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tion, which seems to cause some temperature depen- curring in e-type Ge, but some are not because of the
dence of pr/p0 in n-type Ge'. difference between acceptor and donor impurity states.

IV. CONCLUSION

From our data on samples of germanium doped with
low concentrations of Ga, we conclude that a magnetic
field affects phonon-assisted hop conduction in p-type
Ge via its influence on the acceptor wave functions.
Many of the features observed are similar to those oc-
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A theoretical treatment of transport phenomena in strong electric fields is presented. Instead of the
Legendre polynomial expansion of the distribution function usually employed in solving the transport
equation, we transform the Boltzmann equation to a coordinate system determined by the collision-free
trajectories of the particles and formulate an integral equation for the distribution function. This method is
applied to hot carriers in nonpolar semiconductors, where the relevant transport equation is then reduced
to a one-dimensional integral equation. This equation is solved numerically and energy distributions are
calculated for n- and p-type germaniun. The calculations for heavy holes in germanium demonstrate the
non-Maxwellian nature of the distribution function as well as its strong displacement in momentum space,
and are in excellent agreement with experiment. The energy distributions for electrons show weaker devia-
tions from Maxwellian and smaller ratios of drift to rms velocity, this being due to the weaker coupling to
optical phonons for electrons as compared to holes.

I. INTRODUCTION

HE central theoretical problem associated with
hot-carrier phenomena is the calculation of the

steady-state particle distribution function in the
presence of a strong electric 6eld. Since the transport
equation describing the distribution function is gen-
erally an integrodiGerential equation, one is usually
obliged to seek approximate solutions appropriate to
speci6c physical situations.

The two major simpli6cations usually introduced in
eBecting such calculations are related to the role of
carrier-carrier scattering and to the displacement of the
distribution function in momentum space.

The role of carrier-carrier scattering in determining
the form of the distribution function had erst been
discussed by Frohlich' and has been examined in detail
by Stratton. ' The essential idea is that suKciently
strong carrier-carrier scattering results in a displaced
Maxwellian distribution, characterized by an effective
temperature greater than that of the lattice. Having
Gxed this form of the distribution function, it is then

*Present address: Laboratoire de Physique de L'ecole Normale
Supbrieure 24 Rue Lhomond, Paris 5, France.

'H. Frohlich, Proc. Roy. Soc. (London) A188, 521 (1947);
A188, 532 (1947); H. Frohlich and B. V. Paranjape, Proc. Phys.
Soc. (London) B69,, 21 (1956);B69, 866 (1956).

~ R. Stratton, Proc. Roy. Soc. (London) A242, 355 (1957).

possible to calculate the displacement in momentum
space and the effective temperature from momentum
and energy balance equations, which are readily de-
rived from the Boltzmann equation.

When carrier-carrier scattering is not suKciently
strong to justify this form of the distribution function,
it is necessary to solve the Boltzmann equation with due
regard to the detailed nature of the various scattering
mechanisms. It is in carrying out this program that one
usually introduces the assumption of a weakly displaced
distribution function in momentum space, thus en-
abling one to represent the distribution function by
only the two lowest-order terms in a I.egendre poly-
nomial expansion in the cosine of the angle between the
electric 6eld and momentum vector. This is roughly
equivalent to assuming that the ratio of the averaged
drift to root-mean-square velocity is small.

Recent experimental studies in p-typea 4 germanium
have demonstrated the inapplicability of this assump-
tion in this case. In particular, the studies of Bray and
co-workers' have emphasized the "streaming" character

' A. C. Baynham and E. G. S. Paige, Phys. Letters 6, 7 (1963).
4 Ralph Bray and William K. Pinson, Phys. Rev. Letters 11,

268 (1963);W. E. Pinson and Ralph Bray, Phys. Rev. 136, A1449
(1964); R. Bray, W. E. Pinson, D. M. Brown, and C. S. Kumar,
in Proceedings 0f the International Conference on the Physics of
Semiconductors, Paris, 1964 (Academic Press Inc. , New York,
1965), p. 467.
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of hole transport, characterized by a strong displace-
ment of the distribution function in momentum space,
as mell as the non-Maxwellian nature of the heavy-hole
distribution.

In this paper me present a formulation of transport
phenomena in intense electric fields which speci6cally
avoids the use of Legendre polynomial expansions and
the in6nite set of coupled integrodiGerential equations
which result from this technique. Instead. , we use the
collision-free trajectories of the particles to transform
the Boltzmann equation into an integral equation. This
transformation' is particularly useful in treating the
hot-carrier phenomena in covalent semiconductors
since in this case the resulting integral equation may
be reduced to a one-dimensional equation.

