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Self-consistent calculations of the band structure of the semiconducting compound Mg2Si are presented
for the nonrelativistic Hartree and Hartree-Fuck (HF) independent-particle models (IPM's). The IPM's
are based on a finitely periodic model of the many-electron system. Some advantages and distinctions of this
model with respect to the conventional formulation are discussed. The calculations are broken into two
parts. First-order co1c (tight-b1QdlQg) functloQs and energies arc obtained f1'om a Inodcl 1Q which all valcncc
CGects are neglected. The dominant valence contributions are included in the final stage of calculation where
the basis consists of first-order core functions and orthogonalized plane waves. Approximations to matrix
elements are described and the error is estimated. The calculations reveal that the valence-band maximum
occurs at I'(I'&e) and the conduction band is many-valleyed with minima at the equivalent points X(Xs).
These results agree with qualitative predictions of band symmetries based on experimental charge densities
and a symmetry analysis using linear combinations of atomic orbitals. A preliminary investigation indi-
cates that the Hartrce bands are in good quantitative agreement with optical data and should be a valuable
aid in the interpretation of experiment. The HF-IPM results for Mg~Si are compared with results for HP
calculations in free atoms.

L QTTRODUCTION

HE fundamental concept underlying the band
theory of solids ls the independent-partKle model

(IPM) of a crystal 'A si.ngle electron is pictured in the
static averaged field of the remaining electrons and
nuclei. An IPM provides a conceptually simple frame-
work for qualitative and quantitative interpretation of
the electronic properties of crystalline materials. Since
IPM's of a many-electron system usually are based on
the Hartree-Fock (HF) approximation, s it is important
that both the capabilities and limitations of the
HF-IPM's be understood. For this reason we have
attempted to calculate the nonrelativistic HF electron-
energy bands of the semiconducting compound Mg2Si
as accurately and with as few restrictions as practical
considerations allowed.

The problem of making a self-consistent (SC) IPM
calculation may be stated in three interdependent parts.
Firstly, the many-electron Schrodinger equation is
obtained and the HF equations derived. Secondly, the
representations of the single-particle functions and HF
operators are chosen such that SC calculations are
possible. Thirdly, the SC calculations are formulated
and performed.

As it is convenient to represent a part or all of certain
wave functions as a linear combination of plane waves,
we Grst consider the integrals which will occur in the
usual form of the HF equations. In the case of matrix
elements with the exchange operator, integrals occur

f'Work was performed in the Ames Laboratory of the U. S.
Atomic Energy Commission. Contribution No. 1925.

*Present address: Physics Department, Kansas State Uni-
versity, Manhattan, Kansas.

'See, e.g., W. Kurtzelnigg and V. Smith, Report No. 130,
Quantum Chemistry Group, Uppsala, Sweden (unpublished).

~ See, e.g., C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960),
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which have the form'

exp)s(lr —ir') (r,—r,)j (2/r„a,s)dr,dr,

= (gsr/ai) (k—k')-'. (I)

If k=k, this integral diverges. In principle this diffi-

culty can be eliminated4 by replacing the finitely
periodic model crystal by an infinite model crystal.
Then k is a continuous variable and the divergence of
Eq. (I) is quadratically integrable.

In this paper the problem is treated by a modification
of the formulation of the many-electron problem. A
periodicity is imposed on the many-electron system
such that the many-electron Hamiltonian displays a
Gnite period. Thus, the electronic and nuclear contri-
butions to the potential energy in the many-electron
Hamiltonian may be represented by expansions in
plane waves as is customarily done in the theory of the
electron gas. In this way the infinities of Eq. (I) are
removed while retaining a 6nitely periodic model
crystal.

An important practical advantage is obtained if the
number Xo of translationally inequivalent points in a
6nitely periodic model can be taken to be small. There
are experimental grounds for believing that a model
where Eo'I' 2 to 4 provides a good description of the
electronic problem. Cardona' has found essentiaOy
identical reAection spectra for zincblende and wurtzite
forms of ZnS. Birman' noted that with respect to a Zn
or S site the first-neighbor shells are identical and the

3 See, e.g., J. Callaway, Energy Bcmf Theory (Academic Press
Inc. , New York, 1964},p. 122.' J. Phillips and L. Kleinman LPhys. Rev. 128, 2098 (1962)j
evaluate this integral with the aid of an argument in which the
divergence is regarded as arising from an inadequate sampling
procedure.

'M. Cardona and G. Harbeke, in Proceedings of the Seventh
International Conference on the Physics of Semiconductors {Dunod
Cie. , Paris, 1964), p, 217.

e J.L. Birman, Phys. Rev. 115, 1493 (1959).
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second-neighbor shells are very similar in the two crystal
structures. Thus the dependence of the electron-energy
bands on crystal structure must be largely determined
by interactions with the first few neighbors. ~

In Sec. II the periodically extended crystal model
(ECM) is de6ned. The many-electron Hamiltonian
and HF equations are obtained for this model. The
formulation of the Mg2Si calculations is presented in
Scc. III. Col'c functions arc I'cpI'cscDtcd by tight-
binding functions ands, valence functions by linear
combinations of orthogonalized pla.ne waves. Approxi-
mations made in forming the HF operators and in
calculating the matrix elements are described. and the
error involved is estimated.

In order to include HF exchange it is essential to the
analytic functions and thereby reduce many integrals
to simple rational expressions. For this reason it wa, s
not feasible to perform calculations based on Slater's
(p'ls) exchange approximation. s

The results for SC calcuIations based on the Hartree
and HF IPM's are presented in Sec. IV. Finally, in
Sec. V the calculations are reviewed with respect to
comparable CRlculatlons.

Atomic units (a.u.) are used throughout except that
energies are expressed in rydbergs (2 Ry= 1 a.u.=27.21
CV).

H. THE EXTENDED CRYSTAL MODEL

A. Defimtion of the Extended Crystal Modei

AI1 Ideal crystal lilay bc de611cd wltll 1'cspcct 'to a
lattice of points in space. Let {a;},s=1, 2, 3 be a set
of linea, rly independent primitive vectors. The space
lattice is the set of points {R)where a particular vector
of the set,

R(m) =mtai+IIssas+IIIsas, (2R)

18 8Pcc16cd by 111=(Bst,res, ass) wllci'6 tile coIllPoilcli'ts
of m are natural numbers. The set of points {K)where
a members

K(m) =mibl+msbs+INsbs, (2b)

is expressed in terms of the vectors {b;=(2s./Qs)
Xs,;sa;Xas), i=1, 2, 3, (Qo——ai asXas) has theproperty
that

'

K(m) R(n)=2sm n. (3)

The lattice formed. from the set of points {K}is the
lattice reciprocal to the space lattice. The three families
of parallel planes,

b; r=2sk, s= i, 2, 3,
7 Professor F. Bassani pointed out the signi6cance of the ZnS

reBection measurenmnts |,'private communication).
8 J. C. Slater, Phys. Rev. 81, 385 (1951).
9 Usually vvhen treating lattice vectors or their reciprocals, the

entire set is considered. For this reason vie adopt the notation
where R (or K, etc.) refers to any member oi the set. Thus, Qx
indicates a sum over all K vectors. If a particular vector is con-
sidered, a subscript is added Pe.g., R(n) or K(m)g.

where h is R natural number, partition the space into
elementary cells each of which is R parallelepiped of
voluIQc Qo.

