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By using a guiding-center distribution function, an expression for Landau damping is derived for closed
Fermi surfaces of arbitrary shape in the case where the cyclotron frequency is much greater than the collision
frequency. It is shown that the strength of the damping is determined by the average over the cyclotron
orbit of the power delivered by the wave to the resonant electrons. The resonant coupling can always be
written as a sum of electric and magnetic contributions, but the damping in general cannot, because of

interference effects.

I. INTRODUCTION

N this paper we shall present a general semiclassical
treatment of Landau damping of magnetoplasma
waves for closed Fermi surfaces in the case where the
cyclotron frequency is much greater than the collision
frequency. Landau damping results from a resonant
transfer of energy from the wave to charge carriers
whose average velocity along the direction of propaga-
tion equals the phase velocity of the wavel™* Kaner
and Skobov® first predicted this kind of collisionless
damping for helicon and Alfven waves propagating at
an angle to the magnetic field. Such effects have recently
been observed for helicon propagation in alkali metals
by Grimes® and by Houck and Bowers,” and for Alfven
waves in bismuth by Khaikin and Edelman.?
Despite statements®® to the contrary, Landau
damping can also occur for propagation along the field

* Operated with support from the U. S. Air Force.

1 We shall use the term Landau damping here to include the
effect of all field components in producing the resonant transfer of
energy. For some purposes it is useful to have separate terms to
distinguish the role of the different fields. As will be discussed in
connection with Eq. (3.5), it is always possible for closed Fermi
surfaces to divide the damping mechanism into a part due to the
component of electric field along the dc magnetic field and a part
due to the rf magnetic field. For the latter, the term magnetic
Landau damping has recently been suggested by Stix (Ref. 2)
and is used by Buchsbaum and Platzman (Ref. 3) and by Pearson
(Ref. 4). However, it is important to realize that both the electric
and magnetic fields affect the resonant electrons in the same way;
consequently there are interference terms which generally prevent
the total resonant damping from being written as a sum of electric
and magnetic contributions. It should also be pointed out that
attaching a key role to the magnetic field is essentially a matter of
taste, since the total resonant damping can just as naturally be
expressed in terms of the electric field only, as in Eq. (3.3).

2T, H. Stix, as communicated via G. A. Pearson. Magnetic
Landau damping is a substitute for the term transit-time damping
previously used: T. H. Stix, T/e Theory of Plasma W aves (McGraw-
Hill Book Company, Inc., New York, 1962), p. 196.

3S. J. Buchsbaum and P. M. Platzman, Phys. Rev. 154, 395
(1967). These authors point out that magnetic Landau damping
dominates for helicon waves in metals.

4 G. A. Pearson (to be published).

5 E. A. Kaner and V. G. Skobov, Zh. Eksperim. i Teor. Fiz. 45,
610 (1963) [English transl.: Soviet Phys.—JETP 18, 419 (1964)].

6 C. C. Grimes, Bull. Am. Phys. Soc. 11, 570 (1966).

( ;6]6.)R. Houck and R. Bowers, Bull. Am. Phys. Soc. 11, 256
1 .

8 M. S. Khaikin and V. S. Edelman, Zh. Eksperim. i Teor. Fiz.

129, 1(39]5 (1965) [English transl.: Soviet Phys.—JETP 22, 1159
1966)].
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if the Fermi surface is nonspherical. Quinn® has in fact
shown that for ellipsoidal energy surfaces with propaga-
tion along the field but not parallel to a principal axis
of the ellipsoid, intra-Landau level transitions are
allowed quantum mechanically.® Landau damping in
just this geometry has been found for low-field helicon
propagation in PbTe'+*2 and appears to occur for Alfven
waves in bismuth as well.’® The reason for such damping
can be understood quite simply in a semiclassical treat-
ment when it is noted! that the transverse electric field
can do net work on the resonant electrons if the plane
of the electron’s cyclotron orbit is tilted with respect
to the magnetic field, as will be the case if the magnetic
field is not parallel to a principal axis of the ellipsoid.*4!%
This type of argument forms the basis for the present
paper, in which we derive expressions for the strength
of the Landau damping for closed Fermi surfaces of
arbitrary shape.