In Sec. II of this paper me review the structure of
the Legendre polynomial formulation of the hot-carrier
problem. The transformation, or path variable method,
is presented in Sec. III and applied to the hot-carrier
problem in Sec. IV. Numerical results relevant to both
e- and p-type germanium are presented in Sec. V and
are shown to be in excellent agreement with experiment.

The steady-state distribution function f(p) for the
case of a uniform electric field E is determined by the
Boltzmann transport equation.

distribution function in Legendre polynomials in cos8:

f(p)= g S (e)~„(cosa).

Inserting this expansion in Eq. (1) and making use of
the orthogonality properties of the Legendre poly-
nomials, one obtains the following infinite set of coupled
integrodiGerential equations:

r ; Sr, dSr/de j=CeSs,

LSs, dSs/de; Ss, dSs/de j=drSr,

t S r„dS r/de; S+r, dS~r/dej=O„S„.

The brackets appearing on the left-hand side of these
equations represent a linear sum of the quantities
indicated. The typical equation for S„(e)is thus coupled
to S„r(e) and S~r(e), and in order to proceed further
it is necessary to truncate this set. The usual assump-
tions at this point is to neglect all but the two lomest-
order Legendre polynomials So and S~, and to seek
approximate solutions of the resulting equations.

The physical basis for this procedure is the hope that
the distribution function is only weakly anisotropic in
momentum space and that therefore the higher-order
Legendre polynomials are negligible. This is clearly not
the case in p-type germanium where experimental
studies of the distribution function have revealed large
ratios of the drift to. root-mean-square velocity and
values of Ss(e) comparable to those of Se(e).

The right-hand side of this equation represents the rate
of change of f due to collisions, which are characterized

by the transition rates T, , ~ between states of crystal
momentum p and p'.

We consider the case of spherical constant-energy
surfaces for which the carrier energy is a quadratic
function of p:

e=p'/2rrt*.

The ellipsoidal constant-energy surfaces encountered

in e-type germanium and silicon may be treated in the
same fashion. After transforming the ellipsoidal con-

stant-energy surfaces into spheres, in the manner

discussed by Herring and Vogt, ' and. introducing

eBective 6elds, ~ the problem becomes identical to that
represented by Eqs. (1) and (2).

For isotropic scattering, then, the distribution func-

tion clearly depends only on the carrier energy and g,

the angle between the momentum vector p and the

applied electric 6eld E. One may then expand the

' H. I".Budd, J. Phys. Soc. Japan 21, 420 (1966).
6 C. Herring and E. Vogt, Phys. Rev. 100, 944 (1956).
r H. G. Reik and H. Riskin, Phys. Rev. 124, 777 (196tl,

IIL THE PATH VARIABLE METHOD

In order to illustrate the transformation procedure
to be employed in solving the transport Eq. (1), we
6rst start with the Boltzmann equation in the relaxation
time approximation. '

~f (f fo'i——+F vf+V v
itt ( r(p) )

where fe is the equilibrium distribution, V=Vse, and
F is some arbitrary force 6eld.

We now transform to a coordinate system deter-
mined by the collision-free trajectories of the particles

dp*(s)
p*(t)=p

ds

These equations simply represent the collision-free
trajectory of a particle which at time f has Inomentum

p and, position r. Introducing the transformation (6)

Recently BaraG has considered a "maximal anisotropy"
truncation procedure. G. A. Baraff, Phys. Rev. 1M, A?6 (&964).
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into Eq. (5) one obtains a simple first-order differential
equation

df f—+
ds r (s) r (s)

fp

whose steady-state solution is

f(p, r, t) =
' fo(s)

exp
—.r(s)

t dy
ds.

b)-

dp Tu ~"

Inverting this equation in the same manner as above
one readily obtains the following integral equation for
the distribution function:

where

f(p) = dp'f(p')E(p', p), (10)

E(p', p)= Tp, p p, exp—
0

S dy
ds.

r(p —Fy)-

We note that the kernel E(p', p) is essentially com-
posed of two factors:

(1) Ts,p s,ds, the probability that a carrier is scat-
tered from the initial state p' into the state p—Fs along
the collision-free trajectory in a time interval ds near s.

exp

s dy

p r(p —Fy)-

the probability that it suffers no further collisions in
drifting under the influence of the field to the state p.
E(p', p) is simply the sum of all such events over all
points of entry onto the collision-free trajectory. When
this kernel is multiplied by f(p'), the steady-state
probability of finding a carrier in the state p', and
integrated over all initial states p', one obtains f(p)
the steady-state probability of 6nding a carrier in state
p:

A similar result may be readily derived for the general

' R. Chambers, Proc. Phys. Soc. (London) A65, 458 (1952).
i' H. Budd, J. Phys. Soc. Japan 18, 142 (1963).

