frequency range of O.ixio" to
0.2X10" rad/sec as shown in Fig. 14. For high-tem-
perature depressions, on the other hand, the defect
contribution to 1/r, must occur within the range of
1.5X10"to 2.5X10"rad/sec allowed by the integrand
at around 56 K and also x11ust bc the dominant term ln
1/r, . A contribution as low as 1X10"rad/sec would
also contribute with the "56'K window, "but it would
give an even larger contribution at around j.s'I which
is not found experimentaUy.

The expressions for the frequency-averaged relaxation
rates for the three configurations are given in Eqs.
(21a), (21b), and (21c). Large contributions to these
rates will appear when resonances occur in the T
matrices of Eqs. (2'2a), (22b), and (22c).

An even-parity resonance will appear when

1+Af ReG/M, =O. (29)

At resonance the contribution to the average relaxation
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direction, for example, with the two nearest-neighbor
ions along that line moving out of phase with it, thus
stretching two bonds. The reduced mass of the three
1011s 1111del'g011lg fills type of 1110I101118 I1=2/M so tlla't

the approximate resonant condition following from
Eq. (32) is

1+2LLf RCG11/p, =0. (33)

Looking at tile low-fl'eqllcllcy llnllt of Eqs. (25a),
(25b), and (25c) we see that num-22 dominates and is
given by

num-22= M„d—,f Im det(I+Gi'). (34)

From Eq. (24b) at low frequencies and near a "22
resonance" we obtain approximately

Im det=M„hf ImG22

+2I (QM„)/hM/Mo+ (ReG12)Dp1r j(ImG11)(o'. (35)

Both terms have the same limiting cps frequency de-
pendence. Thus, near a low-frequency "22-resonance"
we have

.4 ,6 .8
FREQUENCY (fo SEC )

Fxo. 2|. Reduced relaxation rate for phonon scattering from
Buorine impurity in NaCl for various force-constant changes.
This is formed by dividing the total relaxation rate for an arbitrary
conccntl'ation of 0.1 xnolc% by co .The small wiggles ln soxnc of thc
curves are due to coarse-graining CGccts and are not real.

rate will be, from Eqs. (22a), and (22b),

(1/r) =2cEha)/s D((o) =-9 04X10"c/D(co) (30)

ImT22= —(M„hf)' ImG2g

X(L1+M„(RCG21)hf]'+t M„(lmG11)hf

+2((QM„)/hM/M a+ Dyer RCG11)

X (ImG12)(o'12) '. (36)

We see, therefore, that in this approximation the
occurrence of the resonance is due entirely to the force-
constant change, independent of the mass change, but

where again c is the fractional concentration of the
impurity and N is the number of points in the Brillouin
zone (%=64000). It is interesting to note that within
thc ldcal window foI' a high-tcIDpcI'aturc dep1 csslon
(1.5X10"«v&2.5X10" rad/sec), D(co) from Fig. 11
has a minimum of 1.5/f0'. Therefore, with a typical
concentration of j.XIO ' mole fraction the maximum
value which Eq. (30) can attain is

(1/r)~6X10' sec '. (31)

From Figs. j.4 and j.5 we see that in the temperature
range in which this could be an important contribution
to thc intcgrand, thc three-phonon pI'occsscs dominate
this value. Hence we must look elsewhere for the
observed high-temperature depressions. Resonances in
the cvcn con6guratlons might still contI1butc at low
temperatures, however, since D(&v) at low frequencies is
small.

An odd-mode resonance can occur when Re det given
by Eq. (24a) is zero. Of particular interest is a resonance
of this type which occurs when all but the erst two
terms are negligible, i.e., which

Re det—1+M,(ReG22) 6f. (32)
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This wiB always hold at low enough frequencies and is
rigorous when AM=0, Af/0. The 22-configuration
corresponds to the impurity ion moving in a [100)

. FIG. 22. Total relaxation rate for phonon scattering from
Quorlnc llnpurlty ln NSCl fox' onc fol'cc-constant change. Also
shown are the contributions to the total from the E~, AI~, and
TIII con6guratlons.
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the width does depend on the change in mass as well
as the change in force constant.

