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By using a guiding-center distribution function, an expression for Landau damping is derived for closed
Fermi surfaces of arbitrary shape in the case where the cyclotron frequency is much greater than the collision
frequency. It is shown that the strength of the damping is determined by the average over the cyclotron
orbit of the power delivered by the wave to the resonant electrons. The resonant coupling can always be
written as a sum of electric and magnetic contributions, but the damping in general cannot, because of
interference e6ects.

I. INTRODUCTION

"N this paper we shall present a general semiclassical
- ~ treatment of Landau damping of magnetoplasma
waves for closed, Fermi surfaces in the case where the
cyclotron frequency is much greater than the collision
frequency. Landau damping results from a resonant
transfer of energy from the wave to charge carriers
whose average velocity along the direction of propaga-
tion equals the phase velocity of the wave. ' 4 Kaner
and Skobov' 6rst predicted this kind of collisionless
d,amping for helicon and Alfven waves propagating at
an angle to the magnetic 6eld. Such eRects have recently
been observed, for helicon propagation in alkali metals
by Grimes' and, by Houck and Bowers, ~ and for Alfven
waves in bismuth by Khaikin and. Ed.elman. s

Despite statements' ' to the contrary, Landau
d,amping can also occur for propagation along the field

* Operated with support from the U. S. Air Force.' We shall use the term Landau damping here to include the
eGect of all 6eld components in. producing the resonant transfer of
energy. For some purposes it is useful to have separate terms to
distinguish the role of the diferent 6eMs. As will be discussed in
connection with Kq. (3.5), it is always possible for closed Fermi
surfaces to divide the damping mechanism into a part due to the
component of electric 6eld along the dc magnetic 6eld and a part
due to the rf magnetic Geld. For the latter, the term magnetic
Landau damping has recently been suggested by Stix (Ref. 2)
and is used by Buchsbaum and Platzman (Ref. 3) and by Pearson
(Ref. 4}.However, it is important to realize that both the electric
and magnetic 6elds affect the resonant electrons in the same way',
consequently there are interference terms which generally prevent
the total resonant damping from being written as a sum of electric
and magnetic contributions. It should also be pointed out that
attaching a key role to the magnetic Geld is essentially a matter of
taste, since the total resonant damping can just as naturally be
expressed in terms of the electric Geld only, as in Kq. (3.3).'T. H. Stix, as communicated via G. A. Pearson. Magnetic
Landau damping is a substitute for the term transit-time damping
previously used: T.H. Stix, The Theory ofI'@see 8'aves (McGraw-
Hill Book Company, Inc. , New York, 1962), p. 196.' S. J. Buchsbaum and P. M. Platzman, Phys. Rev. 154, 395
(1967).These authors point out that magnetic Landau damping
dominates for helicon waves in metals.' G. A. Pearson (to be published).' K. A. Kaner and V. G. Skobov, Zh. Eksperim. i Teor. Fiz. 45,
610 (1963) t English transl. :Soviet Phys. —JETP 18, 419 (1964)j.' C. C. Grimes, Bull. Am. Phys. Soc. 11, 570 (1966).' J. R. Houck and R. Bowers, Bull. Am. Phys. Soc. 11, 256
(1966).

M. S. Khaikin and V. S. Kdelman, Zh. Kksperim. i Teor. Fiz.
49, 1695 (1965} LEnglish transl. : Soviet Phys. —JETP 22, 1159
(1966)g.

if the Fermi surface is nonspherical. Quinn' has in fact
shown that for ellipsoidal energy surfaces with propaga-
tion along the 6eld, but not parallel to a principal axis
of the ellipsoid, intra-Land. au level transitions are
allowed quantum mechanically. ' Land, au damping in
just this geometry has been found for lovr-6eld helicon
propagation in PbTe" "and appears to occur for Alfven
vraves in bismuth as vrell. "The reason for such damping
can be und. erstood quite simply in a semiclassical treat-
ment vrhen it is noted" that the transverse electric field
can do net vrork on the resonant electrons if the plane
of the electron's cyclotron orbit is tilted with respect
to the magnetic 6eld, as vrill be the case if the magnetic
6eld. is not parallel to a principal axis of the ellipsoid. ' "
This type of argument forms the basis for the present
paper, in vrhich vre derive expressions for the strength
of the Land. au damping for closed Fermi surfaces of
arbitrary shape.

In ord, er to treat the general case, we shall work with
a distribution function that labels the particles accord-
ing to the position of their guiding center rather than
their actual position. The guiding center gives the
average position of the particle during its cyclotron
motion; in the absence of rf 6elds, the guiding center
moves uniformly in the direction of the dc magnetic
6eM with some average velocity v, . In the next section

9 J.J.Quinn, Phys. Rev. 135, A181 (1964).
~0 In quantum language, Landau damping is an intra-Landau

level transition in the limit of small momentum transfer."J. N. Walpole, Ph.D. thesis, Massachusetts Institute of
Technology, 1966 (unpublished).