This method does not rely on any special properties of
the applied forces, band structure, or relaxation time,
and represents a simple generalization of the kinetic
method 6rst discussed by Chambers. ' "

We now apply the transformations (6) to Eq. (1)
arid obtain the following analogy to Eq. (7):

df—+ = dpf(p)2p, p i i
ds r(s)

where

case, the only essential difference being a different ex-
pression for the collision-free particle trajectories.

Alternate theoretical treatments of the hot-carrier
problem, not employing the diffusion approximation,
have been presented, by Baraff" and 8araf and
Buchsbaum. " In particular, Baraff's theory of ioni-
zation processes in semiconductors leads to an integral
equation in energy space for the collision density func-
tion, which measures the number of collisions per
second involving carriers of a given energy. The kernel
of this equation is then interpreted in terms of the same
sort of kinetic picture presented in our discussion
following Eq. (10), although the method of d.erivation
is quite different from the path variable treatment,
which introduces the collision-free trajectories at the
outset and may therefore be simply formulated for
any set of applied force 6elds and band structure.

A simplified version of,Eq. (10) has been studied by
Stuart and Gerjuoy" in connection with ionization
processes in gases. Using model scattering cross sections
.they recast their integral equation into a soluble form
occurring in neutron transport theory.

Cf=CSp+ CA =CSp—
rsr(s)

(12)

where rsr(s) is the momentum relaxation time.
We shall now show that the last form of Eq. (12)

holds rigorously for optical-phonon scattering and is
also valid in the limit of elastic-acoustic phonon scat-
tering, which is the usual condition for the existence of
a relaxation time in this case. This results from the fact,
the scattering is spherically symmetrical in both these
cases.

"G. A. Bara8, Phys. Rev. 128, 2507 (1962)."G. A. Baraff and S. J. Buchshaum, Phys. Rev. 130, 1007
(1963).

» G. W. Stuart and E, Gerjuoy, Phys. Rev. 119, 892 (1960).

IV. HOT CARRIERS

We now apply the preceding transformation method
to the hot-carrier problem in nonpolar semiconductors.
The dominant energy relaxation mechanism in this
case results from optical-phonon interactions while the
important momentum relaxation processes for hot
carriers are due to both optical and acoustic phonons.

A great simpli6cation in the transport equation is
possible in the case of nonpolar phonon interactions,
since utt the amisotropies of the distribution function
relax with the same energy-dependent relaxation time.
In particular, let us decompose the distribution function
into its isotropic and anisotropic parts:

f=Sp+A,

where A is the sum of all the I egendre polynomials in
expansion (3), except for the isotropic or rs=0 term.
The effect of collisions on f is similarly decomposed as
follows:
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Inserting these expressions in Eq. (1'I) results in

Se(e) = S(e')Z(e', e)d",

E(e', e) =
' d(cos8) bfe —e(y—Fs)g- — — ~ gy

2s (2m)ei'(ge') Te. ,~F,+ exp
2 r~(e') e r (y—Fy)

(20)

Scaling the time integrals by Ii and measuring all energies in units of kT, we obtain

~e(*)= ~o{y)(V'y)&(~y)dy; *=
kT

(21)

Z(a,y) =4y ds
0

4 eL)0-'~'-
exp -4y dy Q a„x+y'—2y(gg) cos8+n=l kT

+1 hcoo
X Q e &~ *+s'—2s(ga) cos8—y+m P~ (22)

ns~l kr

Here the sums indicated are for = —1, 0, 1, corresponding to optical-phonon emission, acoustic-phonon

scattering and optical-phonon absorption, respectively. The constants n and p are given by

tt2~br)~&e
0,0

—] 0 Z
—0,~@~l» ~r—0.