A 6nite crystal is considered to occupy a parallel-
epiped in space whose edges are the vectors {A;=Pa;},
i = 1, 2, 3. The volume of the 6nite crystal is Qg= Ã'00.
Tllc 6nltc-crystRl 1Rttlcc 18 tile sct of po1nts {R}wlicrc

R'(m) =mIAI+msAs+IissAs.

The vectors {R'}will be called finite crystal lattice
vectors. The vectors {k}reciprocal to the finite-crystal
vcctorsp

k(m) =IIIIBI+tnsBs+IIssBs, (6)

where {B;=(2s/0 )e;; A;XA =b;/E}, s= 1, 2, 3, will

be designated k vectors. Evidently, k(IVm) =K(m).
The finite crystal consists of nuclei and atoms which

are con6ned within the crystal volume. The structure
of the finite crystal is defined by specifying the equi-
librium location and species of nuclei within a proto-
type elementary ceB. Each elementary cell of the finite
crystRI contRlns Duc/ci of thc sRDlc clcnlcnts ln thc sanlc
relative position as in every other cell. The nuclei are
treated as point particles which are 6xed at their
equilibrium positions. The number of electrons in the
6nite crystal is such that the crystal as a whole is
electrically neutral.

The periodically extended 6nltc crystal oI' cxtcnded
crystal model (ECM) 18 all lliflIlltc crystRL Thc ECM
is de6ned with respect to the 6nite crystal lattice. The
prototype elementary cell or ECM ceII is the finite
crystal de6ned above. Each ECM ceII is required to be
identical in every respect to the prototype ECM cell.
Thc DuclcaI' charge distributloD ls pcl'lodlc ln spRce
with periods {a;),s=1, 2, 3, and the electron-charge
distribution is periodic in space with periods {A;},
i= j, 2, 3. Expectation values of operators are to be
averaged over an ECM ccII. Wave functions and other
functions which represent a property of the ECM
many-electron system Rx'c I'cqull'cd to bc periodic with
at least the periods {A,). In particular the many-
electron operators arc required to be periodic with at
least periods {A;}.

The ECM is so de6ned that points in space which are
related by a 6nite crystal lattice vector are equivalent.
That is, ECM functions must transform according to
the identity representation of the (in6nite-order) sub-

group Tf, of the translation group consisting of tra, ns-
formations by 6nite crystal lattice vectors. Therefore,
tile ollly 1'cplcsclltatlolls of tile (ln6nltc-order) tl'Rlls-

Iation group T which occur in the ECM are those of
the factor group T/Tr. . The order of this factor group
is Fo, the number of lattice points in an ECM cell.
Each element of the factor group is a set of translations
which diGer at most by a 6nite crystal lattice vector.
Thus, only a representative translation from a factor
gloup clcnlcnt ls needed to describe tlM clcnmnt. Thcsc
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representative translations may be chosen to correspond,
to the lattice vectors in the prototype KCM cell."

where q» is given by Eq. (10). After the sum on R is
evaluated, Eq. (12a) becomes

H;= —g g Z, (8s/K'Qo) expgiK (r;—R,)7. (12b)

(13)

The factor ~ on the electron-electron interaction term
of Kq. (11) assures that these potential-energy con-

(7a) tributions are not counted twice.(1) —V'q&(r) =8n-p(r),

(2) v (r+R') = v (r) (7b) C. Single-Particle Equations

3. The ECM Many-Electron Hamiltonian
K&0 a

The first step toward obtaining the ECM many-
electron Hami]. tonian is the derivation of the potential The potential d,ue to electron-electron interactions is

due to the ECM charge distribution. The potentials
due to nuclear and electronic charges will each be
required to satisfy the following conditions:

(3)
ECM

p(r)dr=0. (7c)
The HF equations are obtained in the usual way. '

In the case of paired, spin states the HF equations are

The first condition requires p to be a solution of
Poisson's equation. The remaining conditions require
q to be periodic in the finite crystal lattice and average
to zero over an ECM cell. The three conditions com-
pletely specify the potentials if the charge density is
known.

It is convenient to expand potentials in terms of the
potential produced, by a standard charge density. In
each ECM cell this standard charge d.ensity consists of
a delta function of unit magnitude at the point r' and.
a neutralizing uniform charge density:

BHpS&= 6&I, (14a)

HHF(1) Tl+Hl+D1+~1

The direct term is

(14b)

Dgg;(1) =Q (I;(2) ) H»Ng(2))N;(1), (14c)

and the exchange term is

where the HF operator is given in terms of a direct
operator D and. an exchange operator A by

p, (r) =g P(r—r' —R') —Q&
—'7

Rc
(8)

Aiu, (1)=—P (e,(2); H»u;(2))N, (1). (14d)

= Q Qg ' expfik (r—r')7.
lr.&0

The correspond, ing potential at the point r that satisfies
conditions (7) is

yo(r —r') = g (8s/O'Qq) expLik (r—r')7. (10)
k&0

The potential-energy contribution to the many-
electron Hamiltonian for a single ECM cell consists
of the potential energy due to the interaction of the
electrons in the cell with all the other charges, electronic
and nuclear, in the extended, crystal. The many-electron
Hamiltonian is

H, =P T;++H;+ ', P H;;, -

H, = —Q g Z, (po(r, R R,),——
R e

(12a)

"A sum on lattice vectors gR in the ECM will include only
the &0 inequivalent vectors contained in the prototype ECM cell.

where T,= —V'; is the kinetic-energy operator for
electron i and H; represents the potential energy due
to the interaction of electron i with the nuclear charges
Z, at positions R, in the elementary cell associated
with a space lattice vector I,

The eigenfunctions of the ground. -state HF operator
corresponding to unoccupied single-particle states
represent excited, states of the many-electron system in
the sense of Koopmans's theorem. "

In the HF Kqs. (14) the Coulomb interaction po-
tential H» is given by Eqs. (13) and (10). So, for this
model the integrals corresponding to Kq. (1) are zero
if k=k' and, no divergence occurs. Thus, for a specific
choice of finite ECM cell the corresponding finite set of
inequivalent points in the Brillouin zone completely
specify the model and in this sense are not just a con-
veniently chosen but arbitrary sampling of the Bril-
louin zone.