In order to treat the general case, we shall work with
a distribution function that labels the particles accord-
ing to the position of their guiding center rather than
their actual position. The guiding center gives the
average position of the particle during its cyclotron
motion; in the absence of rf fields, the guiding center
moves uniformly in the direction of the dc magnetic
field with some average velocity Vay. In the next section

9 J. J. Quinn, Phys. Rev. 135, A181 (1964).

1 Tn quantum language, Landau damping is an intra-Landau
level transition in the limit of small momentum transfer.

1], N. Walpole, Ph.D. thesis, Massachusetts Institute of
Technology, 1966 (unpublished).

2], N. Walpole and A. L. McWhorter, preceding paper,
Phys. Rev. 158, 708 (1967).

18 W. G. May and A. L. McWhorter (to be published). Propaga-
tion was along the trigonal axis. In Khaikin and Edelman’s (Ref.
8) case, where propagation was along a binary axis, the threshold
Alfven velocity and hence the threshold field for Landau damping
should have decreased sharply when the magnetic field was exactly
along the binary axis, since only the two electron ellipsoids with
low Fermi velocity in the binary direction could then contribute.
Khaikin and Edelman’s data seem to show such an effect.

14 Mathematically, the occurrence of Landau damping for
propagation along the field but not parallel to a principal axis of
the ellipsoid immediately follows from a transformation (Ref. 15)
to the equivalent spherical energy surface problem, since the
transformed wavevector and field are not parallel. However, this
approach does not reveal the physics of the original problem.
(11;62‘)36’ for example, S. G. Eckstein, Phys. Rev. Letters 12, 360
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an expression for the guiding-center distribution func-
tion is obtained for the case of interest, where the
cyclotron frequency is much larger than the collision
frequency. Then in Sec. III we show that the quantity
determining the strength of the Landau damping is
the average over the cyclotron orbit of the power
delivered by the wave to the resonant electrons.

II. DISTRIBUTION FUNCTION IN GUIDING
CENTER COORDINATES

For simplicity only the case of a single closed Fermi
surface will be considered explicitly; the generalization
of the results to several closed surfaces is straightfor-
ward. We start from the semiclassical Boltzmann equa-
tion in (r,k) coordinates:

af 1F af
at""v' Vrf_l'h . ka— ( 6t>c°u ) (2-1)
where
=—e(E4+vXB) (2.2)
and
v=#"1VyE. (2.3)

If we let fo be the thermal equilibrium distribution and
subscripts 1 denote the perturbations, then in the pres-
ence of a dc magnetic field By the linearized form of
(2.1) is

af1
——+V Vrfr——(VXBo) Vif1

a2,

The collision term will be approximated by
<3f> f=J i Jo—fo
_— = — = — T

at coll T T T

; (2.5)

where fo is the local equilibrium distribution corre-
sponding to the local density.!® To first order in the
perturbed density #,
dfo OEp
Jo= fot——m
oE F on

(2.6)

in terms of the Fermi energy Ep.

It is convenient to choose as coordinates!” in k space
the component k. in the direction of By, the total energy
E, and the time s of the electron along its cyclotron
orbit measured from some arbitrary reference point on

16 Even when the total density fluctuation is negligible, it is
necessary in general to include relaxation to the local equilibrium
in a many-valley semiconductor, since there can be large fluctua-
tions in the populations of the individual valleys (Ref. 11).

17]1. M. Lifshitz, M. Ya. Azbel’, and M. 1. Kaganov, Zh.
Eksperim. i Teor. Fiz. 31, 63 (1956) [English transl.: Soviet Phys.
—JETP 4, 41 (1957)7.
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the orbit. In terms of these coordinates the differential
volume element in k space becomes

d*%k = (eBo/%*)dk.dEds 2.7
and the Boltzmann equation takes the form
i f df1 10Er \0fo
—t—+v: V,f1+——=<eE1 v————m) . (2.8)
a 7 as T on oE