4Frg(1)
(23)

The integral appearing in the exponential may be simply evaluated, thus leaving the double integral to be con-
sidered. Qfe use the 8 functions in the integrand in order to perform the integrals over cos8, and, obtain Anally

where

( rshcoe)
~(g) = E{y)dy e Ko~ x, y+ ~; E(x)= (gx)Se(x),—

m—x ( bZ' j
(&*)+(&v)

(24)

&e{*,y) =V («l&) expL —
V Z ~.g.j,

with

g„=Re
a(te+b') (t' —o') (P—b') t+8

ln
2t2 t—u

g= (y+mb)'i'+(g+n8)", b= (y=mb)"' (x+nb)'i'—, 8= Puae/kT.

The present formulation of the hot carrier problem
therefore results in a single one-dimensional integral
equation, as compared to the usual in6nite system of
coupled integrodi8erential equations.

The general method, employed in solving Eq. (24)
is one of iteration. The kernel of this equation was
tabulated numerically and a trial function inserted in
the integral, thus yielding a new distribution function
which was reinserted. in the integral, etc.

The tabulation of Xe(x,y) which is a symmetric
function of its arguments was carried out on an IBM
7044. It should be noted that Xe(x,y) has a logarithmic
singularity at the point x=y. This diS.culty was by-
passed by analytic integration of the right-hand side of

Eq. (24) over a small range enclosing the singularity,
the interval being chosen suKciently small that 1V(y)
could be taken constant in the integration. The interval
chosen was typically 10 'kT, which clearly introduces
negligible error.

Approximately 10 iterations were necessary in order
to determine a distribution function satisfying Eq. (24)
to an accuracy greater than 0.01'.

V. NUMERICAL RE3UL&S AND DISCUSSION

We erst consider the case of heavy holes in p type
germanium where the constant-energy surfaces are
somewhat warped and consequently the effective mass



ls slightly anisotropic. The effective masses ratios for
the [100$, [110j,and [111jdirections are 0.28, 0.35,
and 0.37, respectively, while in our caculations we have
taken a constant effective mass of 0.35mp. The optic-
and acoustic-phonon coupling constants used in our
calculations are those given by Brown and Bray.

In Fig. 1 we present a typical energy distribution for
heavy holes in p-type germanium at 77'K. The dashed
curve is the calculated heavy-hole energy distribution,
N(e) for an electric 6eld of 1370 V/cm. The upper solid
curve is a Maxwellian distribution with the same
average energy, and is merely presented for comparison.
One readily sees the rather large deviations of the cal-
culated distribution from the Maxwellian and in par-
ticular the strong depletion of the high-energy tail.

The lower curve represents the magnitude of the
natural logarithm of the probability distribution,

~
lnSs ~. This curve is fairly well approximated by two

straight lines intersecting in the neighborhood of the

0.2 IO

O.IS -7,5

N{e)

-5
IInso)

0.05

I . t

.02
t I

.04
KHKRGY {eV )

.06 .08

Pro. I. Calculated heavy-hole distribution for p germanium~tat
E=I370 P/cm (dashed curve): Maxwellian distribution with
same average energy (upper solid curve); log of probability
distribution (lower curve}.

"R.Bray and C. S. Kumar (to be published).
"Tatsumi Kurosawa, g. Phys. Soc. Japan, 21, 424 (1966}.

optical-phonon energy (A&os ——0.037 eV); and thus the
probability distribution is approximately two Max-
wellian distributions with diferent "effective" tempera-
tures above and below the optical-phonon energy. The
"kink" in the ~lnSs~ has been observed by Baynahm
and Paige' and by Bray and Kumar'5 and the general
features discussed above are in good agreement with
the experimentally determined energy distributions,
and with the recent Monte Carlo calculations of
Kurosawa.

In Fig. 2 the solid curve represents the calculated
average heavy-hole energy versus electric field for p-type
germanium at 77'K. The average energy is seen to
increase very slowly with electric 6eM, varying almost
linearly in the range E=500 V/cm to E=2000 V/cm.
The circles and triangles in this 6gure correspond to the
experimental results of Pinson and Bray.4 Since the

.03

,02-

.Ol - THE'ORY t.llO) OIRECTION
~ KXPT. )III] DIRECTION

+ KXPT. (IOO] DIRECTION

s

500 IOOO
KLKCTRIC FIELO {V/CM)

l500 2000

Fxo. 2. Calculated average heavy-hole energy versus electric
field for p-germanium (solid curve). Experimental results of
Pinson and Bray are represented b circles and triangles for the
applied iield in the 011j and L100 directions, respectively.

eGective masses are slightly anisotropic there is roughly
a 10—15% variation in the heavy-hole energy with
orientation. The masses mjpp(m~~p&m~~~, hence the
average energies for these Geld directions are such that
Happ% &gyp' Rylj. and therefore our calculated energies
using m=0.35mp should fall between the experimental
values which were obtained for the [100j and [111]
directions, which is indeed the case.