It is evident that periodic boundary conditions im-

posed on the finite-crystal HF equations involve more
than a periodicity requirement on the single-particle
wave functions. There seem to be two alternatives.
(1) Let the crystal become infinite. Then periodic
boundary conditions are no more than a d.evice to
facilitate the discussion of translation symmetry (2) If.
the periodicity imposed is to be truly finite, the HF
equations must be symmetrized. In particular, the
nuclear term must be made compatible with periodicity
conditions. Thus, the KCM may be considered a means
to effect the symmetrization of the HF equations for a
finitely periodic model. We note that in the limit of

"T.Koopmans, Physica 1, 104 (1933).
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infinite ECM cell volume, the ECM-HF model is
identical with the infinite-crystal model.

For many purposes a plane-wave expansion of the
Coulomb potential is not a convenient form. Alternative
forms for the Coulomb interaction may be obtained by
the standard methods employed for lattice sums. In
Appendix A a simple generalized. "method is used to
obtain the Ewald form and an alternative form of the
Coulomb interaction in a periodically extended crystal.

III. CALCULATIOÃ OF THE E5'ERGY
BANDS FOR Mg28i

A. Physical Properties of Mg28i

The crystal structure of Mg2Si was 6rst determined
by Owen and Preston. '2 Their x-ray diGraction experi-
ments showed that the Si atoms form a fcc lattice with
lattice constant a=6.391 A. Relative to each Si atom
are 8 Mg atoms located at the points (+sr, +s, +q)a.
The Mg atoms form a simple cubic lattice with lattice
constant a/2. The position of the atoms in a unit cell
is shown in Fig. I.The crystal structure just described
is called the antiQuorite structure. The space group is
Fm3m (Oqs) and the point group with respect to a Si
center of symmetry is the full cubic group ws3tn (oq).
Since the space lattice is fcc, the reciprocal lattice is
bcc. Reduced k vectors of special symmetry are labeled
according to the notation of Bouckaert et u1."

More recent investigations" of the crysta, l structure
of Mg2Si have shown the lattice constant to be
a= 6.338 A. Ageev and Guseva" calculated the electron-
density distributions from their x-ray diGraction data.
A reproduction of their results is shown graphically in
Fig. 2 where the electron-density distribution is plotted
from a Si site along the lines (100), (110), and (111)
and from a Mg site along the line (001). The atomic
sites are labeled A, 3, etc., to correspond to Fig. 1.

B

FIG. i. Thc posltlon of Mg and Sl atoms in thc basic CUbc.

"E.A. Owen and G. D. Preston, Proc. Phys. Soc. (London)
36, S43 (1924).

'"' I .P. Souckacrt, R. Smoluchovrski, and E.signer, Phys. Rev.
50, 58 (1936).

"N. V. Ageev and L. N. Guseva, Bull. Acad. Sci. USSR, Div.
Chem. Sci. I, Bi (1952).

gl

A~

ioI

I

OI I

t gp) I Olol I

4,

2 2-

2
(a)A

eI

I
I

I
I
I
I

A
6I

I

I
I

8 I I

I 25
I

g s I

I A

2 4,'
A (g C

8 I

FIG. 2. Election-density distl'ibutions fox' Mg2Si ln the dil'ec
tlons: (a) LION (h) D&O1 (c) Lt~&]& (d) LO&&]. From Ageev
and Guseva (Ref. 14).

The electron density in the neighborhood of a Sj site
is observed to be nearly spherica, lly symmetric about
the Si site. The electron density about a Mg site exhibits
a sizable distortion from spherical symnietry. An esti-
mate of the ionicity of the atomic constituents was ob-
tained by calculating the number of electrons near the
Si a,nd Mg sites from 8,

'
spherical approximation to

Ageev and Guseva charge density. This admittedly
rough estimate accounted for Io of the j.2 Mg electrons
and all 14 of the Si electrons. From Ageev and Guseva's
qllota'tloll (0.2 electrons/A ) of thc cllalgc density 111

the region of the Si-Si bond it appears that at least one
of the remaining electrons is involved in the Si-Si bond.
Presumably the one remaining electron is shared by

Si and Mg atoms in the Si-Mg bond. However, this
conclusion should not be taken too seriously since
Ageev and Guseva pointedly refuse to estimate the
ionicity. They argue that the absence of a sha, rp
bounda, ry between the separate ions makes an estimate
of the ionicity impossible. This is probably the most
realistic estimate of the situation. From the Mg binding
energy in Mg2Si, %hittenl5 estimates an upper limit
for the Mg ionicity to be 0.66 electrons. One can obtain
this result by assuming that the 2 electrons in the
Si-Mg bond are shared on a 3

—~~ basis."Although the
extent of the ionic character of the Mg atom is not
determined, it is clear that a self-consistent calculation
of the electronic energy levels must be suQiciently
Qexible to allow for charge transfer from a Mg to a Si

» W. B. Whitten, P. L. Chung, and G. C. Danielson, J. Phys.
Chem, Sohds 26, 49 {1&).

&& L. A. Lott and D. W. Lynch, Phys. Rev. 141, 681 (1W6).
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TAsx,E I. Sy~~etry species which occur in LCAO's formed from
Mg and Si s and p orbitals at I', X, L.

LCAO

Sis
Sip
Mg+ s
Mg s
Mg+ p
Mg p

I'1
I 15
I'1
Pgr
+15
I'~5~

Symmetry species
X

X1
X4r, Xgr
X3
X4
X2r, X5~
X1p X5

Lr1
LI2t Lrgl

L1
Lr9 r

LrQ'y LS'
Lrly ~S

atom and to includ, e the sects of the unscreened Mg
nucleus.

Mg2Si is a semicond, uctor. The energy gap has been
determined both electrically and optically. The results
from the various measurements of the energy gap have
been summarized and discussed by Stella. ' The elec-
trical gap is 0.77 eV, the optical gap is about 0.67 eV
and the photoconductive gap is 0.65 eV at j.5'K. Re-
Qectivity measurements by Scouler" indicated that the
direct gap is about 2.1 eV.

» A. Stella and D. %. Lynch, J. Phys. Chem. Solids 25, 1253
. (1964).

1'Qf. J. Scouler, Lincoln Laboratories, Lexington, Massa-
chusetts. Reiiectivity data, 1965 (private communication).