It should be emphasized that due to the smallness
of ImG22 at low frequencies, the 22 element will
dominate Eq. (21c) only at or very near the resonance.
We now discuss our theoretical results for each impurity
and how well they 6t the experimental data.
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FIG. 23. Reduced relaxation rate for phonon scattering from
lithium impurity in NaCl for various force-constant changes. The
small wiggles are not real.

Z. F/uoriee

We see from Fig. 1 that fluorine shows a large low-
temperature depression. From the above discussion this
could be explained by either an even-parity or an odd-
parity con6guration resonance. It turns out that the
odd configurations give much better results. The odd-
parity —con6guration resonance condition discussed
above, Eq. (32), applies here. Figure 21 shows the
result of this odd-con6guration resonance on the total
reduced relaxation rate, which is formed by dividing
the total relaxation rate for 0.1 mole% F given by the
sum of Eqs. (21a), (21b), and (21c) by cv4. With decreas-
ing df, the resonance moves oG to lower frequencies
until it disappears completely when hf = —15 350
ergs/cm'. Below the point where the resonant frequency
is zero, the defect will resonate at a frequency which is
imaginary, and hence the lattice will be unstable. "

Figure 22 gives the total relaxation rate for
hf= —15 300 ergs/cm'. This amounts to a total net
force constant f0+kg that is 0.3% of fo, according to
Eq. (19). This value of hf gives a resonance at
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Fze. 24. Total relaxation rate for phonon scattering from lithium
impurity in NaCl for one force-constant change. Also shown are
contributions to the total from the Bti and T1„configurations. The
long dashed lines are the three-phonon rates from Fig. 15. They
are drawn in to indicate when the defects will be important.

u&=0.2X10" rad/sec, which should give a far infrared
absorption band at about 10 cm '. As mentioned above,
this kind of resonance is due almost entirely to the
change in force constant, and is essentially independent
of the impurity mass. The plot in Fig. 22 and in all
subsequent curves of this type is for a concentration of
0.1 mole%%uq. The little spike at 0.2X10~3 rad/sec in Fig.
22 will lie in the center of the integrand of Fig. 14 for
T=2'K and will be well above the boundary-scattering
term, 1/r(boundary) =5X10~ sec '. The contributions
which the various configurations make to 1/r (defect)
are also drawn in to indicate that for the most part
either the even or the odd contributions dominate, so
that we do not have to worry about the cross terms dis-
cussed in Ref. 28.

When we use this function for 1/r (defect) and add
it to the other scattering rates and calculate the con-
ductivity integral, we obtain the solid curves of Fig. 1.
The low temperatnr-e depression does not show np in the
theoretical cnrees despite the high peak at the proper
freqnency. This must be caused by the extreme narrow-
ness of the theoretical resonance peak, which means
that although the phonons which are affected by the
resonance are scattered quite strongly, the number of
phonons involved is too small to make an appreciable
contribution to the resistance. Ke conclude then that if
this resonance is real, it must be broader than predicted
to be effective in scattering phonons.
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FIG. 27. Determinant of the 2)C2 submatrix (1+GI') within the
odd con6guration for a force-constant change of 3000 ergs/cm'
and for a bromine impurity. This is an example of an incipient
resonance since the real part does not reach zero but does have
a distinct minimum.

shown in Fig. 27 where the real and imaginary parts of
the odd determinant are plotted as the dashed lines. The
solid curve is

~det(I+G1') ~'=[Re det(I+GF)g'
+pm det(I+Gf')]' (37)

Thus we see that although there is not a true resonance,
we have again a near resonance at a&= 1.3X10" rad/sec
which will still give a peak in the relaxation rate. In this
frequency range the 11 element of the T matrix is
larger than but does not dominate the other elements
of the odd-configuration submatrix. From Eq. (21c) and
the fact that the imaginary part of 6 for the 11 elements
dominates the other two elements, we have that the 11
elements dominate (1/r).