In Fig. 3 the solid curve represents Vq/V, „ the
ratio of the heavy-hole drift velocity to rms velocity
versus electric field for p-type germanium at 77'K. The
large values of Vq/V, , are striking and emphasize the
strong displacement of the distribution function in
momentum space and streaming nature of the carrier
motion. Our results are compared with the Ineasure-
ments of Pinson and Bray' which are represented by the
dashed curve in this 6gure. It is important to note that
Pinson and Bray's results are for the ratio of the Ioral
drift velocity (heavy and light holes) to rms heavy-hole
velocity, and therefore one would expect their results
to be somewhat higher than ours.

Although the averages we have calculated agree very
well with experiment, there are differences in the

0,6 "

0.5-

0.4

HEAVY ANO LIGHT HOLES

~HEAVY HOLKS

04

0 I

l

l500500 IOOO
ELECTRIC RKLO {V/CM)

FIG. 3. Calculated ratio of drift to rms velocity versus electric
Geld for heavy holes in p-germanium. Experimental results of
Pinson and Bray for the ratio of the total, heavy+light hole,
drift velocity to rtns heavy-hole velocity (dashed curve).
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FxG. 4. Calculated ratio of the second to zeroth-order Legendre
polynomial for heavy-hole distribution in P-type germanium.

detailed shape of the energy distribution. The calcu-
lated "kink" in the

~

lnSs
~

curves is more pronounced
than that observed by Bray and Kumar. " This is
undoubtedly due to the effect of carrier-carrier scat-
tering, which would tend to equalize the deviations in
the high- and low-energy regions and thus reduce the
sharpness of the "kinks. "

A more drastic effect of carrier-carrier scattering is
to be expected in the higher-order anisotropies of the
distribution function. Since carrier-carrier scattering
conserves both energy and momentum, one would not
expect the Overage energy or velocity to be affected to
lowest order. Of course there will be indirect changes in
these quantities due to the energy dependence of the
phonon scattering. A redistribution of carriers due to
carrier-carrier scattering changes the phonon collision
rates through the energy depend. ence of the relaxation
times and consequently the average energy and drift
velocity are indirectly affected. There is, however, no
conservation rules which precludes a dhrect variation of a
quantity such as Ss(e)Ps(cos)) due to carrier-carrier
scattering.

The calculated ratios Ss(e)/Ss(e) are represented by
the solid curves in Fig. 4. The general features of these
curves are similar to the experimental results of Bray,
Pinson, Brown, and Kumar, 4 but the quantitative
agreement is poor. The experimental results are roughly
2 to 3 times smaller than our calculated results and the
peaks of experimental curves occur at roughly half the
energy of the calculated peaks. We believe that these
differences are largely due to the neglect of carrier-
carrier scattering in our theory which would serve to
diminish the calculated Ss/Ss distribution. We know
from the large ratio of Va/V, , that the heavy holes
predominantly populate momentum states in the field
direction. Carrier-carrier scattering would lead to an

increased spread of this distribution around the field
direction and consequently would diminish the ratio.

Vile have performed similar calculations in e-type
germanium at 77'K with the electric field in the (100j
direction. The many-valley theory is simpler in this
direction since all the valleys are equivalently "heated"
by the 6eld. In this case, the transformation of the
ellipsoidal constant energy surfaces into spheres leads
to a problem essentially identical to that formulated
above where now the relevant mass is simply the con-
ductivity mass no*=0.12mo. The coupling constants
used are those given by Jorgensen, Meyer, and Schmidt-
Tiedemann. '7

A signiftcant difference between p- and n-type
germanium arises, however, from the fact that the
relative coupling to optical phonons is roughly an order
of magnitude weaker for electrons than for holes.

The calculated energy distribution for e-type Ge at
77'K at a field of E=1200 V/cm is shown in Fig. 5.
The average energy in this case is a=0.0416 eV, which
is considerably higher (see Fig. 2) than that in P-type
germanium, even though the phonon-limited mobilities
at 77'K are approximately equal for heavy holes and
electrons. Similarly, we see from Fig. 5 that the devi-
ations from Maxwellian are relatively small in this case,
as compared to heavy holes, which again emphasizes
the striking differences that result from the strong and
weak coupling to optical phonons for heavy holes and
electrons, respectively.
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