B. Preliminary Investigation of the Band sy~~etries

The probable symmetries of the valence bands and,

low-lying conduction levels may be predicted for the
points I', X, L by considering the dominant terms which
would occur in a LCAO (linear combination of atomic
orbitals) calculation of these energy levels. For this

purpose LCAO's formed from the 3s and 3p atomic
orbitals will be considered. In the case of Mg, symmetry-
adapted LCAO's formed from s and p functions centered
about Mg sites consist of symmetric {Mg+) and anti-
symmetric (Mg ) combinations of the Mg orbitals
centered about the two Mg sites in an elementary cell.
In Table I are listed the symmetry species of the Mg
and Sl LCAO s for' the points I X L.

From the charge-density results, we expect the
valence functions to be dominated by Si LCAO's.
Thus, the valence symmetries will be those of the Si
s and p LCAO's in Table I. This choice for the valence

symmetries is consistent with the semiconducting

property of Mg2Si and at I" and L is the only reasonaMe

choice that can be made.
It is likely that the low-lying conduction levels at I'

will be I'» and, I'g, since the mixing between the Si and,

Mg 1'I functions is not likely to be large and the Mg

p levels must lie above the s levels as in the free atom.
However, a quantltatlve argument must be used, to
determine the order of the I'» and I'2. conduction levels.

At L the mixing between the Mg L2 and the Si Lg
LCAO's may be quite strong, suggesting that. the L~.

valence level will lie appreciably below the Le valence
level. %ithin this scheme there are two choices for the

low-lying conduction level at L, L», and L2. Since the
L» mixing must be about the same as the F» mixing,
the L» and I'» conduction levels shouM, be at about the
same position. Because of the additional L2 mixing
with the Si p function at I. the I.s level will lie above
the I'g level.

At X the candidates for the low-lying conduction
levels are X4 and X3. Since the Si X4 LCAO mixes
with the Mg LCAO of this syrrunetry, the low-lying
conduction level at X must be X3. Since there is no
mixing with the valence levels, it appears that the X3
level is the bottom of the conduction band. This is
consistent with %hitten's prediction'9 from measure-
ments of piemelectric effect that the conduction band
minimum occurs in the t 100j direction.

C. Formulation of the SC Calculations

1. The Bare lou 3fodd-for the Core Fgnciiorss

In SC calculations the HF operator itself is unknown.
A zcroth-order approxlmatlon to the HF opelatol' ls
made. The solutions of this problem are obtained and
then used to form an improved HF operator. Thus, it
is essential that the formulation of the calculation be
Qexible enough so that the SC iterative procedure is
praeticabl. Such a scheme is described in the following
pal agl aphs.

In the region about a nuclear site the Coulombic
attraction of the nuclear charge will be the dominant-
factor governing the distribution of the electronic
probability density. The wave function (core function)
for an electron whose probability density lies pre-
dominantly in the vicinity of a nuclear site should
closely resemble the corresponding free atom or free
ion wave function in this region. Thus, the wave func-
tion in the crystal should be well-described by a single
LCAO or linear combination of a small number of
LCAO's formed from the low-lying atomic wave
functions (orbitals). Core LCAO's are define to be
slIlglc LCAO s formed floI11 'tllosc atonllc orbltals (col'c
orbitals) which when centered about different nuclear
sites in the crystal overlap negligibly with one another.

In the bare-ion model for the core electrons a erst
approximation is obtained for the core functions and,

eigenvalues. In this model all sects due to occupied,
noncore (valence) orbitals are neglected. The dominant
effects of the valence electrons on core electrons are
included self-consistently or estimated. in the next stage
of calculations.

The zeroth-order HF operator for the bare-ion model
is formed from core LCAO's,

&Hlr ~ +&core+&oore q

19 +'. Q. Vfhitten and G. Ce Danielson, in I'soeeeChlgs of the
ggyggg Ieterearfoeal Coefereece oe the Physics of Sensicondgefors
(Dunod Cie., Paris, 1964), p. 557.
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where A„„is the core-exchange operator,

written in terms of core orbitals of type j centered
about a nuclear site s. The plane-wave expansion of the
direct term V„„is

V..„=Q (8zr/Z'Qo)px exp(iK r.),
Kr-'0

px=Q exp( —iK R. ) , —Z,+2+ Iy;, (x) I'

Xexp( —zK x)dx (17b)

It is easy to show that Eqs. (17) are equivalent to

V,...=g V, (r—R—R,)+B;, —Vo, (18a)

where each V, is an atomiclike potential which includes
the potential due to the Z, ' core electrons and Z, '
nuclear charges associated with nuclear site s,

V.(ri)= —2Z'/r~+4 Z 1&v*(rz) I'r» '«z. (18b)

The potential due to the remaining nuclear charges
(Z~' =Zg —Z~ ) ls 1Ilcluded ln

H~. = g Vx""exp(iK r),
K&0

(18c)

A,.y(r) = —Q y;,*(r'—R—R,)H»y(r')dr'
jg, R

Xit;,(r—R—R,), {16)

quoted above mere calculated from tables prepared by
Slater and DeCicco. '0

In the vicinity of a nuclear site the bare-ion HF
operator is very nearly a free ion HF operator. The
eigenfunctions are approximated by single LCAO's
formed from the free ion atomic orbitals. The eigen-
values are shifted from their atomic values by the
Madelung shifts and Vo.

Equation (19) is an approximation to the ionic term
which is strictly valid only at the nuclear site. A nu-
merical investigation of the behavior of this term
indicates that the core eigenvalues calculated in this
approximation will be within 0.2 Ry of the exact value.
An attempt was made to incorporate the ionic correc-
tion into the bare-ion calculation exactly. The ionic
potential was written as an Ewald sum (see Appendix
A) where the Ewald parameter was chosen to emphasize
the plane-wave series. The heavily screened lattice-sum
terms from the neighboring sites were neglected, .Owing
to this error the method failed, because the results
were not clearly independent of the Ewald parameter.
However, it was.-evident from this calculation that the
effect of the ionic potential on the bare-ion core flrzo
viols is negligible and that the bare-ion core eigeseelees
are shifted by nearly a constant (the 2p and 2s eigen-
values were shifted slightly more than the j.s eigen-
value). Since the Madelung shift is an approximation,
the sensitivity of the noncore eigenvalues to small
shifts of the core eigenvalues mill be studied in the next
stage of calculation.