~ J. N. Walpole and A. L. McWhorter, preceding paper,
Phys. Rev. 158, 708 (1967)."%.G. May and A. L. McWhorter (to be published). Propaga-
tion was along the trigonal axis. In Khaikin and Kdelman s (Ref.
8) case, where propagation was along a binary axis, the threshold
Alfven velocity and hence the threshold 6eld for Landau damping
shouM have decreased sharply when the magnetic 6eld was exactly
along the binary axis, since only the two electron ellipsoids with
low Fermi velocity in the binary direction could then contribute.
Khaikin and Kdelman's data seem to show such an efI'ect.

~4 Mathematically, the occurrence of Landau damping for
propagation along the 6eld but not parallel to a principal axis of
the ellipsoid immediately follows from a transformation (Ref. 15)
to the equivalent spherical energy surface problem, since the
transformed wavevector and 6eld are not parallel. However, this
approach does not reveal the physics of the original problem.

"See, for example, S. G. Eckstein, Phys. Rev. Letters 12, 360
(1964).
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general be zero except for the special case of spherical
energy surfaces. Hence, Landau damping can occur for
helicons with q parallel to So, as previously discussed. .

It is possible to rewrite the (Ei u) term of (3.4) in
terms of the rf magnetic field, since from Stokes'
theorem and Maxwell's equations

(Ei ii)= ((o./2~) Ei dp

(3 5)

FIG. 1. Diagram illustrating for a general closed Fermi surface
the motion of a resonant electron as viewed in the coordinate sys-
tem moving along $0 at the average velocity of the electron.
The planes of constant phase are indicated by the set of parallel
lines. The guiding center of the electron's cyclotron motion is
labeled g.c.

Bv, /Bk, =0. A similar singularity in Doppler-shifted
cyclotron resonance has been discussed by Eckstein' in
connection with magnetoacoustic attenuation.

From (3.3) we see that the strength of the Landau
damping is determined by the average over a cyclotron
orbit of the power delivered to the resonant electrons.
If we let u=v —~, a be the velocity of the electron
relative to its guiding center, then we may write

(Ei v) = (~i*)i'. + (Ei u). (3 4)

In the coordinate system moving with the guiding
center, the electron describes a stationary closed orbit
(provided that the orbit in k space is closed) which in
general is of complicated, shape, as shown schematically
in Fig. 1. For ellipsoidal energy surfaces with effective
mass tensor m, the path is an ellipse lying in a plane
whose normal is the direction m So, for spherical energy
surfaces the path is circular and lies in the plane
normal to $0. In the case of helicon propagation along
an axis of syrnlnetry with $0 parallel to q, E&, will be
zero. However, the second term of (3.4) will not in

' S. G. Kckstein, Phys. Rev. Letters 16, 611 (1966). See also
K. A. Kaner, V. G. Peschanskii, and I. A. Privorotskii, Zh.
Kksperim. i Teor. Fiz. 40, 214 (1961) )English transl. : Soviet
Phys. —JKTP 13, 147 (1961)j.

The last integral is taken over the area A of the cyclotron
orbit in the coordinate system moving with the guiding
center. If the size of the orbit is sufFiciently small com-
pared to a wavelength that the variation of the fields
over the orbit may be neglected, we then have

(3.6)
where

p = —(e(v,/2') A (3.7)

~ Similar results have been obtained by Buchsbaum and
Platzman (Ref. 3) for the special case of spherical Fermi surfaces
and wavelengths much larger than the cyclotron radius.

is the magnetic moment of the orbiting electron. The
second term of (3.6) has the obvious interpretation as
the time rate of change of the magnetic energy —p 8&.

Thus, as previously mentioned, the coupling (E v)
between the resonant particles and the wave may always
be written as a sum of electric and magnetic parts.
However, since the damping of the wave is proportional
to

~
(E v) ~', there in general will be interference sects

between the electric and, magnetic coupling. " This
situation is in fact encountered in low-field. helicon
propagation in PbTe."

As would. be expected for an intra-Landau-level
transition, the power absorbed by the resonant electrons
produces an increase in their momentum along the
magnetic Geld rather than an increase in the area of
their cyclotron orbit in k space. This may easily be
verified by multiplying (2.15) by the respective
quantities and integrating over k.

Finally, it should be remarked that (3.3) can be used
for a perturbation calculation of the attenuation due to
Landau damping. Sy taking the imaginary part in
(3.2), one can obtain perturbatively the dispersive
effect as well.