We now change to the guiding center coordinates r,y
by letting

rav:r—@(kZ)Eys) ) (2'9)

where, in notation simplified by suppressing %, and E,
0= [ BTr) ]
’ 1 T 8’
——-/ ds'/ ds"[v(s")—vav]. (2.10)
T Jo 0
Here T=2m/w, is the cyclotron period and

1 T
Vay=— / v(s)ds
T /o

is the mean velocity. The necessary property that

foe

is ensured by the fact that the second term of (2.10) is
the average of the first. Since ¢ depends only on the k

(2.11)

(2.12)

coordinates,
(Vefox= (Ve f1)x, (2.13)
while
6f1 i} f 1 6rav
()G e ()
as/« 35 / ray as /+
6f1 39
= <———) Ve f1 (2.14)
(93 Tav as

_ (ﬁi)hv_ (V—Ya) Vano .

as

Hence the Boltzmann equation becomes

afi fi 1
““f_+f +vav Vl‘nvf1+< f)

as

10Er dfo

= I:eEl(t,t) V—— ————-nl(r,t):l—— , (2.15)
T On oFE

a form which could have been deduced by direct physical

argument.
If we assume an exp(iwfi—iq-r) variation for E; and
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n1, then we can set

S1(tav,k,8) = g1 (k)eiot—ia rav (2.16)
and obtain as the equation for g;
. 74
(lo—1q- Vay+1/7)g1+—
as
10Ep dfo
= (8E1 V—— ——m)e—“l —, (217)
T n oE

The formal solution to (2.17) is
Hn= ] ds’e(Go—iq-vav+1/7) (s'=s)
-0

19Er afo
X(eEl'v—— ———n,)e"‘l p—
T on oFE

1 s
= / ds’
1—exp(—iw+iq - Vay—1/7)T J o1

xe(iw—-'iq'vav-{—l/f) (8’—s)

19Er ~ dfo
X(eEl-v———————nl)e"'l'P;E—, (2.18)

T On

the last expression being obtained by summing the
geometric series which results from the contribution of
each period of length 7'. In the limit where w.>w—q- Vay
and w,7>1,

1 1 p¢ 10Er
glz-———————-—/ (eEl'V————"ﬂ'll)
w—1iq - Vay+1/7 T Jor T On

_9fo
Xe r—ids, (2.19)
oE

Substituting (2.19) into (2.16) and taking into account
the periodic nature of the integrand, we finally obtain
for fi an expression independent of s:

afo
tw—1q- Vay+1/7 OF

eiwt—iq-rw

fl (rEV:kZ;F t)

19Er
X eE1~v————n1>. (2.20)
T On

Here the angular brackets denote an average over the
cyclotron orbit, i.e.,

10Er
(-t

T 0n

190Er
=—/ (eE1 v———~n1>e iweds,  (2.21)
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The resonance which occurs when w—q-v,y=0 is of
course just the one that leads to Landau damping. As
previously stated, Landau damping is produced by
those electrons whose average velocity along the direc-
tion of propagation equals the phase velocity of the
wave. Note that for the resonant particles the condition
woDw—q - Vay is automatically satisfied, so that we need
only wer>>1 for (2.20) to be valid near resonance. It is
also important for later use to observe that

1 . or
(Ey-vy=— /Ele_“l“’-—ds
T ds

We
= .__El . / e—’iQ' (f—flv)dr ,
27 c

where C is the trajectory in r space corresponding to
the cyclotron orbit in k space.

(2.22)

III. LANDAU DAMPING

Using the results of the preceding section, we can
immediately obtain an expression for the strength of the
Landau damping. The current Ji(r,f) is made up of
contributions from all electrons whose trajectory passes
through r at time ¢:

Ji(r)=—e / (eBo/#?)dk .dEdsdr,,
Xfl(rav;kz;E:t)v(kZ:E)s)a(rav+g—r)

= — (e2Bo/#?) / dkAEf,(t,k,,E\l) / e'tryds, (3.1)
Hence the power dissipated by the wave is

P=1Re(B,-J)=—1} Re[ (Bo/#) f dk.dE

f1*/E16"iq'p'VdS]

[(Zvremc/fﬂ) / dkAEf*(E;- v)]