Z. A pproxinzatiorzs in the Matrix Etenzents

In the crystal calculation all eigen$unctions are
expanded in a basis set consisting of symmetry-adapted
bare-ion core functions,

with
Vx""——g—Z," {Szr/E'00) exp( iK—R). (,18d) HHpsrip. =E,ip„ (2o)

The term Vo,

g, V0——g V,(x)dx

= —(8 /3) 2 IA.(r) I'~«(18e)
t'ai J

must be included so that the average value of the
potential is zero.

In Mg2Si the dosed-shell orbitals corresponding to
doubly ionized Mg and 4-times ionized Si are regarded
as dining the cores. Thus, ZM ' =2 and ZB '"——4.
The dominant behavior of the ion term near site s is

2Z ion/r +V shift

where P,'"'~~ is the Madelung shift associated with
atom s. The Madelung shifts for the Mg and Si sites
are 2.4038 Ry and 3.598 Ry, respectively. The shifts

augmented by symmetry-adapted plane waves (SPW's}
formed from about 65 plane waves. The Spgj"s are
orthogonalized to the core functions to form symmetry-
adapted orthogonalized plane waves (SOPW's),

SOPW, lr) =SPW,&)—Q (iP„SPW,h)iP, . (21)

The HF operator in the crystal is partitioned into a
bare-ion term, a term which reQects changes in the core
functions and a valence term,

B»=III& '+&HF""+IInP~' (22a)

Two approximations are made in forming the HF
operator. The erst is to neglect the changes in the core-
exchange operator. The second is to approximate the
valence functions in the valence-exchange operator by
a truncated series of SPW's.

The eGect of the valence terms on the bare-ion core
20 J.C. Slater and P. DeCicco, Solid State and Molecular Theory

Group, M.I.T. Quarterly Progress Report No. 50, p. 46 (un-
published).
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functions should be comparable to the corresponding
effect in the free atom or ion. To estimate the mag-
nitude of the effect, the Mg and Si neutral-atom core
eigenvalues and eigenfunctions were compared with
eigenvalues and functions for doubly ionized Mg and.
4-times ionized Si. The removal of valence electrons
lowered the core eigenvalues by nearly a constant
amount and caused small changes in the atomic core
functions. These small changes in the core functions
are neglected in forming the core-exchange operator.
Since the Mg ions in the crystal do not seem to be
screened very well by valence electrons, the Mg bare-
ion core levels and functions should be unchanged and
the Si bare-ion core levels should be raised by about
1 Ry with a small change in the Si core functions. It
appears that we would be justihed in neglecting the
changes to the direct term due to changes in core
functions. However, this effect was included.

The SPW expansion of valence functions in the
valence-exchange operator is observed to be a good
approximation. The normalized valence functions ex-

panded in a truncated series of SPW's required an
adjustment of less than 10%%uz in the normalization for
all cases. Thus, a small rapidly varying part of the
valence functions has been omitted. However, this
should not be of serious consequence.

Thus, the HF operator is approximated by

&IF=&HFn'+ I'+~ .i, (22b)

where bare-ion core exchange and the dominant valence-
exchange components are retained and all direct con-
tributions are included. In Eq. (22b) A, & is the valence-
exchange operator represented in the approximation
described above, and the valence screening potential V
includes all contributions to the direct potential that
are not already included in Hap '.

The matrix elements with the bare-ion operator are
calculated with the aid of Eq. (20):

(P . II BIP,)-g g (23a)

The only term in Eqs. (23) which presents any difhculty
is the core-exchange term in Eq. (23c). This term was
evaluated by a method described. in Append, ix B.

The matrix elements with the valence screening
potential V were evaluated by expanding V in plane
waves. From 100—500 plane waves were used in the
expansion. All integrals reduced to Fourier transforms
and were evaluated in a straightforward manner. This
phase of the calculation was formulated in terms of
charge-density matrices which were assembled before

(P, ; fl'npnr SQPw, k)=E,(P, ; SOPW, k)=0, (23b)

(sopw, l; a F"sopw, k)

= (SPW,k HnP'SPW, k')

—P(p, ; SPW,k)*(P.; SPW,k')E, . (23c)

the iterative phase of calculation was entered. The
calculations proved to be virtually independent of the
number (exceeding 4 or 5) of K-vector modules that
were used in the expansion. The number of terms that
were handled in this and succeeding phases of calcu-
lation was substantially reduced by symmetry.

In forming the HF operator and in evaluating the
matrix elements described above the approximations
used were quite good. Such is not the case with the
valence-exchange matrix elements. It was a practical
necessity to neglect those terms of the matrix elements
with the valence-exchange operator which involved
core functions. The direct calculation of these terms
involves an immense number of diTicult integrals. Only
the dominant terms have been retained. They have the
foD11

(sopw, k; ~...sopw, l ')
= (SPW,k; A, g SPW,k'), (24)

where the orthogonalization terms have been neglected.
This is a serious error and, may neglect terms which
reduce the exchange matrix elements by as much as
30%%uo. It must be emphasized that although valence
functions are well-represented by a truncated, plane-
wave expansion, the orthogonalization terms in the
individual matrix elements need not be small.

The integrals of Eq. (24) are trivial. However, there
is a major accounting problem in accumulating them to
form the matrix elements. The method which has been
used here parallels the HF free-atom matrix methods. '
First, exchange supermatrices are assembled for each
symmetry species and the exchange-matrix elements are
then evaluated directly from .the supermatrices at each
stage of iteration.

3. A Self-Coesistemt Procedgre

The 6rst step in the SC procedure is to calculate the
eigenfunctions and eigenvalues of the zeroth-order
operator Hap for the points in the Brillouin zone
corresponding to the translationally inequivalent points
in an ECM cell. An improved HF operator is formed
in the following way. The plane-wave expansion co-
efFicients of the charge density are calculated from the
eigenfunctions for the occupied states. The direct term
of the HF operator is calculated from the charge density.
At each stage the direct term of the improved HF
operator is taken to be the average of the direct texm
in the preceding stage with the d,irect term calculated.
from the charge density.

The valence-exchange operator of the improved, HF
operator is formed from the most recent valence eigen-
functions for the occupied states. No averaging is done
on the exchange operator. The process is discontinued
when the changes in the HF operator cause negligible
changes in the eigenvalues and direct potential. About
6ve i.terations are norinally required.
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FIG. 3. Hartree energy bands for Mg2Si. The bands have been
subjected to a core shift (0.15 Ry) which brings the indirect gap
(0.60 eV) into agreement with experiment. The calculated points
are circled and the solid lines indicate compatibility.