The results, as shown in Fig. 2, give a reasonable fit
at high temperatures, but the theoretical depression is
not strong enough and it is centered more around 40'K
whereas the experimental depression is nearer 60'K. The
low-temperature fit is much better than that for lithium
since, experimentally, bromine is a better scatterer in
this region.

5. Potassium

Experimentally, potassium shows less high-ternpera-
ture scattering than bromine and about the same as
lithium. This is borne out by the total theoretical

frequency range of the "window" allowed by the inte-
grand, Fig. 14, the theoretical defect-scattering rates
are too large compared to those due to isotopes and to
the boundary even though no hump occurs here. We
do not know why.

4. Bromiee

Ipll

1P

T =69 K

7 88'K

The impurities bromine and potassium are roughly
twice as heavy as the host ion for which they substitute.
Experimentally, both show a high-temperature con-
ductivity depression with bromine being about twice as
strong a scatterer as potassium. Figure 25 shows the
plot of the reduced relaxation rates for bromine for a
concentration of 0.1 mole%. The range of the change of
force constant is given in Table III to be around 3000
to 7000 ergs/cm'. From the figure we see that this
change does have a small eGect on the height and the
width of the peak of 1/r but does not shift it appreciably
from its position of 1.4X10" rad/sec. The entire curve
is higher than that for lithium, as we might hope from
the experimental data. The peak also has its major con-
tribution within the integrand curve for 28'K appearing
in Fig. 14, but it is not as broad as the lithium peak. The
relaxation rate for bromine, when compared in Fig. 26
with that for the three-phonon processes, shows that
the peak 1/r (defect) will dominate the three-phonon
processes at 28'K, so we again expect the major con-
tribution from the Br to occur near this temperature.

This figure also shows that the odd configurations are
by far the major contributors. The reason for this is

1" I
IP

0
x 1P

LLj

1PS I 1 I

1 2
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FIG. 28. Total relaxation rate for phonon scattering from
potassium impurity in NaCl for one force-constant change. Also
shown are the contributions to the total from the Efj and T~„
con6gurations. The long dashed lines are the three-phonon rates
from Fig. 15.They are drawn in to indicate when the defects will
be important.
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small odd-parity hump. The three-phonon processes
allow this to show up below 28'K; between this
temperature and 15'K, the window allowed by the
integrand is favorable, but the hump is not large
enough.
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FIG. 29. Reduced relaxation rate for phonon scattering from
potassium impurity in Nacl for various force-constant changes.

relaxation rate plotted in Fig. 28 for potassium. This
uses a change of force constant equal to 13 000 ergs/cm'
which is in the upper bracket of the values in Table III.
The plot of the reduced relaxation rates for this value
of hf along with one for 4000 ergs/cm', which is in the
lower limit of those appearing in Table III, appears in
Fig. 29.

Even though the structure in these curves is small
and will make only a token contribution to the re-
sistivity, it is worth a little study. Discussing the two
sharp E, peaks at the higher frequencies first, we see
from the resonance condition for even-parity configura-
tions, Eq. (29),

6. Iodine

The ions Rb+ and I are next in size, rubidium being
about 3.5 times as heavy as Na+ and I about 4 times as
heavy as Cl . Unfortunately, not enough rubidium
could be grown into the crystal to make any signi6cant
change in the conductivity, and so we shall discuss the
analysis for I only.

Table III gives an average value of hf for I to be
around 12 000 ergs/cm'. Calculations show that, as in
the case of bromine, the odd con6gurations are pre-
dominant over the frequency range of interest, and
again it is the 11 element that contributes most to 1/T.
The scattering rate at low frequencies is a little over 4
times as strong as for bromine, and the peak is about
5 times as strong as for bromine. The raising of the
strength at low frequencies is exactly that expected
from Eq. (26) since the hM's differ by a little over a
factor of 2. [Equation (26) is only approximately
correct in this frequency range. ]

Figure 3 shows the resulting calculated conductivity
curves. The predicted defect scattering will completely
dominate the three-phonon effects for a broad range
of frequencies at temperatures around 28'K. The result
is the extremely large lowering of the conductivity curve

ReG(E,)= —35.5X1.66X10—"/13 000
=—4.53X10 "sec'. (38)

Laying this value out on the plot of ReG(E, ) in Fig. 17
we see that the 6rst sharp peak at co= 2.4X10"rad/sec
corresponds to a true resonance at a point where the
imaginary part is near a minimum, and the second,
broader peak, at co=2.8X10" is a near resonance, also
near an imaginary part minimum.