=—1R
- 2

(3.2)

where m,= (eBo/w.) is the cyclotron mass. For ¢,vpm3>1
the value of P is independent!® of the collision rate and
at T=0°K becomes

1 e?m,

Tor 1 g.(3un/oks)

[ (E1-v)[?, (3.3)

where (E;-v) is to be evaluated for the resonant elec-
trons at the Fermi surface. It should be noted that there
is a singularity in (3.3) if the Fermi surface is such that

18 Relaxation to local equilibrium must be included for this to
be true in general.
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Fic. 1. Diagram illustrating for a general closed Fermi surface
the motion of a resonant electron as viewed in the coordinate sys-
tem moving along Bo at the average velocity of the electron.
The planes of constant phase are indicated by the set of parallel
lines. The guiding center of the electron’s cyclotron motion is
labeled g.c.

9vay/0k,=0. A similar singularity in Doppler-shifted
cyclotron resonance has been discussed by Eckstein'® in
connection with magnetoacoustic attenuation.

From (3.3) we see that the strength of the Landau
damping is determined by the average over a cyclotron
orbit of the power delivered to the resonant electrons.
If we let u=v—u,,2 be the velocity of the electron
relative to its guiding center, then we may write

(E1v)= (E1.)vay+ (Ey-u). (3.4)

In the coordinate system moving with the guiding
center, the electron describes a stationary closed orbit
(provided that the orbit in k space is closed) which in
general is of complicated shape, as shown schematically
in Fig. 1. For ellipsoidal energy surfaces with effective
mass tensor m, the path is an ellipse lying in a plane
whose normal is the direction m-By; for spherical energy
surfaces the path is circular and lies in the plane
normal to Bo. In the case of helicon propagation along
an axis of symmetry with B, parallel to q, E;, will be
zero. However, the second term of (3.4) will not in

¥ S, G. Eckstein, Phys. Rev. Letters 16, 611 (1966). See also
E. A. Kaner, V. G. Peschanskii, and 1. A. Privorotskii, Zh.

Eksperim. i Teor. Fiz. 40, 214 (1961) [English transl.: Soviet
Phys.—JETP 13, 147 (1961)].
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general be zero except for the special case of spherical
energy surfaces. Hence, Landau damping can occur for
helicons with q parallel to B, as previously discussed.

It is possible to rewrite the (E;-u) term of (3.4) in
terms of the rf magnetic field, since from Stokes’
theorem and Maxwell’s equations

(Ei-u)= (wc/Zr)/El‘dg

= — i (we/2m) / B;-da. (3.5)
A

The last integral is taken over the area 4 of the cyclotron
orbit in the coordinate system moving with the guiding
center. If the size of the orbit is sufficiently small com-
pared to a wavelength that the variation of the fields
over the orbit may be neglected, we then have

—e(E1-v)= —evvE1,—iwy- By, (3.6)

where
u=— (ew,/2m)A 3.7

is the magnetic moment of the orbiting electron. The
second term of (3.6) has the obvious interpretation as
the time rate of change of the magnetic energy —u-B;.

Thus, as previously mentioned, the coupling (E-v)
between the resonant particles and the wave may always
be written as a sum of electric and magnetic parts.
However, since the damping of the wave is proportional
to | (E-v)|?% there in general will be interference effects
between the electric and magnetic coupling.® This
situation is in fact encountered in low-field helicon
propagation in PbTe.%?

As would be expected for an intra-Landau-level
transition, the power absorbed by the resonant electrons
produces an increase in their momentum along the
magnetic field rather than an increase in the area of
their cyclotron orbit in k space. This may easily be
verified by multiplying (2.15) by the respective
quantities and integrating over k.

Finally, it should be remarked that (3.3) can be used
for a perturbation calculation of the attenuation due to
Landau damping. By taking the imaginary part in
(3.2), one can obtain perturbatively the dispersive
effect as well.

20 Similar results have been obtained by Buchsbaum and
Platzman (Ref. 3) for the special case of spherical Fermi surfaces
and wavelengths much larger than the cyclotron radius.