IV. RESULTS FROM THE MggSi
CALCULATIONS

SC calculations have been performed for both the
Hartree and HF IPM's. The iteration procedure was
terminated when the eigenvalues and Fourier coeK-
cients of the direct potential were observed to change

by less than 0.002 Ry.
In the erst Hartree calculation, the Fourier coefB-

cients of the charge density were obtained for 8 points
of the Brillouin zone (a 2)&2)&2 ECM cell). 'Essentially
the same results were obtained for the I', X, and L
levels and the SC direct potential when the calculations
were extended to a 4X4X4 ECM cell. The 64 points
of the Brillouin zone included several points of very low

symmetry. We conclude that at least for the direct
potential a 2X2X2 KCM cell provides an adequate
description of the charge density.

The Hartree calculation was performed as described
in the preceding section except that all exchange con-
tributions to the matrix elements were excluded. The
results are shown in Fig. 3 where the calculated points
are circled. In the Hartree calculations the only ap-
proximation of consequence was the Madelung shift
approximation. For this reason the sensitivity of the
valence and low-lying conduction levels to small shifts
of the core energies was studied.

For shifts of all core energies by 0.1 Ry the valence
.levels were changed by less than 0.0j. Ry. The con-
duction level which was most responsive to the core

TmI.E II. . Comparison - of selected--Hartree - direct-transition
energies with Lee's pseudopotential results (Ref. '21) and the
experimental value (Ref. 18)J

Direct
transition

Calculated energy
This work Lee

eV eV

Experiment
(Scouler)

eV

XS,-X3
~IS,"~I
les&~LI]

Wy, -W3
Z3-Z3
&I-Pa
Xg&-XI

1.67
2.11
2.03
4.1
44
5.0
6.3

3.9
3.1
3.2
7.1

?
3.06

1.8
2.1
2.0
3.7-3.9
3.9—4.0

shifts' was the low-lying X3 level. A shift of:0.1 Ry for
the core levels produced':a shift in the X3 level of 0.05
Ry. This sensitivity can be understood as follows.

Thj core energies enter the valence calculation'as a
factor on the product of'; two SOPW orthogonalization
coefficients [Eq. (23c)).'If the core energy Iis low, the
SOPWI orthogonalizatio'n coefficient is small. The
largest orthogonalizatiod contribution to the matrix
elements is generally fro~ terms involving the highest-
core eigenvalues since the product of SOPW orthogo-
nalizj. tion coefBcients is then relatively large. Thus, a
small, change in the eigenvalue may produce a sig-
nificant change in the matrix element. It."owever, to
estimate the- -relative contributions- - to- the . .matrix
elements one must compare s functions with s functions
and p functions with p functions. Of course, it is un-
necessary to compare functions which are excluded by
symmetry. Since the highest-core eigenvalue corre-
sponds to a Mg 2s function, it is not surprising that
the X~, level is sensitive to small shifts in 'core

eigenvalues.
Qualitatively, the Hartree calculations are in com-

plete agreement with the band picture predicted from
elementary considerations in Sec. III'B. A core shift
(0.15 Ry) within the limits prescribed by the Madelung
shift approximation brings (a change of 0.05 Ry) the
indirect gap (I'q5-Xe) into agreement with experiment.
In Table I'I selected direct transition energies predicted
by the adjusted Hartree calculations are listed together
with the corresponding results obtained by Lee" and
the experimental values. ""Zhc experimental values are
assigned on the basis of a critical-point analysis where
this is feasible. The Grst three direct transitions listed
predict shoulders in the absorptive part of the dielectric
constant t.2 such that for photon energy ko&Ed, the
direct-transition energy, em ~ (hem Ez)'t2. Three .such—
shoulders in e2 can be seen in Scouler's analysis of his
Mg2Si reQectivity data, "and this assignment is made
with conhdence. The calculations also indicate a critical
point in the density of states near the direct transition
8'2-$'3. This seems to be associated, with a peak in ~2

at 3.9 eV. We are unable to make a statement about
structure observed in e2 near 3.0 eV [1Vote added in.proof
For technical reasons the Mg2Si reilectivity data in the

.
' ' P. M. Lee, Phys. Rev.' 135,. A1110 (1964).
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region, '1.0-2.5 eV may be unreliable $g/. J. Scouler,
MIT Lincoln Laboratory, Lexington, Massachusetts,
1967 (private communication)]. A more detailed analy-
sis t Bul1. Am. Phys. Soc. 12, 341 (1967)j based on the
Hartree bands indicates that the structure near 3.0 CV

is due to transitions along Z and in the Z-A plane. J

The results of the SC-HF calculations for the 8
points of the Brillouin zone (F,X,L) are indicated in
Fig. 4. The shape of the Iow-lying conduction band is
qualitatively the same as the corresponding Hartree
band. However, the valence bands are signi6cantly
different in the HF than in the Hartree calculation.
The top of the valence band predicted, by HF is at L.
Also, the X4o Rnd Iso VRICncc IcvclS haVc beCn

interchanged.
Since these results are somewhat disconcerting and,

are probably incorrect, we will reconsider the approxi-
mations which werc IQRde ln forming thc HF matrix
elements. The sensitivity of the valence and, conduction
levels to small changes is about the same as discussed,

for the Hartree calculation. The strange appearance of
the valence band, is entirely due to the exchange con-
tributions to the matrix elements. If valence exchange is
removed, thc shape of the HF bands is qualitatively
the same as the Hartree bands but the valence band
rises into the conduction band. If, as suggested by

Pro. 4, Energy bands for Mg2Si based on the HI"-IPM. The
calculated points are circled and the solid lines indicate
compatibility.

Phillips and Kleinman's work on Sic (and our concern
that valence exchange is overestimated), the valence
exchange contributions be reduced by a constant factor
which is to represent a correlation effect (or crudely
account for the neglected terms in the exchange matrix
elements), it is possible to remove the strange appear-
ance of the valence band and still have a semiconductor.
In d,oing this the exchange contributions cannot be
reduced by more than 30% before the valence band
rises into the conduction band, whereas the Si work
suggests a reduction of 60-70%.

From the fact that most of the valence-charge density
is concentrated. near Si sites, it appears likely that the
core levels which are most affected by the valence
exchange are the Si core levels. An estimate of this
CGect was made by calculating the valence-exchange
contribution to the core eigenvalues in the Si~ ion.
This turned out to be a fairly uniform shift of about
0.8 Ry. We might hope that the main CGect of the
approximations would be to neglect a core shift of the
Si core eigenvalues. Such a shift produced almost no
change in the shape or position of the bands. Si core
shifts are much less critical than Mg core shifts. The
Si sites form a tetrahedron centered about a Mg site.
Thus, as in the case of Si the valence charge density
about a Mg site may be represented by an sp' hybrid,
but with a much weaker s contribution than is the case
for Si. Therefore, we expect the effect of valence ex-
change on Mg core levels to be much less than on Si
core levels and the error to be roughly comparable to
the Madelung shift error ( 0.1 Ry).