The broad odd-con6guration peak at 1.6X10"
rad/sec is not due to a resonance, or even a near reso-
nance, since the odd determinant is essentially Rat
throughout this region. The total denominator, not
shown here, is 3.34 at zero frequency, 3.05 at co= 1X10"
rad/sec, reaches a minimum of 2.90 in the frequency
region from 1.3 to 1.5X10" rad/sec, and then rises
steadily to 5.77 at 2X10" rad/sec. The peak in T

' is
undoubtedly due to ImG»(T&„) as shown in Fig. 18,
which comes into the terms in the numerator as indi-
cated in Eq. (26). The peak corresponds to the edge-of-
zone Van Hove singularity for the (100) transverse
acoustical phonons.

Figure 5 shows the result of this relaxation rate on
the conductivity. Again there is a small depression on
the high-temperature side, but it is not enough. This
time it ggqux's at about 25'K and is due mainly to the
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FIG. 30. Determinant of the 2)(2 submatrix (1+Gl') within the
odd connguration for a silver impurity in NaCl with a force-
constant change of —9000 ergs/cm'. This is an example of a sharp
resonance, since the imaginary part is small at the point where the
peg, l part is zero.
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from this instead of from the compressibility. The
absorption band is at 23.7 cm ' and the force-constant
change which gives an odd-parity configuration reso-
nance is 8f= —15 050 ergs/cm'. This value of 6fis close
close to fo,—which means that the lattice is almost
unstable.

The resonance is the same as that shown theoretically
by Quorine and silver, i.e., a "22-resonance, " so the
plots of the determinant and reduced relaxation rates
are not shown here. The total relaxation rates for a
concentration of 0.1 mole% is shown in Fig. 34.

Figure 9 shows the comparison between the theo-
retical calculations and the experimental data. The
concentration as determined by analysis is 1.4&(10 4

mole fraction. The theoretical curve corresponding to
this concentration shows very little deviation from the
pure curve. The heavier concentration of 1.5)&10—'
mole fraction is included just to see if a dip will appear
at higher concentration where the defect rate will be
larger compared to the three-phonon rate.

I

I

FREQUENCY (tO SEC )

1

2

Fxa. 33. Reduced relaxation rate for phonon scattering from
thallium impurity in NaCl for various force-constant changes.

peak for 6f= 10 000 is about the same height and posi-
tion as that of silver, but the total contribution to 1/r, is
over a broader frequency range. This will be more
important at the lower temperatures where the inte-
grand curves are sharper.

The peak is a true odd-motion resonance at ~=0.9
X10" rad/sec which arises from the fact that in Eq.
(24a) for the real part of the determinant, dM is so
large that the third and fourth terms override the small
positive frequency dependence contained in the ReG»
factor of the second term. It is not due to any particular
element of the odd conhguration.

The calculated curve in Fig. 8 is for 100 ppm Tl, the
experimental curve for 5 ppm. The reason for this is
that we originally overestimated the thallium content
of our crystal and only recently learned the correct
value, too late to re-do the calculation. It is now clear
that Tl+ is a very strong scatterer of phonons, particu-
larly below 10'K. One suspects a strong resonance near
0.3X10" rad/sec, and Fig. 33 suggests that df might
have to be close to zero or negative. From our study of
F and Cu+ (to be discussed next) we can say that such
a resonance should be too narrow to yield the necessary
conductivity depression, but we would predict a far-
infrared absorption band at about 15 cm '.

P. Copper

Since copper, like silver, has a known infrared absorp-
tion band, "the change in force constant was determined

"R. Weber and P. Nette, Phys. Letters 20, 493 (j.966).