Thus, an improved treatment of valence exchange
will remove the most disturbing feature of the HF
bands. However, this is virtually impossible within the
present formulation as the terms which have been
omitted involve an immense number of difFicult
integrals.

V. DISCUSSION AND CONCIUSIONS

The ECM is in no sense a radical departure from the
traditional HF-IPM. For most purposes it is equivalent.
For example, Herman's result for the crystal potentiRP
can be obtained, simply and, directly with the ECM
approach. The problem of Vo has not been solved by
the KCM; it has been eliminated along with the di%-
culties discussed in connection with Eq. (1).

In certain respects the Mg~Si HF results are com-
parable to free atom HF results. Certainly, the ex-
change contributions to the crystal core energies is
comparable to the corresponding exchange contributions
to the core energies of the constituent atoms or ions. In
the case of atoms the exchange-energy contribution to
the single-particle eigenvalues for the outermost elec-
trons is a dominant contribution which may determine

~ F. Herman, in I'roceediegs of the Seventh Itstertsatzmsal Coe-
ferertce ors the I'hysscs of Sersscortdlctors (Dunod Cie., Paris,
1964), p. 3.
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whether the eigenvalue is negative. In the Mg2Si calcu-
lations neglect of valence-exchange contributions to the
single-particle energies caused the valence band to rise
into the conduction band. The similarity between free-
atom HF results and the Mg2Si HF results also is
apparent in the excitation spectrum of the HF ground-
state operator. Excitation spectra of free-atom HF
ground-state operators will have the qualitative features
(e.g., symtnetry of lower-lying excited state vectors) of
the observed spectra, but the HP energies of excitation
will invariably be too large. The Mg2Si HF calculations
indicate that the exact HF excitation spectrum (ex-
cluding the very sensitive Xs level) will not differ

significantly from Fig. 4. Again the similarity between
atomic and crystalline HF-IPM's is evidenced by the
correct symmetry for the lower-lying excited states,
but too large excitation energies.

To our knowledge the only published band calcu-
lations in which a serious attempt has been made to
include HF exchange are those of Phillips and Klein-
man4 and Brinkman and Goodman" on Si. They report
that unscreened HF valence exchange completely
destroys agreement between their calculated values
for the energy gap in Si and the experimental value.
Because of the extreme sensitivity of the Mg2Si gap
energy to details in the HF operator we are unable to
draw a conclusion about the energy gap. However, the
insensitivity of the conduction levels I'~ and I.~ to
changes in the valence-exchange operator reveals that
these levels will be too high even with an exact ECM-
HF calculation.

The Mg2Si HF calculations described in this paper
difter from the calculations of Phillips and Kleinman4
in several respects. The Mg~Si HF calculations are done
self-consistently with a much larger plane-wave basis
set than is used in the noniterative Si calculations. In
their paper, Phillips and Kleinman list the contributions
to matrix elements for the Si I'25 valence level due to
valance exchange. It is of interest to note that the self-

energy contribution to the matrix element is as large as
the remaining terms. This situation does not occur for
the MggSi HF calculations because the ECM diGers
most signi6cantly from the in6nite-crystal model in
the reduced emphasis on Fourier components of the
Coulomb potential with small wave number. To the
extent that these small-wave-number components con-
stitute the "long range of the Coulomb interaction" we
must conclude that the failure of the ECM version of
the HF-IPM to give an excitation specter in agree-
ment with experiment to be of the same nature as the
corresponding failure in the free-atom HF-IPM.

A pseudopotential band calculation has been per-
formed by Lee" on Mg2Si and Mg26e. In his calcu-
lations Lee has superposed the pseudopotentials of
Mg and Si and Mg and Ge obtained from independent
calculations on the elemental solids in the hope that

+ W. Brinkman and B. Goodman, Phys. Rev. 149, 597 (1966).

this approach might lead to reasonable bands for the
compounds. The shape of the valence bands calculated
by Lee is about the same as the Hartree bands calcu-
lated here. However, Lee's conduction bands are
signiacantly different (see Table II) from either of the
bands calculated here. At X the conduction levels X~
and X3 appear in reversed order. The complete absence
of a Fg conduction level is disturbing in view of the
considerations of Sec. III B. A detailed study of the
optical and electrical experimental data with the aid
of the appropriate selection rules supports the order
of levels presented here."In fact, as shown in Table II
for direct transitions, the agreement between the
Hartree calculation and experiment is remarkable.

APPENDIX A: GENERALIZED LATTICE SUMS

The plane-wave representation of the Coulomb
potential

q (r) = Q (&s./ksQr) exp(ik r)
RWO

(A1)

cannot be evaluated directly to obtain the potential at
a point. This problem was solved by Ewald'~ who was
able to rewrite Eq. (A1) as a convergent sum in real
space plus a convergent sum in reciprocal space. A
simpler derivation due to Ewald and Schockley" which
emphasizes the physical content of the Ewald method
is presented carefully by Slater and DeCicco.ss The
following approach is a generalization of the Ewald
scheme.

Let

(A2)

be a lattice sum over the appropriate lattice, where
f'"(u,r) is a function of the parameter a and the variable

~Franco Bassani and Nathan O. Folland, J. Phys. Chem.
Solids (to be published)."P. P. Ewaid, Ann. Physik 64, 253 (1921).

ss See, e.g., C Kittel, Intro. dgotioss to Solid Slots Physsos Qohn
Wiley 4t Sons, Inc., New York, 1956), 2nd ed. , p. 571.
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TAsrx III. Generalized lattice sum parameters. (PW,k; A„„PW,k') =00 'Q exp(i(k —k') R,)
g8

erfc{ur)
exp( —ur)

QIC(u, k)

(8~/P) egp (—jP/4u&)

S~u~/e(u2+e)

QIC(u, 0)

—2m/u'
—8m/u~

X exp( —ik. r~)P;,*(2)H~2

Xexp(ik' r,)g, ,(1)drgdr, . (B1)

Since the core functions P;, are tightly bound, we may
r. The only requirement that is placed on f'" is that the «place IIn by 2/rim. Let
plane-wave expansion

mrs(r) =P c(a,k) exp(ik r) (A3) F(k) = exp(ik r)y(r)dr, (B2)

exists and converges. The plane-wave expansion co where we drop the subscripts from the core functions.
Then, with the aid of the identity

c(a,k) =Qg ' exp( —ik x)2f'"(a x)x 'dx. (A4) 1/r~2 ——2(2s) ' dx x ' exp(ix. r~2), (B3)

where
C(a,0) = —limit c(a,k) (A6b)

and
C(a,k) = (8~/k'Qr) —c(a,k) .

The Ewald result is recovered if we choose

(A6c)

f"(a r) = erfc(ar) = (4/n. )"' exp( —t')dt.
ar

The" usefulness of a particular form of Kqs. (A6)
depends on the application for which it is intended.
The eKcacy of the Ewald method for calculating a
periodic potential at a point is not questioned. In Table
III are listed the relevant parameters for two choices
of simple analytic functions f'" for which the con-

vergence of both series in Kq. (A6) is improved ap-
preciably over that of the original series )Eq. (A1)j,
Evidently there are very few simple functions which

have this desirable property.
By construction the potential in the form of Eq. (A6)

is independ. ent of the parameter u. The two examples
listed, in Table III have the property that for large
values of the parameter u the potential approaches the
form of Kq. (A1).

APPENDIX 3: CORE EXCHANGE WITH
PLANE WAVES

Matrix elements of the core-exchange operator LEq.
(16)g with plane waves have the form,

Consider the identity

y(r) = qr, s(r)+(y(r) —pcs(r)). (AS)

By substituting Eqs. (A1) and (A3) for q and qr, s in
the bracketed term in the right member of Eq. (A5),
we obtain an expression in the form of an Ewald lattice
sum

q (r) = mrs(r)+C(a, 0)+P C(a,k) exp(ik r), (A6a)
k&0

a typical term of Eq. (B1) becomes

I=2(2s) ' dx x 'F*(k—x)F(k' —x). (B4)

The Fourier transforms of the core functions were
approximated by linear combinations of Gaussians

F(k)=P (4n)"'Q (b') exp( —b k2) (, (BS)
1)
k)

'

where Q (b') is a polynomial in O'. Since F may be
either an s or a p function in k space, both possibilities
are included in the bracketed factor in Eq. (BS).The
Fourier transforms were approximated by a least-
squares technique in which both exponents and coe%-
cients were varied until no further decrease in the
average least-squares deviation occurred. Although it
was especially dificult to approximate the high-Fourier
components for the more tightly bound core functions,
it was felt that a good approximation had been„".obtained
for all core functions.

In terms ofjEq. (BS)

I= P (2/s) dx x-' exp) —b„(k—x)'

—b„.(k' —x)')Q ((k—x)')Q ((k' —x)')

1
X~ . (B6)

&3(k—x) (k' —x)

Equation (B6) may be rewritten as

I= Q Q„(—8/Bb„)Q„.(—cj/Bb„.)

Xexp( —b b' —b b")

1
Xi iI', (Bla)

E3Lk k' ——',(8/ab„+8/Bb„. )j)
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I'= (2/s) dx m' exp( —bx'+2x. K), (B7b)

with b= b~+ b~~ and K=b~k+b~~k'. Equation (B713)
becomes, after several transformations,

I'=4(rr/b)'" exp(E'fs/b)df, (Bga)

which is related to the conQuent hypergeometric
function

I'= 4( s/ b)' ~sP (-'. -' E'/b) (Bgb)

Since the integral, Eq. (Bga), is evaluated a large
number of times in the course of a calculation of core-
exchange matrix elements with plane waves, it was
necessary to develop high-speed methods for deter-
mining its value. Sy tabulating the function and

interpolating the value of the function by a central-
difference technique we were able to reduce the calcu-
lation time (on an IBM 7074) to a maximum of 0.5 msec
per integral. Fortunately, we were able to compare our
calculated values to a table of the function prepared by
Lohmander. '~ The calculated points compared, to 8
digits and the interpolated points to 4 digits. Thus, we
expect an accuracy of about 2—3 significant digits in
the core-exchange matrix elements with plane waves.

Since the derivatives in Eq. (B7) make the equations
more complicated, the least-squares technique was
biased to keep the power of the polynomials as small as
possible.

An accurate method for calculating core-valence
exchange integrals where core functions are represented
by linear combinations of Slater functions has been
described recently by Brinkman and Goodman. 2'

~' S.Lohmander and S.Rittsen, Kgl. Fysiograf. Sallskap. Lund,
Forh. 28, 45 (1958).
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Shubnikov —de Haas Effect in SrTiOst
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The magnetoresistance of semiconducting SrTios has been investigated in high magnetic Gelds (up to
150 koe). In the temperature range 1.4-2.1'K, for Gelds of more than 50 koe, well-developed Shubnikov-
de Haas-type oscillations have been observed; The data support a conduction band consisting of spheroids
along the (100) crystalline axes, having 3 minima at the points Xr. The periods of oscillation as we11 as the
temperature dependence of the amplitude and the magnetic Geld saturation lead to the following values for
the transverse and longitudinal effective masses: tnt, = 1.5m0&15 jo, mg =6.0m0+30'po.

DITRODUCTION

HE observation of quantum eGects in the elec-
tronic properties of metals and semiconductors

has been and is being used extensively to probe the
energy-band structure of such solids. Cyclotron reso-
nance, oscillatory susceptibility (de Haas —van Alphen
effect) and oscillatory magnetoresistance (Shubnikov-
de Haas effect) are the three most popular phenomena
being investigated.

Considering the interest in the electronic properties
of SrTiO3, the question arose whether these experi-
ments could be applied fruitfully to the further explora-
tion of its band structure. A promising theoretical

t' Research supported in part by the National Aeronautics and
Space Agency.

calculation of the electronic energy scheme' exists, and
a majority of relevant experiments' ~ seems to confirm
this band picture. However, no direct measurement of
the tensor elements of the eBective mass has been
attempted thus far. The application of the magnetic
quantum e6ects to a material like SrTiO3 poses con-

'A. H. Kahn and A. J. Leyendecker, Phys. Rev. 135, A1321
(1964).

~ H. P. R. Frederikse, %.R. Thurber, and W. R. Hosier, Phys.
Rev. 134, A442 (1964).

«A. S. Barker, in I'roceedzngs of the International. Colloftuiem
on Optical I'roperties and Electronic Strectures of 3fetals and
Alloys, I'uris, 1NS (North-Holland Publishing Company,
Amsterdam, 1965).

4 Manuel Cardona, Phys. Rev. 140, 651 (1965).
~ H. P. R. Frederikse, %.R. Hosier, and %.R. Thurber, Phys.

Rev. 143, 648 (1966).' H. P. R. Frederikse and G. A. Candela, Phys. Rev. 147, 583
(1966).' 0.N. Tufte and K. L. Stelzer, Phys. Rev. 141, 675 (1966).