IO"

IO
IO

CL
LIJ

0
O

IO

O
I-
X

LLI
lK

I
I

I
I

l
I
I
I

IO'
0

NaCI + .OOI CuCI

df =-I5050 ERGS/CM—I/v {3-PHONON)

t

2

FREQUENCY {lO SEC )

Fro. 34.Total relaxation rate for phonon scattering from copper
impurity in NaC1 for one force-constant change. Also shown are
the contributions to the total from the E, and T1„configurations.
The long dashed lines are the three-phonon rates from Fig. 15.
They are drawn in to indicate when the defects will be important.

VI. CONCLUDING REMARKS

It is clear that although the theory predicts reso-
nance-type scattering at the proper frequencies, some
improvements must be incorporated to give the proper
strengths to the scattering. One important improvement
would be a more sophisticated model of the defect which
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would allow both noncentral force changes and long-
range strain effects. The extent of the strain held
around the impurity was the subject of considerable
investigation by Zhurkov and Oskotskii. "They studied
the impurities Ag+, Br, Li+, K+, I, and Rb+ in NaC1
from both an experimental and theoretical standpoint.
Table IV reproduces their experimental results in the
form of the number of sodium ions within a distortion
zone whose outer limits are fixed by experimental resolu-
tion. Also placed in the table is the percentage difference
between the lattice constant of the host lattice and that
of the impurity lattice. This is another indication of the
size of the distortion zone and allows our placement of
the fluorine impurity which they did not measure. The
impurities are listed in order of increasing distortion
zone. Rubidium is not included due to the concentration
diQiculties discussed above, and copper and thallium are
not included, since CuCl and T1Cl have different lattice
structures (ZnS and CsCl, respectively).

It is clear that our best 6t to our data is attained for
silver, which has the smallest distortion zone. The next
best fits are attained by bromine and lithium. The
lithium 6t is better at high temperatures, and bromine
is considerably better at low temperatures. The fits for
the three impurities, K+, I, and F, having the largest
distortion zones, are the poorest. Potassium has a very
poor high-temperature fit while fluorine has a very poor
low-temperature 6t, and the analysis for iodine predicts
much too strong scattering over the entire range.

It appears, then that there is some correlation be-
tween the success of our analysis and the size of the
strain field about the defect, so that is is hoped that by
expanding the model to include these effects, a much
better fit would be achieved.

A problem similar to that of long-range strains is
that of distant force-constant changes produced by
electric e6ects. If one treated the impurity ion as well as
the lattice consistently in the shell model, which we
have not done, one would have to allow for changes in
the shell parameters of the impurity. This would pro-
duce long-range force-constant changes and keep the
perturbation matrix F from being localized near the
impurity ion.

In the case of Cu+ and perhaps also F and Tl+ the
resonance lines used in the calculation of v ' are too
narrow to explain the experimental curves. These low-

TAsLE IV. Size of distortion zone around the impurities.

Impurity

Ag+
Br
Il
K+
I
F

No. of Na+ ions
within the zone

115
290
450
740
760

—1.42
5.93

—8.85
11.5
14.8

—17.9

frequency phonon resonances should broaden very
quickly with increasing temperature due to anharmonic
interactions with other phonons. One can see this
happening quite clearly in the infrared data of Weber
and Nette on NaC1: Cu+." One should then put the
proper thermally broadened peak into the resonance
part of v '. We intend to do this in future work.

Another important improvement would be to 6nd
better relaxation rates for the three-phonon processes.
They would probably not be as smooth a function of
frequency as the expression we used, especially near the
Van Hove singularities. These might yield better high-
temperature fits under the frequency-averaged scheme
used here. If the relaxation rates could be found for
individual phonons, the conductivity could be obtained
as a sum over individual phonons without the somewhat
artificial averaging of all of the terms over the frequency
surfaces. At this stage it might also be possible to solve
the Boltzmann equation by an iteration scheme, thus
doing away with the relaxation time approximation
and allowing for interference between the various
scattering mechanisms.
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